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Abstract

Continual learning is known for suffering from catastrophic
forgetting, a phenomenon where previously learned concepts
are forgotten upon learning new tasks. A natural remedy is
to use trained models for old tasks as ‘teachers’ to regularize
the update of the current model to prevent such forgetting.
However, this requires storing all past models, which is very
space-consuming for large models, e.g. BERT, thus impracti-
cal in real-world applications. To tackle this issue, we propose
to construct snapshots of seen tasks whose key knowledge
is captured in lightweight adapters. During continual learn-
ing, we transfer knowledge from past snapshots to the current
model through knowledge distillation, allowing the current
model to review previously learned knowledge while learn-
ing new tasks. We also design representation recalibration
to better handle the class-incremental setting. Experiments
over various task sequences show that our approach effec-
tively mitigates catastrophic forgetting and outperforms all
baselines.

1 Introduction
Continual learning (CL) (Ring 1997; Thrun 1998) has be-
come increasingly important in NLP. It aims to continu-
ally update the model and accumulate knowledge over a
sequence of tasks. A fundamental problem in CL is catas-
trophic forgetting (McCloskey and Cohen 1989), i.e. knowl-
edge acquired in previous tasks could be forgotten when the
model is trained on new tasks. To overcome this problem,
various methods have been proposed. Regularization-based
methods constrain the model’s updates to prevent it from
changing too much from its previous state. However, as the
number of tasks increases, the model will still gradually de-
viate from the state of the first few tasks. Exemplar-based
methods selectively store seen examples from previous tasks
and replay them while learning new tasks, but storing train-
ing data further brings data privacy concerns.

Therefore, how to preserve previously learned knowledge
without storing training data becomes an important problem.
This paper first investigates a straightforward solution that
retains past models trained on previous tasks. We consider
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Figure 1: Overview of learning with snapshots. The global
model learns from past snapshots when training new tasks.

those models as snapshots of previous tasks, a compressed
form of task-specific knowledge. So the current model can
access old knowledge by learning from them via knowl-
edge distillation (Hinton, Vinyals, and Dean 2015). How-
ever, storing all parameters of the past models is often un-
realistic in practice due to the high storage cost. For in-
stance, even the base version of BERT model (Devlin et al.
2019) contains 110 million parameters, which means 440
MB for each task. To tackle the storage challenge, we pro-
pose to construct snapshots with adapters (Rebuffi, Bilen,
and Vedaldi 2018; Houlsby et al. 2019). The adapters make
each snapshot only 0.8% the capacity of BERT while main-
taining comparable accuracy, thus drastically reducing the
space complexity. And since snapshots are no longer up-
dated once created, the task-specific knowledge that they
learned can also be preserved.

This paper will focus on class-incremental learning
(Class-IL) (Van de Ven and Tolias 2019), a challenging sce-
nario where the task identity (indicating the candidate label
set) is unknown at test time. Therefore, the model needs to
make predictions on the complete label set for all tasks seen
so far. In contrast, task-incremental learning (Task-IL) re-
laxes this constraint, and assumes that the task identity is
given at test time, so the model can use its task-specific
components to predict that task. Recent work finds neural
networks are often less calibrated, and tend to yield over-
confident predictions (Guo et al. 2017). As a result, it be-
comes difficult to determine the task identity by compar-
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ing the prediction scores between different tasks, as they are
overconfident especially for recently-learned tasks (Masana
et al. 2022). Existing countermeasures (Rebuffi et al. 2017;
Castro et al. 2018) usually require storing old data samples
to distinguish the task boundary, which however leads to pri-
vacy concerns. To address this issue, we design representa-
tion recalibration to regularize the representations of differ-
ent tasks orthogonal to each other, so as to avoid activating
irrelevant classifiers.

Our contributions can be summarized as follows:

• We propose to mitigate forgetting by learning from snap-
shots of previous tasks when learning new tasks;

• We propose to construct snapshots with lightweight
adapters to capture the task-specific knowledge and re-
duce the space requirement to 0.8% of the original BERT;

• We design representation recalibration to distinguish the
boundary between different tasks to better handle the
Class-IL scenario without using any old training data.

