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Abstract
Recently, some mixture algorithms of pointwise and pair-
wise learning (PPL) have been formulated by employing
the hybrid error metric of “pointwise loss + pairwise loss”
and have shown empirical effectiveness on feature selection,
ranking and recommendation tasks. However, to the best of
our knowledge, the learning theory foundation of PPL has not
been touched in the existing works. In this paper, we try to fill
this theoretical gap by investigating the generalization prop-
erties of PPL. After extending the definitions of algorithmic
stability to the PPL setting, we establish the high-probability
generalization bounds for uniformly stable PPL algorithms.
Moreover, explicit convergence rates of stochastic gradient
descent (SGD) and regularized risk minimization (RRM) for
PPL are stated by developing the stability analysis technique
of pairwise learning. In addition, the refined generalization
bounds of PPL are obtained by replacing uniform stability
with on-average stability.

Introduction
There are mainly two paradigms to formulate machine learn-
ing systems including pointwise learning and pairwise learn-
ing. Usually, the former aims to train models under the error
metric associated with single sample, while the latter con-
cerns the relative relationships between objects measured by
the loss related to the pair of samples. Besides wide appli-
cations, the theoretical foundations of the above paradigms
have been well established from the viewpoint of statistical
learning theory, e.g., pointwise stability analysis (Bousquet
and Elisseeff 2002; London, Huang, and Getoor 2016; Sun,
Li, and Wang 2021), pairwise stability analysis (Agarwal
and Niyogi 2009; Lei, Ledent, and Kloft 2020; Lei, Liu, and
Ying 2021), and uniform convergence analysis (Clémençon,
Lugosi, and Vayatis 2008; Rejchel 2012; Cao, Guo, and
Ying 2016; Ying, Wen, and Lyu 2016; Ying and Zhou 2016).

It is well known that pointwise (or pairwise) learning en-
joys certain advantages and limitations for real-world data
analysis. For the same number of samples, pointwise learn-
ing has computation feasibility due to its low model com-
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plexity, while pairwise learning can mine valuable informa-
tion in terms of the intrinsic relationship among samples. As
illustrated by Wang et al. (2016), the degraded performance
may occur for the pointwise learning with the ambiguity of
some labels and for the pairwise learning as samples in dif-
ferent categories have similar features. Therefore, it is natu-
ral to consider the middle modality of the above paradigms
to alleviate their drawbacks. Along this line, some learning
algorithms have been proposed under the pointwise and pair-
wise learning (PPL) framework, where the pointwise loss
and the pairwise loss are employed jointly (Liu and Zhang
2015; Wang et al. 2016; Lei et al. 2017; Zhuo et al. 2022;
Wang et al. 2022a). In PPL, its pointwise part concerns the
fitting ability to empirical observations and its pairwise part
addresses the stability or robustness of learning models (Liu
and Zhang 2015). While the studies on algorithmic design
and applications are increasing, there are far fewer results to
investigate the generalization ability of PPL in theory.

As one of the main routines of learning theory analy-
sis, the algorithmic stability tools have advantages in some
aspects, such as dimensional independence and adaptivity
for broad learning paradigms (Bousquet and Elisseeff 2002;
Shalev-Shwartz et al. 2010; Hardt, Recht, and Singer 2016;
Feldman and Vondrak 2018, 2019). Specially, the stability
and generalization have been well understood recently for
stochastic gradient descent (SGD) and regularized risk min-
imization (RRM) under both the pointwise learning (Hardt,
Recht, and Singer 2016; Lei and Ying 2020) and the pairwise
learning setting (Lei, Ledent, and Kloft 2020; Lei, Liu, and
Ying 2021). Inspired by the recent progress, in this paper,
we try to fill this theoretical gap of PPL by establishing its
generalization bounds in terms of the algorithmic stability
technique. To the best of our knowledge, this is the first the-
oretical understanding of generalization properties for PPL.

The main work of this paper is two-fold: One is to es-
tablish a relationship between uniform stability and estima-
tion error for the mixture setting, which can be considered as
natural extension of the related results in (Lei, Ledent, and
Kloft 2020; Lei, Liu, and Ying 2021). The other is to char-
acterize the stability-based generalization bounds for some
PPL algorithms (i.e. SGD and RRM) under mild conditions.
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Objective function Reference Optimization Application Generalization analysis

Pointwise loss +Pairwise loss
+Regularization

Liu and Zhang (2015) ACG Feature Selection No

Wang et al. (2016) ADMM Image Classification No

Lei et al. (2017) SGD Ranking No

Wang et al. (2022a) SGD Recommendation No

Table 1: Summary of pointwise and pairwise learning (ACG: Accelerated Proximal Gradient; ADMM: Alternating Direction
Method of Multipliers).