We conduct extensive experiments over several task se-
quences, including cross-dataset and cross-language task se-
quences. The results show that our approach can effectively
mitigate catastrophic forgetting under different task settings
without using any old training data.1

2 Related Work
Continual Learning. CL aims to tackle the plasticity-
stability dilemma, with plasticity to be the ability to learn
new knowledge, and stability to retain old knowledge. Var-
ious solutions are proposed in the literature. Among them,
exemplar-based methods and regularization-based methods
have been widely applied to enable neural networks to con-
tinually acquire new knowledge without forgetting the previ-
ously learned knowledge. Exemplar-based methods use data
samples from previous tasks (Rebuffi et al. 2017; de Mas-
son D’Autume et al. 2019; Wang et al. 2020) or synthe-
sized with generative models (Shin et al. 2017; Sun, Ho,
and Lee 2019; Smith et al. 2021; Choi, El-Khamy, and Lee
2021), so the old knowledge can be replayed to overcome
forgetting. Regularization-based methods alleviate forget-
ting by constraining the model’s prediction (Li and Hoiem
2017), hidden states (Rannen et al. 2017; Huang et al. 2021),
or parameters (Lopez-Paz and Ranzato 2017; Kirkpatrick
et al. 2017; Zenke, Poole, and Ganguli 2017; Aljundi et al.
2018; Chaudhry et al. 2018) from varying too much. Cha
et al. (2020) propose classifier-projection regularization that
can be applied to regularization-based methods. Besides, Yu
et al. (2020) estimate the semantic drift during training and
compensate for it. Ke et al. (2021) investigate knowledge
transfer across tasks in addition to overcoming catastrophic
forgetting. Yin, Li, and Xiong (2022) propose to use tex-
tual instruction to guide continual learning. In this paper, we
mainly compare with exemplar-free methods under Class-IL
scenarios.
Model Fine-Tuning. Large pre-trained language models
such as BERT (Devlin et al. 2019), ELMo (Peters et al.

1Code available at: https://github.com/LorrinWWW/Snapshot.

2018), and XLNet (Yang et al. 2019) have been proposed to
boost the performance of NLP tasks. These models are pre-
trained on large corpora and then fine-tuned on task-specific
datasets. While fine-tuning per-task is very effective, it also
results in a distinct large model for each task, making it
costly to store and use, especially when the number of tasks
is large.

Recently, parameter-efficient fine-tuning of pre-trained
language models (Houlsby et al. 2019) is being actively ex-
plored, which only fine-tunes a small subset of parameters
while maintaining similar performance as fine-tuning all pa-
rameters. Such property is desirable for deploying multi-
ple models in memory-constrained environments, since we
only need to keep one base model and multiple sets of
task-specific parameters. Among them, Adapter (Houlsby
et al. 2019) injects compact task-specific adapter modules
between the layers of the pre-trained model. Diff-Pruning
(Guo, Rush, and Kim 2020) adds sparse difference-vectors
to the original parameters. BitFit (Zaken, Ravfogel, and
Goldberg 2021) only fine-tunes the bias term of the model.
However, it is non-trivial to directly apply those methods in
Class-IL scenarios, since the task identity is not given at test
time and thus we do not know which set of task-specific pa-
rameters to use in inference.

3 Approach
In this work, we focus on continual learning on a sequence
of tasks {T1, ..., TN} arriving in temporal order, where each
task Ti contains a different set of sentence-label pairs. When
task Ti arrives, the data for previous tasks is no longer avail-
able due to storage constraints and privacy issues.

We instantiate a global model and continuously fine-tune
it on new tasks. During training, we use past models of old
tasks to regularize the updates of the global model. The in-
tuition behind our approach is that, a model trained on a cer-
tain task can be considered as a ‘knowledge base’ containing
necessary knowledge required for that task. Therefore, the
global model can access the knowledge of previous tasks
from past models via distillation.

Due to the large size of BERT, it is not feasible to store
all parameters of past models. To tackle this issue, we pro-
pose to leverage lightweight adapters to reduce the number
of task-specific parameters so as to reduce the storage cost.
Once training for a task is complete, we freeze and store the
adapters to build a snapshot of that task. We show that the
storage space occupied by such a snapshot is two orders of
magnitude smaller than that of the original BERT.

This section will focus on text classification, but we show
in Section 4.8 that our approach can be easily adapted to
other NLP tasks, e.g. sequence tagging tasks.

3.1 Fine-Tuning Global Model
We first demonstrate the standard procedure of fine-tuning
the global model sequentially.

When a new task Ti arrives, we start from the global
model of the previous task Ti−1, and then optimize for the
new task. Formally, given a sentence-label pair (x, y) sam-
pled from Ti, we aim to minimize the classification loss of
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Figure 2: Space-efficient snapshots created with adapters,
where we only store the parameters of adapters for each task.

task Ti defined as follows:

hG = Globalθ(x), (1)
zGi = W ihG, (2)
Lcls = CE(softmax (zGi), y), (3)

where Globalθ(·) is the global model parameterized by θ;
CE(·) is the cross-entropy loss function; W i is classification
weight for task Ti.

However, we may find that optimizing a single task alone
tends to forget the knowledge from previous tasks, thus re-
quiring effective methods to preserve old knowledge.

3.2 Creating Snapshots
To keep previously learned knowledge, we propose to use
adapters to construct snapshots of previous tasks in a
space-efficient way. Houlsby et al. (2019) propose to trans-
fer BERT to down-stream tasks by inserting task-specific
adapters. As shown in Fig. 2, adapters are two-layer feed-
forward neural networks and typically adopt ‘bottleneck’ ar-
chitectures. Each adapter contains a down-projection feed-
forward neural network and an up-projection feedforward
neural network with activation in between, e.g. ReLU, (Nair
and Hinton 2010), followed by a skip connection:

A(a) = FFN↑(σ(FFN↓(Norm(a)))) + a, (4)

where Norm(·) is layer normalization; σ(·) is the activation
function; FFN(·) is a feedforward neural network defined as
FFN(a) = Wa+ b.

For each task, we initialize adapters and insert them to the
original BERT model. We keep BERT fixed and only up-
date the parameters of adapters. The trained adapter model
is regarded as a snapshot for the current task. We update the
adapter parameters by jointly training with the global model.
Specifically, for the same sentence-label pair (x, y) in Sec-
tion 3.1, we define the following loss:

hSi = Snapshotθi(x), (5)

zSi = W ihSi, (6)
Lsnap = CE(softmax (zSi), y)

+
1

d
∥hG − hSi∥22. (7)

Snapshot2 Snapshoti-1Snapshot1

Global Model

Classifier1 Classifier2 Classifieri-1...

Classifier1 Classifier2 Classifieri-1...

E-MSE E-MSE E-MSE

Figure 3: The procedure of learning from snapshots. Past
snapshots and classifiers are fixed.

where Snapshotθi(·) is the snapshot for task Ti, parameter-
ized by θi. The snapshot and the global model share the
same classification weight W i. The loss term 1

d∥hG−hSi∥22
is introduced to encourage representations produced by the
current snapshot and the global model to be close to each
other. Once the training of current task Ti is completed, the
snapshot and classification weight for task Ti will be fixed
and saved. These saved snapshots are taken as a compressed
form of previously learned knowledge, and are to be used to
prevent the global model from forgetting.

3.3 Learning from Snapshots
To alleviate the forgetting of previous knowledge, we per-
form knowledge distillation between the global model and
past snapshots. In particular, since we cannot access the data
of previous tasks, we use past snapshots and classification
weights to predict the data of the current task, and use the
output as pseudo-labels to train the global model. For the
sentence-label pair (x, y) sampled from the current task Ti,
we define the distillation loss as follows:

hG = Globalθ(x), zGj = W jhG, (8)
hSj = Snapshotθj (x), zSj = W jhSj , (9)

Lpast =

i−1∑
j=1

1

Cj
∥ezGj/T−ezSj/T ∥22, (10)

where T is a temperature parameter to adjust the magnitude
of prediction scores; Cj is the number of classes for task Tj .