Related Work
To better evaluate our theoretical results, we review the re-
lated works on PPL and generalization analysis.

Pointwise and pairwise learning (PPL). In recent years,
some algorithms of PPL have been designed for learning
tasks such as feature selection, image classification, ranking,
and recommendation systems. Liu and Zhang (2015) pro-
posed a pairwise constraint-guided sparse learning method
for feature selection, where the pairwise constraint is used
for improving robustness. For image classification tasks,
Wang et al. (2016) designed a novel joint framework, called
pointwise and pairwise image label prediction, to predict
both pointwise and pairwise labels and achieved superior
performance. For emphasis selection tasks, Huang et al.
(2020) employed a pointwise regression loss and a pairwise
ranking loss simultaneously to fit models. Recently, Lei et al.
(2017) proposed an alternating pointwise-pairwise ranking
to improve decision performance. Zhuo et al. (2022) and
Wang et al. (2022a) formulated hybrid learning models for
the recommendation systems. Although the empirical effec-
tiveness has been validated for the above PPL algorithms,
their theoretical foundations (e.g., generalization guarantee)
have not been investigated before. To further highlight the
gap in generalization analysis, we summarize the basic prop-
erties of PPL models in Table 1.

Generalization analysis. From the viewpoint of statisti-
cal learning theory, generalization analysis is crucial since
it provides the statistical theory support for the empirical
performance of trained models. Usually, model training is a
process of calculating loss based on data and then seeking an
optimal function in the predetermined hypothetical function
space through an optimization algorithm. Naturally, the gen-
eralization performance of learning systems can be investi-
gated from the perspectives of hypothetical function space
(Smale and Zhou 2007; Yin, Kannan, and Bartlett 2019; Lei
and Tang 2021; Wang et al. 2020) and data (Bousquet and
Elisseeff 2002; Elisseeff et al. 2005; Shalev-Shwartz et al.
2010), respectively. The former is often called uniform con-
vergence analysis and the latter is realized by stability anal-
ysis. In essential, the uniform convergence analysis consid-
ers the capacity of hypothesis space (e.g., via VC-dimension
(Vapnik, Levin, and Le Cun 1994), covering numbers (Zhou
2002; Chen et al. 2017, 2021), Rademacher complexity
(Yin, Kannan, and Bartlett 2019)), while the stability analy-
sis concerns the change of model parameters caused by the
change of training data (Bousquet and Elisseeff 2002; Lei,

Liu, and Ying 2021). Algorithmic stability has shown re-
markable effectiveness in deriving dimension-independent
generalization bounds for wide learning frameworks. A clas-
sic framework for stability analysis is developed by Bous-
quet and Elisseeff (2002), in which the uniform stability
and hypothesis stability are introduced. Subsequently, the
uniform stability measure was extended to study stochastic
algorithms (Elisseeff et al. 2005; Hardt, Recht, and Singer
2016) and inspired several other stability concepts including
uniform argument stability (Liu et al. 2017), locally elastic
stability (Deng, He, and Su 2021), on-average loss stability
(Lei, Ledent, and Kloft 2020; Lei and Ying 2020; Lei, Liu,
and Ying 2021) and on-average argument stability (Shalev-
Shwartz et al. 2010; Lei, Liu, and Ying 2021).

From the lens of learning paradigms, generalization guar-
antees have been established for various pointwise learning
algorithms (Bousquet and Elisseeff 2002; London, Huang,
and Getoor 2016; Hardt, Recht, and Singer 2016; Lei and
Ying 2020; Sun, Li, and Wang 2021; Klochkov and Zhivo-
tovskiy 2021) and pairwise learning models (Agarwal and
Niyogi 2009; Lei, Ledent, and Kloft 2020; Lei, Liu, and
Ying 2021; Yang et al. 2021). Therefore, it is natural to ex-
plore the generalization properties of PPL by the means of
the stability analysis technique.

Preliminaries
This section introduces the problem formulation of PPL and
the definitions of algorithmic stability.

Pointwise and Pairwise Learning
Consider a training dataset S := {zi}ni=1, where each zi is
independently drawn from a probability measure ρ defined
over a sample space Z = X × Y . Here, X ⊂ Rd is an input
space of dimension d and Y ⊂ R is an output space. Let
W be a given parameter space of learning models. The goal
of pointwise learning is to find a parameter w based model
such that the population risk (or expected risk), defined as

Rpoint(w) = Ez[f(w; z)],

is as small as possible, where f : W × Z → [0,∞) is a
pointwise loss and Ez denotes the expectation with respect
to z ∼ ρ. For brevity, we also use w to denote the parameter
w based model in the sequel.

However, we can’t get the minimizer of Rpoint(w) di-
rectly since the intrinsic distribution ρ is unknown. As a nat-
ural surrogate, for algorithmic design, we often consider the

10114



corresponding empirical risk defined as

Rpoint
S (w) =

1

n

n∑
i=1

f (w; zi) .

Unlike the pointwise learning, the pairwise learning
model w is measured by

Rpair(w) = Ez,z̃[g(w; z, z̃)],

where g : W ×Z ×Z → [0,∞) is a pairwise loss function
and Ez,z̃ denotes the expectation with respect to z, z̃ ∼ ρ. In
pairwise learning models, Rpair(w) is approximately char-
acterized by the empirical risk

Rpair
S (w) =

1

n(n− 1)

∑
i,j∈[n]:i̸=j

g (w; zi, zj) ,

where zi, zj ∼ ρ and [n] := {1, . . . , n}.
In this paper, we consider a mixture paradigm of point-

wise learning and pairwise learning, called pointwise and
pairwise learning (PPL). The population risk of w in PPL is

R(w) = τRpoint(w) + (1− τ)Rpair(w),

where τ ∈ [0, 1] is a tuning parameter. Given training set
S, the corresponding empirical version of R(w) is

RS(w) = τRpoint
S (w) + (1− τ)Rpair

S (w). (1)
For brevity, A(S) denotes the derived model by apply-

ing algorithm A (e.g., SGD and RRM) on S. In the process
of training and adjustment of parameters, the output model
A(S) can be a small empirical risk since we often can fit
training examples perfectly. However, the empirical effec-
tiveness of A(S) can not assure the small population risk. In
statistical learning theory, the difference between the popu-
lation risk and empirical risk

R(w)−RS(w) (2)
is called the generalization error of learning model w. It is
key concern of this paper to bound this gap in theory.

Algorithmic Stability
Algorithmic stability is an important concept in statistical
learning, which measures the sensitivity of an algorithm to
the perturbation of training sets. This paper focuses on the
analysis techniques associated with the algorithmic uniform
stability (Bousquet and Elisseeff 2002; Elisseeff et al. 2005;
Agarwal and Niyogi 2009; Hardt, Recht, and Singer 2016),
on-average loss stability (Lei, Ledent, and Kloft 2020; Lei
and Ying 2020; Lei, Liu, and Ying 2021), and on-average
argument stability (Shalev-Shwartz et al. 2010; Lei, Liu, and
Ying 2021). To match the generalization analysis of PPL
algorithms, we firstly extend the definitions of algorithmic
stability (e.g., the pointwise uniform stability (Bousquet and
Elisseeff 2002) and pairwise uniform stability (Lei, Ledent,
and Kloft 2020)) to the PPL setting.

Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be indepen-
dently drawn from ρ. For any i < j, i, j ∈ [n], denote

Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn} (3)

and
Si,j =

{
z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′
j , zj+1, . . . , zn

}
.

(4)

Definition 1. (PPL Uniform Stability). Assume that f(·; z)
is a pointwise loss function and g(·; z, z̃) is a pairwise loss
function. We say A : Zn 7→ W is PPL γ-uniformly stable, if
for any training datasets S, Si ∈ Zn

max {Upoint, Upair} ≤ γ, ∀i ∈ [n],

where Upoint = supz∈Z |f(A(S); z)− f (A (Si) ; z)| and
Upair = supz,z̃∈Z |g(A(S); z, z̃)− g (A (Si) ; z, z̃)|.
Remark 1. Denote

ℓ(A(Si); z, z̃) := τf(A(Si); z) + (1− τ)g(A(Si); z, z̃)

for simplicity, and call it as the PPL loss function. Then,
we can define the weaker stability measure by replacing the
maximum in Definition 1 with

sup
z,z̃∈Z

|ℓ(A(S); z, z̃)− ℓ (A (Si) ; z, z̃)| ≤ γ.

Following the mixture stability associated with τ , we can
also get the similar generalization results as Theorems 1 and
2 in the next section.