We use an exponential function to further activate the pre-
dictions and pseudo-labels to make the model focus on the
large prediction value, which we denote as E-MSE in Fig. 3.
Equation (10) will reach its minimum when zGj = zSj . It
should be noted that KL-divergence, adopted by many dis-
tillation methods, might not be suitable here as it removes
magnitude and bias information and further leads to a lack
of calibration between tasks. We empirically evaluate vanilla
MSE loss and KL-divergence in Section 4.6, but the perfor-
mance degrades compared with E-MSE.

To avoid too much training overhead incurred by the
growing number of tasks, we set the maximum number of
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Algorithm 1: Overall training procedure.

Require: task sequence [Ti]i=1,2,...,N ; learning rate η; pre-
trained parameters θ for the global model.

1: initialize Globalθ(·)
2: for each task Ti, i = 1, 2, ..., N do
3: initialize Snapshotθi(·) and W i

4: for (x, y) ∼ Ti do
5: // forward pass
6: hG ← Globalθ(x)
7: hSj ← Snapshotθj (x), j = 1, ..., i

8: zGj ←W jhG, j = 1, ..., i
9: zSj ←W jhSj , j = 1, ..., i

10: L ← Lcls + Lsnap + Lpast + Lorth
11: // update parameters
12: θ ← θ − η∂L/∂θ
13: θi ← θi − η∂L/∂θi
14: W i ←W i − η∂L/∂W i

15: W i ←W i/ ∥W i∥2
16: end for
17: end for
18: return Globalθ(·) and [W i]i=1,...,N

snapshots M . When i > M , we randomly sample M snap-
shots to compute Eq. (10) for each training step.

3.4 Representation Recalibration
Although learning from snapshots effectively mitigates the
forgetting issue, the performance is still unsatisfactory in
Class-IL, where the model needs to predict all classes seen
in previous tasks without knowing the task identity at in-
ference time. Ideally, we would like the model to produce
high-confidence predictions using the correct classification
weight, and to be less confident otherwise. However, we
often get overconfident predictions from all classification
weights, thus causing task boundaries to be ambiguous.

An important observation is that the learned representa-
tion spaces for different tasks usually overlap each other.
Therefore, an input that activates a relevant classification
weight may also activate others. To ensure the representa-
tions of different tasks to be distinguishable by clear task
boundaries, we construct a regularization term defined as
follows:

Lorth =
i−1∑
j=1

∥∥∥W iW
⊤
j

∥∥∥
1,1

. (11)

Moreover, since the classification weights of different
tasks are learned individually, they are not properly cali-
brated and thus the prediction scores are not comparable. To
this end, we normalize the classification weight after each
training iteration, such that W i ←W i/ ∥W i∥2.

3.5 Joint Training
Finally, we sum up all the loss terms and use gradient-based
optimization methods to minimize the following loss:

L = Lcls + Lsnap + Lpast + Lorth. (12)

Note that for each training iteration, we only update the
global model, the current snapshot and classification weight,
and keep the previous snapshots and classification weights
unchanged. The overall algorithm is shown at Algorithm 1.

Inference. Our approach does not incur additional com-
putation overhead in inference compared with multi-task
learning. In Class-IL, we use the global model to obtain the
input’s representation, predict with all classification weights,
and then pick the label with the largest prediction score. For-
mally, given input x, we have:

hG = Globalθ(x), (13)
zi = W ihG, i = 1, ..., N (14)
ŷ = argmax ([z1; ...; zN ]). (15)

Alternatively, in Task-IL, where task identity is given at test
time, e.g. Tk, we use its corresponding classification weight
to predict ŷ = argmax (zk).

4 Experiments
We demonstrate that our approach can effectively mitigate
catastrophic forgetting. Specifically, (1) On cross-dataset
and cross-lingual task sequences, we show our method can
maintain the best overall accuracy, whereas baseline meth-
ods often suffer from accuracy drop for previous tasks. (2)
By investigating the trade-off between space and accuracy.
we show that our method as a lightweight and storage-
efficient scheme for handling catastrophic forgetting. (3) We
perform ablation study to understand the effectiveness of
components and strategies in our approach. (4) We visual-
ize the encoding space during training, which shows that our
approach can effectively distinguish the task boundary.