We then introduce the definitions of PPL on-average loss
stability and PPL on-average argument stability described as
follows.
Definition 2. (PPL On-average Loss Stability). Let f(·; z)
be a pointwise loss function and let g(·; z, z̃) be a pairwise
loss function. We say A : Zn 7→ W is PPL γ-on-average
loss stable if, for any training datasets S, Si, Si,j ∈ Zn,

max {Vpoint, Vpair} ≤ γ, ∀i < j ∈ [n],

where

Vpoint =
1

n

∑
i∈[n]

ES,S′ [f (A (Si) ; zi)− f (A(S); zi)]

and

Vpair =
1

n(n− 1)

∑
i,j∈[n]:i̸=j

ES,S′
[
g (A (Si,j) ; zi, zj)

− g (A(S); zi, zj)
]

Remark 2. Definition 2 is built by combining the on-
average loss stability for pointwise learning (Shalev-
Shwartz et al. 2010; Lei and Ying 2020) with the one for
pairwise learning (Lei, Ledent, and Kloft 2020; Lei, Liu, and
Ying 2021). The requirement of PPL on-average loss stabil-
ity is milder than the PPL uniform stability, where the sta-
bilization is not measured by the changes of all samples but
the mean of training sets.
Definition 3. (PPL On-average Argument Stability). We say
A : Zn 7→ W is PPL ℓ1 γ-on-average argument stable if,
for any training datasets S, Si ∈ Zn,

max {ES,S′,A[Hpoint],ES,S′,A[Hpair]} ≤ γ, (5)

where Hpoint = 1
n

∑n
i=1 ∥A(S) − A(Si)∥2 and Hpair =

1
n(n−1)

∑
i,j∈[n]:i̸=j ∥A(S)−A(Si,j)∥2.

We say A is PPL ℓ2 γ-on-average argument stable if, for any
training datasets S, Si ∈ Zn,

ES,S′,A

[ 1
n

n∑
i=1

∥A(S)−A(Si)∥22
]
≤ γ2.
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Remark 3. The ℓ2 on-average argument stability of PPL is
similar with that of pointwise learning (Lei and Ying 2020)
and pairwise learning (Lei, Liu, and Ying 2021). Differently
from Definition 1, which relied on the drift of loss functions,
Definition 2, 3 measures the stability in terms of the changes
of the model A(S).

Main Results
In this section, we present our main results on the general-
ization bounds of PPL algorithms based on uniform stability
and on-average stability.

Uniform Stability-Based Generalization
This subsection establishes the relationship between the gen-
eralization ability and the uniform stability for PPL. In the
sequel, e represents the base of the natural logarithm, ⌈a⌉
means the smallest integer which is no less than a. Supple-
mentary Material B.1 provides the detailed proof of the fol-
lowing theorem.
Theorem 1. Let A : Zn 7→ W be PPL γ-uniformly stable.
Assume that

max
z,z̃∈Z

{|ES [f(A(S); z)]| , |ES [g(A(S); z, z̃)]|} ≤ M

for some positive constant M . Then, for all τ ∈ [0, 1] and
δ ∈ (0, 1/e), we have, with probability 1− δ,

|RS(A(S))−R(A(S))|

≤(4− 2τ)γ + e
(
4M(4− 3τ)n− 1

2

√
log(e/δ)

+ 24
√
2(2− τ)γ ⌈log2(n)⌉ log(e/δ)

)
.

Remark 4. Theorem 1 is a high-probability generalization
bound for uniformly stable PPL algorithms, motivated by
the recent analyses in the pointwise learning (Hardt, Recht,
and Singer 2016) and the pairwise learning (Lei, Ledent,
and Kloft 2020; Lei, Liu, and Ying 2021). Similar to Lei,
Ledent, and Kloft (2020), the error estimations of the point-
wise part and the pairwise part of PPL are obtained by ap-
plying and developing the concentration inequality (Bous-
quet, Klochkov, and Zhivotovskiy 2020). Ignoring the con-
stants (e.g. M , τ , log(e/δ)), we can get the convergence or-
der O(n− 1

2 + γ log2 n) from Theorem 1. Due the generality
and flexibility of PPL induced by τ ∈ [0, 1], the derived con-
nection, between uniform stability and generalization, con-
tains the previous results for pairwise learning (Lei, Ledent,
and Kloft 2020) as special example.
Remark 5. To better understand the stability-based gener-
alization bound, we summarize the main results about the
relationships between generalization and various definitions
of algorithmic stability in Table 2. In this table, for feasibil-
ity, we denote the generalization error as

Gen := R(A(S))−RS(A(S))

and denote the expected generalization error as

EGen := ES,A[R(A(S))−RS(A(S))].

Table 2 demonstrates our characterized relations are com-
parable with the existing results.

Generalization Bounds of SGD for PPL
As a popular computing strategy, SGD has been employed
for PPL as shown in Table 1. The SGD for PPL can be re-
garded as an elastic net version of pointwise SGD and pair-
wise SGD, which involves the gradients of the pointwise loss
function f and the pairwise loss function g. At the t-th iter-
ation, (it, jt) is taken from the uniform distribution over [n]
randomly, which requires it ̸= jt. The SGD for the PPL
model is updated by

wt+1 = wt−ηt (τ∇f (wt; zit) + (1− τ)∇g (wt; zit , zjt)) ,
(6)

where {ηt}t is a step size sequence, and ∇f (wt; zit) and
∇g (wt; zit , zjt) denote the subgradients of f (·; zit) and
g (·; zit , zjt) at wt, respectively.

To bound the gradient update process of SGD, it is neces-
sary to presume some properties of the loss functions. For
brevity, we just recall some conditions for pointwise loss
function (Hardt, Recht, and Singer 2016; Lei and Ying 2020)
since the definitions of pairwise setting are analogous.
Definition 4. A loss function f : W × Z → [0,∞) is σ-
strongly convex if

f(u) ≥ f(v) + ⟨∇f(v), u− v⟩+ σ

2
∥u− v∥22, ∀u, v ∈ W .

Specially, f is convex if σ = 0.

Clearly, a strongly convex loss function must be convex,
but the contrary may not be true. It is well known that con-
vexity is crucial for some optimization analyses of learn-
ing algorithms (Hardt, Recht, and Singer 2016; Harvey et al.
2019).
Definition 5. A loss function f : W × Z → [0,∞) is L-
Lipschitz if

|f(u)− f(v)| ≤ L∥u− v∥2, ∀u, v ∈ W .

The above inequality is equivalent to the gradient bound-
edness of f , i.e. ∥∇f(x)∥2 ≤ L. Thus, the L-Lipschitz con-
tinuity assures the boundedness of the gradient update.
Definition 6. A loss function f : W × Z → [0,∞) is β-
smooth if

∥∇f(u)−∇f(v)∥2 ≤ β∥u− v∥2, ∀u, v ∈ W .

Following the steps in (Hardt, Recht, and Singer 2016;
Lei, Ledent, and Kloft 2020), we can verify that the gradient
update is non-expansive when f is convex and β-smooth.

Now we present the generalization bounds of SGD for
PPL. The proof is given in Supplementary Material B.2.
Theorem 2. Suppose for any z, z̃ ∈ Z , f (w; z) and
g (w; z, z̃) are convex, β-smooth and L-Lipschitz with re-
spect to w ∈ W . Without loss of generality, let S and S′ be
different only in the last example. If ηt ≤ 2/β, then SGD for
PPL with t iterations is PPL γ-uniformly stable with

γ ≤ 2L2
t∑

k=1

ηkI [ik = n] + 2L2(1− τ)
t∑

k=1

ηkI [jk = n] ,

where I[·] is the indicator function.
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Type Reference Algorithmic stability (γ) Relationship

Pointwise
Learning

Bousquet and Elisseeff (2002) Uniform Stability EGen ≤ γ.

Bousquet and Elisseeff (2002) Hypothesis Stability Gen = O(
√
γ).

Shalev-Shwartz et al. (2010) On-average Stability EGen ≤ γ.

Hardt, Recht, and Singer (2016) Uniform Stability EGen ≤ γ.

Feldman and Vondrak (2018) Uniform Stability Gen = O(
√
γ + n− 1

2 ).

Feldman and Vondrak (2019) Uniform Stability Gen = O
(
γ(log2 n)

2 + n− 1
2

)
.

Lei and Ying (2020) On-average Stability EGen ≤ Lγ.

Pairwise
Learning

Lei, Ledent, and Kloft (2020) Uniform Stability Gen = 4γ +O(n− 1
2 + γ log2 n).

Lei, Liu, and Ying (2021) ℓ1 On-average Argument Stability EGen = O(γ2 + γ/n).

Lei, Liu, and Ying (2021) ℓ2 On-average Argument Stability EGen = O(γ2 + γ/
√
n).

PPL

Ours (Theorem 1) Uniform Stability
Gen = (4− 2τ)γ +O((4− 3τ)n− 1

2

+(2− τ)γ log2 n).

Ours (Theorem 4) On-average Loss Stability EGen ≤ γ.

Ours (Corollary 2) ℓ1 On-average Argument Stability EGen ≤ Lγ.

Ours (Theorem 5) ℓ2 On-average Argument Stability EGen = O( 1γ + (2− 3
2τ)γ).