4.1 Data
We compare our approach and other baseline models on the
following datasets: THUCNews dataset (Sun et al. 2016),
AG’s news corpus (Zhang, Zhao, and LeCun 2015), Yelp
reviews (Asghar 2016), Amazon reviews (McAuley and
Leskovec 2013), and DBPedia dataset (Zhang, Zhao, and
LeCun 2015). To balance the number of data samples be-
tween these tasks, we prune the datasets to keep them in the
same order of magnitude. We merge the label space of Ama-
zon and Yelp considering their similarity.

4.2 Setup
We fine-tune the multilingual cased checkpoint (bert-base-
multilingual-cased) for all task settings. We use the Adam
optimizer, and set the learning rate to 2e-5 for the global
model and 1e-4 for the adapter-based snapshot. We set the
training batch size to 32. We tune the hyperparameters by
performing a grid search over d ∈ [12, 96], T ∈ [1, 6], and
M ∈ [1, 4]. Our approach works well with a bottleneck size
d = 48, temperature T = 3, and maximum number of snap-
shots for each training step M = 3. We train each task for
one epoch and report the average results over 3 runs with
different random seeds.

We measure the average accuracy of all seen tasks. For
the current time step i, we compute Acci = 1

i

∑i
j=1 Acci,j ,

where Acci,j is the accuracy of task Tj after training task Ti.
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THU-Seq: THU1 →THU2 →THU3 →THU4

MTL 99.0 95.3 95.9 95.7
FT 98.9 61.2 37.1 27.4
LwF 98.9 76.8 53.0 43.8
EWC 98.9 82.5 54.6 51.8
R-Walk 98.9 84.9 81.2 73.5
MAS 98.9 86.4 82.3 60.1
AdapterParallel∗ 98.7 72.0 71.6 69.4
AdapterStack 98.7 55.6 50.7 33.3
AdapterFusion 98.7 52.7 36.2 26.5

Snapshot 98.9±0.1 87.9±0.2 89.2±0.4 86.3±0.4

Table 1: Results on THU-Seq, a task sequence constructed
from THUCNews. ∗Inference overhead is proportional to
the number of tasks. Bold numbers indicate the best scores
except for MTL.

4.3 Baselines

We compare our proposed approach with the following base-
lines in our experiments:

Fine-Tune (FT): Fine-tune the BERT model sequentially,
which is usually considered as a lower bound for CL.

Multi-Task Learning (MTL): Train all tasks simultane-
ously. This can be regarded as an upper bound for CL since
it can access data from all tasks at the same time.

LwF: Li and Hoiem (2017) use the old model trained on
the previous task to predict new task data, and then perform
distillation to prevent forgetting. It requires storing the pre-
dictions from the old model on new data.

EWC: Kirkpatrick et al. (2017) avoid forgetting old tasks
by selectively slowing down learning on the parameters im-
portant for those tasks. It maintains “estimated mean” and
“estimated fisher” for each parameter.

R-Walk: Chaudhry et al. (2018) propose a generalization of
EWC++ and path integral with a theoretically grounded KL-
divergence based perspective. This approach needs to store
the fisher matrix and the score of each parameter.

MAS: Aljundi et al. (2018) accumulate an importance mea-
sure for each parameter based on how sensitive the output
is to a change in this parameter. It stores the importance of
each parameter.

AdapterParallel: Train each task with an individual set of
adapters (Houlsby et al. 2019). At test time, we use all mod-
els to predict and pick the label with the highest prediction
score. Note this baseline is not efficient in practice as its in-
ference overhead grows proportional to the number of tasks.

AdapterStack: Incrementally stack new adapters as new
tasks arrive (Pfeiffer et al. 2020). We keep previous adapters
fixed and only fine-tune the latest adapter. We add represen-
tation recalibration when evaluating this approach.

AdapterFusion: Pfeiffer et al. (2021) leverage existing
adapters by learning an adapter fusion module. We add rep-
resentation recalibration when evaluating this approach.

Mix-Seq: THU1 →AG →Yelp →Amz. →DBP

MTL 98.9 95.2 88.6 80.8 84.5
FT 98.9 47.7 17.9 23.3 19.6
LwF 98.6 80.0 46.2 34.9 21.5
EWC 98.5 94.7 50.4 48.2 60.4
R-Walk 98.6 82.6 68.7 37.6 23.1
MAS 98.9 93.3 67.4 62.8 60.2
AdapterParallel∗ 98.4 83.2 63.3 57.9 38.4
AdapterStack 98.7 77.3 47.4 29.0 19.8
AdapterFusion 98.7 45.8 25.8 30.1 19.8

Snapshot 99.0±0.1 92.0±0.4 69.6±1.2 65.9±1.5 64.1±0.9

Table 2: Results on Mix-Seq, a task sequence from THU1,
AG, Yelp, Amazon and DBP. ∗Inference overhead is propor-
tional to the number of tasks. Bold numbers indicate the best
scores except for MTL.

4.4 Results and Comparison
We first construct a task sequence from THUCNews, de-
noted as THU-Seq. Specifically, we split THUCNews into 4
non-overlapping subsets, each containing 3 text categories,
denoted as THU1,2,3,4. Table 1 summarizes the results of
different approaches on THU-Seq. The column i shows the
average accuracy of seen tasks after training task Ti, and the
last column shows the overall accuracy when the training
is completed for all tasks. While the naive fine-tuning suf-
fers from severe forgetting problems, LwF, EWC, MAS, and
R-Walk show consistent improvements on all tasks, how-
ever, their performance is still unsatisfactory. Besides, while
Adapter is effective for each individual task, it is not suitable
for Class-IL where the task identity is unknown at test time.
Even if we use all trained adapter-based models to make
predictions (AdapterParallel), which would incur huge com-
putational overhead, the performance is still unsatisfactory
since their outputs are not well calibrated. AdapterStack and
AdapterFusion will expand parameters upon new tasks ar-
rive, but they still suffer from catastrophic forgetting in the
Class-IL scenario. Results of these Adapter-based methods
show that the direct application of Adapter cannot solve the
problem of catastrophic forgetting in continuous learning.

We also construct a challenging task sequence from a
mixture of different datasets, including THU1, AG, Yelp,
Amazon and DBP, denoted as Mix-Seq. These datasets come
from different data sources and contain multiple languages
(English and Chinese). As shown in Table 2, since the data
distribution varies significantly across different tasks, catas-
trophic forgetting is more serious than THU-Seq. We can
observe that the performance of all baselines drops signifi-
cantly during training. However, our approach maintains sta-
ble performance, showing that our approach is robust to sig-
nificantly different data distributions and even cross-lingual
scenarios.

Additional Storage. The baselines in this paper all re-
quire to store additional information. Our method stores
snapshots for each task and the original BERT. However,
since a snapshot only accounts for 0.8% (depending on
the hyperparameters, studied in Section 4.5) storage of the
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Task Sequences T1 → T2 → T3 → T4

THU1→2→3→4 98.9 87.9 89.2 86.3
THU2→1→3→4 98.4 81.4 82.3 76.0
THU3→2→1→4 99.4 95.9 89.9 86.2
THU3→2→4→1 99.4 94.8 88.9 82.1

Table 3: Results with permutations of the task order.

Setting # Param. % of BERT THU-Seq Mix-Seq

d = 96 1.8M 1.6% 85.6 63.0
d = 48 0.89M 0.8% 86.3 64.1
d = 24 0.45M 0.4% 81.7 62.3
d = 12 0.23M 0.2% 77.6 58.6

Table 4: Impact of bottleneck sizes of snapshots. “# Param.”
is the number of parameters for each snapshot. “% of BERT”
is the ratio of the snapshot to BERT.

global model, our method incurs less storage than EWC and
R-walk unless we have 125+ tasks. In typical settings of
CL, this number implies our method as a storage-efficient
scheme for handling forgetting.

Task Sequence Length. We observe all approaches are
prone to suffer from forgetting as the task sequence becomes
longer. But our approach still maintains the best result, and
the performance margins between our approach and other
baselines tend to widen as the number of tasks increases.
This indicates the effectiveness of our approach in mitigat-
ing forgetting especially for longer task sequences.