Table 2: Summary of stability-based generalization bounds (γ-stability parameter; Gen-generalization error; EGen-expected
generalization error).

Let {wt}, {w′
t} be generated by SGD on S and S′ with

ηt = η. Then, for all δ ∈ (0, 1/e), the following inequality
holds with probability 1− δ∥∥wt+1 −w′

t+1

∥∥
2

≤2Lη(2− τ)
( t

n
+ log(1/δ) +

√
2n−1t log(1/δ)

)
.

Theorem 2 characterizes the impact of the change of train-
ing set on the training loss and the model parameter, which
extends the previous related results of pointwise (or pair-
wise) SGD to the general PPL setting.

We now apply Theorem 1 with A(S) = wT where T
is the index of the last iteration and the uniform stability
bounds to derive the following result.

Corollary 1. Suppose that f (w; z) and g (w; z, z̃) are con-
vex, β-smooth and L-Lipschitz with respect to w, and

max
z,z̃∈Z

{|ES [f(wT ; z)]| , |ES [g(wT ; z, z̃)]|} ≤ M

for some positive constant M , where wT is produced by
SGD (6) at T -th iteration with ηt ≡ c/

√
T ≤ 2/β. Then,

for any δ ∈ (0, 1/e), the following inequality holds with
probability 1− δ

|RS(wT )−R(wT )| = O
(√ log( 1δ )

n
+

√
T

n
log2 n log(

1

δ
)
)

+O
(
T− 1

2 log2 n log2(
1

δ
) + n− 1

2 log2 n log
3
2 (

1

δ
)
)
.

Remark 6. Let

w∗
R = arg min

w∈W
R(w). (7)

The excess risk of SGD for PPL is defined as

R(wT )−R(w∗
R) = [R(wT )−RS(wT )] + [RS(wT )

−RS(w
∗
R)] + [RS(w

∗
R)−R(w∗

R)] ,

where the first term and the second term of right side are
called estimation error (or generalization error) and opti-
mization error, respectively. Theorem 3 provides the upper
bound of the first term and the results of (Harvey et al. 2019)
imply the bound O(T− 1

2 log2 T ) for the optimization error.
For the third term RS(w

∗
R) − R(w∗

R), we can bound it by
Bernstein’s inequality. When T = O(n), with probability
1− δ we have

R(wT )−R(w∗
R) = O(n− 1

2 log2 n),

which is comparable with the convergence analysis of SGD
for pairwise learning (Lei, Ledent, and Kloft 2020).

Generalization Bounds of RRM for PPL
Let r : W → [0,∞) be a regularization term for achieving
sparsity or preventing over-fitting of learning algorithms as-
sociated with RS(w) defined in (1). The RRM for PPL aims
to search the mininizer of

FS(w) := RS(w) + r(w) (8)

over w ∈ W . Let

w∗ = arg min
w∈W

[R(w) + r(w)] (9)
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and
A(S) = arg min

w∈W
FS(w). (10)

We can verify the uniform stability of PPL with a strongly
convex loss function, which is proved in Supplementary Ma-
terial B.3.
Lemma 1. Assume that A is defined by (10). Suppose FS

is σ-strongly convex and the pointwise loss function f (·; z)
and pairwise loss function g (·; z, z̃) are both L-Lipschitz.
Then, A is 4L2

nσ (2− τ)-uniformly stable.
The following lemma shows the distance between the em-

pirical optimal solution (the best algorithm learned in the
training set) and the theoretically optimal solution in expec-
tation.
Lemma 2. Assume that FS is σ-strongly convex. If the al-
gorithm A defined in (10) is PPL γ-uniformly stable, then

ES ∥A(S)−w∗∥22 ≤ 4γ(2− τ)/σ.

A mixed version of Bernstein’s inequality from (Hoeffd-
ing 1963; Pitcan 2017; Lei, Ledent, and Kloft 2020) is also
introduced here, which is used in our error analysis.
Lemma 3. Assume that

min
z,z̃∈Z

{f(w∗; z), g(w∗; z, z̃)} ≥ 0,

max
z,z̃∈Z

{f(w∗; z), g(w∗; z, z̃)} ≤ b

for some constants b, θ > 0, and

max{V ar[f (w∗;Z)], V ar[g(w∗;Z, Z̃)]} ≤ θ,

where V ar(a) denotes the variance of a and w∗ is defined
by (9). Then, for any δ ∈ (0, 1), with probability at least
1− δ we have∣∣R(w∗)−RS(w

∗)
∣∣ ≤ 2(1− τ)b log(1/δ)

3⌊n/2⌋
+

2τb log(1/δ)

3⌊n⌋

+(1− τ)

√
2θ log(1/δ)

⌊n/2⌋
+ τ

√
2θ log(1/δ)

⌊n⌋
,

where ⌊a⌋ is the biggest integer no more than a.
Next, we firstly derive the upper bounds of the pointwise

loss function and the pairwise loss function, and then apply
Theorem 1 to get the generalization bounds for PPL with
strongly convex objective functions.
Theorem 3. Assume that FS(w) is σ-strongly convex,
f (·; z) and g (·; z, z̃) are both L-Lipschitz. Under the as-
sumptions of Lemma 3, for the RRM algorithm A defined by
(10) and any δ ∈ (0, 1/e), with probability 1− δ we have

|RS(A(S))−R(A(S))|

≤2b log(1/δ)

3⌊n⌋
+

√
2θ log(1/δ)

⌊n⌋
+

8L2

nσ
(2− τ)2

+ e

(
16L2

nσ
(2− τ)(4− 3τ)

√
log(e/δ)

+
96
√
2L2

nσ
(2− τ)2 ⌈log2(n)⌉ log(e/δ)

)
.

Remark 7. Note that the excess risk

R(A(S))−R(w∗
R)

= [R(A(S))−RS(A(S))] + [RS(A(S)−RS(w
∗
R)]

+ [RS(w
∗
R)−R(w∗

R)]

= [R(A(S))−RS(A(S))] + [RS(w
∗
R)−R(w∗

R)]

+ [FS(A(S)− FS(w
∗
R)] + r(w∗

R)− r(A(S))

≤ [R(A(S))−RS(A(S))] + [RS(w
∗
R)−R(w∗

R)]

+ r(w∗
R)− r(A(S)),

where w∗
R is defined by (7).

Following the similar proof strategy of Theorem 4, we de-
rive

RS(w
∗
R)−R(w∗

R) = O

(
log(1/δ)√

n
+

√
θ log(1/δ)

n

)
with probability 1 − δ. When r(w∗

R) = O(σ∥w∗
R∥22), σ =

O(n− 1
2 ), and

max{sup
z

(f(w∗
R; z)) , sup

z,z̃
(g(w∗

R; z, z̃))} = O(
√
n),

we have

R(A(S))−R(w∗
R) = O

(
n− 1

2 log2 n log(1/δ)
)

with probability 1 − δ based on Theorem 3 and the above
decomposition of excess risk.
Remark 8. We now apply Theorem 3 to the pairwise
constraint-guided sparse model (Liu and Zhang 2015),
which is inspired from the ℓ1-penalty and ℓ2,1-penalty used
in Lasso (Tibshirani 2011) and its variants (Zou 2006;
Yuan and Lin 2006; Simon et al. 2013; Friedman, Hastie,
and Tibshirani 2010). The optimization objective of (Liu
and Zhang 2015) can be formulated as 1

n

∑
i∈[n]

f (w; zi) +

λ1

n(n−1)

∑
i,j∈[n]:i̸=j

g (w; zi, zj)+λ2∥w∥1, where f (w; zi) is

the general least square loss and the pairwise part is mea-
sured by∑
(xi,xj)∈M

(wTxi−wTxj)
2−λ3

∑
(xi,xj)∈C

(wTxi−wTxj)
2.

Here, M and C denote the must-link set and the cannot-link
set respectively, and λ1, λ2, λ3 are tuneable parameters. It
is straightforward to verify that the above objective func-
tion is strongly-convex and Lipschitz. Therefore, our theoret-
ical analysis provides the generalization bounds of the PPL
model (Liu and Zhang 2015).

Optimistic Generalization Bounds
This subsection further investigates the refined generaliza-
tion bounds with the help of on-average loss stability in Def-
inition 2 and on-average argument stability in Definition 3.
The related proofs can be found in Supplementary Material
B.4.
Theorem 4. If A is PPL γ-on-average loss stable, then

ES [R(A(S))−RS(A(S))] ≤ γ.
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As illustrated in Table 2, this quantitative relation is con-
sistent with the previous results for pointwise learning (Lei
and Ying 2020) and pairwise learning (Lei, Liu, and Ying
2021). A similar result for ℓ1 on-average argument stability
is stated as follows.
Corollary 2. Assume that A is PPL ℓ1 γ-on-average ar-
gument stable. If the pointwise loss function f(w; z) and
the pairwise loss function g(w; z, z̃) are L-Lipschitz with
respect to w, then

ES,A[R(A(S))−RS(A(S))] ≤ Lγ.