Task Sequence Order. We perform experiments with 4
permutations of the task order. Table 3 shows that the per-
formance varies with different task orders, indicating the
task order is important to the overall accuracy. Particularly,
the performance always drops after training for THU1 and
THU2. We find some labels in the two tasks to be simi-
lar (fashion and entertainment) and thus ambiguous. There-
fore, if the two tasks appear one after another, the model
is likely to be confused and forget the earlier one. How-
ever, even for the task sequence with the worst performance,
i.e. THU2→1→3→4, our approach still achieves better av-
erage accuracy than other baselines in the default task se-
quence, which shows the robustness of our approach to dif-
ferent permutations of the task order.

4.5 Trade-off Between Space and Accuracy

To better understand the proposed approach, we conduct a
series of experiments with different bottleneck sizes d of
adapters. The results are shown in Table 4. Since the num-
ber of parameters of adapters depends on the bottleneck
size, enlarging bottleneck size allows for a larger capacity of
adapters and thus may improve accuracy, but it also leads to
greater storage requirements to preserve snapshots. When d
is larger than 48, the overall accuracy drops slightly, mainly
because larger d tends to overfit new tasks, resulting in lower
accuracy of the global model on old tasks.

Setting THU1→THU2→THU3→THU4

w/o Lpast 98.9 80.2 62.0 38.3
MSE 98.9 87.2 87.6 83.7
KL-Div 98.9 85.9 81.1 76.5
E-MSE 98.9 87.9 89.2 86.3

Table 5: Results of different distillation loss functions.

Setting THU1 → THU2 → THU3 → THU4 L
T = 1 98.9 / - 23.9 / 98.5 21.5 / 79.8 8.5 / 75.9 6.1
T = 2 98.9 / - 89.7 / 82.4 91.3 / 85.6 49.8 / 87.4 22.8
T = 3 98.9 / - 89.0 / 86.9 94.7 / 86.6 85.5 / 86.6 19.0
T = 4 98.9 / - 83.9 / 80.0 94.5 / 87.1 87.1 / 85.4 22.4
T = 6 98.9 / - 91.2 / 84.1 95.6 / 82.0 90.6 / 82.3 13.0

Table 6: Effect of the temperature parameter in learning from
past snapshots. We present the plasticity-stability trade-offs
by comparing the accuracy of the new task Acci,i and the
average accuracy of old tasks 1

i−1

∑i−1
j=1 Acci,j .

4.6 Ablation Study
Effect of Learning from Past Snapshots. We compare dif-
ferent distillation loss functions in Table 5. Firstly, when we
remove Lpast, i.e. the global model will not learn anything
from past snapshots, the accuracy of old tasks drops signifi-
cantly, which shows that Lpast is important in mitigating for-
getting. Besides, replacing E-MSE with KL-divergence also
hurts the performance. KL-divergence requires performing
softmax on the prediction scores within a task, which will
discard the information of magnitude and average value,
thereby leading to the issue of lack of calibration. E-MSE
outperforms MSE because exponential activation allows the
model to focus more on significant values.

Furthermore, we investigate the effect of the temperature
parameter T . We also include forgiveness rate defined by
Liu et al. (2020). Table 6 presents the results. Reducing T
helps maintain the accuracy of old tasks. However, when T
is too small, the global model will struggle in minimizing
Lpast, and thus it becomes hard for the global model to learn
new concepts. Generally, T = 3 can achieve a good balance
of the plasticity-stability.

Effect of Representation Recalibration. In order to
demonstrate the effect of representation recalibration, es-
pecially for the Class-IL scenario, we conduct experiments
by removing the regularization term Lorth and removing the
weight normalization operation. Table 7 shows that both
contribute to the final performance. But the performance
gain is more significant when combing them together.

In the task-incremental scenario, where the task identity
of the input sample is provided at test time, the effect of rep-
resentation recalibration is less significant since the model
does not have to distinguish the task boundary by itself.

4.7 Visualization
To study the phenomenon that the learned representation
spaces for different tasks usually overlap with each other in
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(a) FT after T1
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(b) FT after T2
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(c) Snapshot w/o recal. after T2

1
2
3
4
5
6

(d) Snapshot w/ recal. after T2

Figure 4: t-SNE visualization of representation of different classes from task T1 and T2. T1 contains class 1, 2, 3, denoted in
warm colors; T2 contains class 4, 5, 6, denoted in cool colors.