For completeness, we introduce the following result of ℓ2
on-average argument stability, which is a natural extension
of Theorem 2 part (b) (Lei and Ying 2020) and Theorem 1
(Lei, Liu, and Ying 2021), and removes the requirement on
the L-Lipschitz condition of loss functions for PPL.
Theorem 5. (Lei and Ying 2020; Lei, Liu, and Ying 2021)
Let A be PPL ℓ2 γ-on-average argument stable and ϵ > 0. If
f(w; z) and g(w; z, z̃) are nonnegative and β-smooth with
respect to w, then

ES,A[R(A(S))−RS(A(S))]

≤β

γ

(
ES,A

[
τRpoint

S (A(S)) + (1− τ)Rpair
S (A(S))

])
+ (β + ϵ)γ

(
2− 3

2
τ

)
.

In the expectation viewpoint, the generalization error can
be bounded by the empirical risk and the drift of model pa-
rameters induced by the changes of training data, which is
illustrated in the following lemma.
Lemma 4. Assume that the pointwise loss function f(w; z)
and the pairwise loss function g(w; z, z̃) are β-smooth with
respect to w. Let ϵ > 0 and τ ∈ [0, 1]. Then,

E [R(A(S))−RS(A(S))]

≤
βτE

[
Rpoint

S (A(S))
]

ϵ
+

β(1− τ)E
[
Rpair

S (A(S))
]

ϵ

+
(ϵ+ β)

n

(
2− 3

2
τ

) n∑
i=1

E
[
∥A (Si)−A(S)∥22

]
.

Theorem 6. Assume that the pointwise loss function
f(w; z) and the pairwise loss function g(w; z, z̃) are β-
smooth with respect to the first argument. Suppose A is de-
fined by (10) and w∗ is defined by (9). If FS is σ-strongly
convex and β ≤ σn/4(2− τ), then

ES [F (A(S))]− F (w∗)

≤ES [R(A(S))−RS(A(S))]

≤
βτE

[
Rpoint

S (A(S))
]

ϵ
+

β(1− τ)E
[
Rpair

S (A(S))
]

ϵ

+
384τ2(ϵ+ β)β

σ2n2

(
2− 3

2
τ

)
E
[
Rpoint

S (A(S))
]

+
768(1− τ)2(ϵ+ β)β

σ2n2

(
2− 3

2
τ

)
E
[
Rpair

S (A(S))
]
.

Remark 9. If r(w) = O
(
σ∥w∥22

)
, we can get

ES [R(A(S))]−R(w∗
R)

=O

(
1

nσ

(
Rpoint(w∗

R) +Rpair(w∗
R)
))

+O

(
(
1

n
+ σ)∥w∗

R∥22
)
,

where w∗
R is defined by (7). Furthermore, taking

σ = max

{
12β

n
,

√
Rpoint(w∗

R) +Rpair(w∗
R)

n∥w∗
R∥22

}
,

we can conclude that

ES [R(A(S))]−R(w∗
R)

=O

(
∥w∗

R∥2√
n

√
Rpoint(w∗

R) +Rpair(w∗
R) +

∥w∗
R∥22
n

)
.

Moreover, when

max{Rpoint(w∗
R), R

pair(w∗
R)} = O

(
∥w∗

R∥22
n

)
,

we get the fast convergence rate

ES [R(A(S))]−R(w∗
R) = O

(
∥w∗

R∥22
n

)
.

The derived rate O(n−1) often is considered as tightness
enough in statistical learning theory (Shalev-Shwartz et al.
2010; Hardt, Recht, and Singer 2016).
Remark 10. It should be noticed that the current result is
consistent with the pointwise setting (Lei and Ying 2020)
as τ = 1, with the pairiwise setting (Lei, Ledent, and
Kloft 2020) as τ = 0. Our convergence analysis of PPL
setting covers more complicated learning algorithms (e.g.,
algorithms described in Table 1) due to the flexibility of
τ ∈ [0, 1].

Conclusion
This paper focuses on establishing the generalization bounds
of PPL by means of algorithmic stability analysis. After
characterizing the quantitative relationship between gener-
alization error and algorithmic stability, we establish the up-
per bounds of excess risk of SGD and RRM for PPL. Our
stability-based analysis fills the gap of statistical learning
theory in part for the related PPL algorithms. In the future,
it is interesting to further investigate the stability-based gen-
eralization of SGD for PPL under non-i.i.d sampling, e.g.,
Markov chain sampling (Sun, Sun, and Yin 2018; Wang
et al. 2022b).
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