Setting THU1 →THU2 →THU3 →THU4

Class-IL 98.9 87.9 89.2 86.3
w/o Lorth 99.0 88.6 87.9 79.6
w/o cls. norm. 99.0 87.2 79.7 77.7
w/o both 99.0 86.3 80.7 75.8

Task-IL 98.9 98.3 98.6 98.6
w/o Lorth 99.0 98.5 98.5 98.6
w/o cls. norm. 99.0 98.6 98.5 98.5
w/o both 99.0 98.2 98.3 98.5

Table 7: Effect of representation recalibration. “w/o cls.
norm.” does not normalize the classification weights.

CL, as discussed in Section 3.4, we use t-SNE to visualize
the representation produced by the global model. Specifi-
cally, we select 6 text classes from THUCNews to construct
two tasks, each containing 3 classes, and visualize the repre-
sentation distribution after learning the first and the second
task. We compare our approach and FT that does not employ
any mechanism to overcome forgetting.

Figure 4(a) presents the results after learning the first task,
and we can see that the representations for the first task are
distributed separately into 3 clusters, showing that the model
can successfully distinguish the boundary between inter-task
classes of the first task. Since the model has not met any
data of the second task, it tends to encode these data in the
same representation space of the first task. After learning the
second task, as shown in Fig. 4(b), the model can now dis-
tinguish the class boundary of the second task, but begins
to confuse the first 3 classes as they are not available for
training now. By learning from past snapshots, as shown in
Fig. 4(c), the model prevents forgetting the old knowledge so
the representations of the first task are still distributed sep-
arately with clear margins. However, the representations of
the two tasks sometimes overlap with each other, e.g. repre-
sentations of class 2 and 6, which means that a representa-
tion in the overlapping area may activate both classification
weights for the two tasks, and causes ambiguity in inferring
the task identity at test time. In comparison, when using rep-
resentation recalibration, as shown Fig. 4 (d), the model can
clearly distinguish the class boundary for most tasks.

SNIPS T1 → T2 → T3 → T4 → T5 → T6 → T7

FT 99.0 86.3 51.7 56.0 32.0 22.9 19.8
Snapshot 99.0 97.4 98.0 96.8 92.1 85.8 79.4

Table 8: Adaptation to slot filling. We calculate the average
F1 score for the tasks seen so far.

4.8 Adaptation to Sequence Tagging Tasks
Our approach can be easily adapted to other task forms. We
here take slot filling as an example. It is usually interpreted
as a sequence tagging process, during which slot values and
their corresponding slot types are annotated. We evaluate our
approach on the SNIPS benchmark (Coucke et al. 2018), and
construct a sequence of seven tasks based on the user in-
tents: AddToPlaylist → BookRestaurant → GetWeather →
PlayMusic→ RateBook→ SearchCreativeWork→ Search-
ScreeningEvent. We use averaged F1 score of seen tasks
as the evaluation metric. The results are shown in Table 8.
Specifically, the performance of naive FT degrades signif-
icantly as the number of tasks increases, especially for the
previous tasks. Actually, when the third task arrives, its over-
all F1 already drops to 51.7%, which is basically unusable
in practice. And the overall F1 becomes less than 20% after
training all tasks. In comparison, our approach can maintain
acceptable performance, which indicates the effectiveness of
our approach in mitigating forgetting for slot filling.

5 Conclusion
This paper presents a novel continual learning approach,
which aims to prevent catastrophic forgetting by taking ad-
vantage of space-efficient snapshots. We construct the snap-
shot of seen tasks with adapters. During continual learning,
we perform knowledge distillation between the past snap-
shots and the global model, so the global model can re-
view past knowledge while learning new tasks. To support
the Class-IL scenario, we also design representation recali-
bration. We perform extensive experiments on different task
settings, including cross-dataset and cross-language task se-
quences, which shows the effectiveness and robustness of
our approach. In the future, we would like to design effec-
tive training methods if it is allowed to replay a small portion
of old data from previous tasks.
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