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Abstract

Multi-arm bandit (MAB) and stochastic linear bandit (SLB)
are important models in reinforcement learning, and it is well-
known that classical algorithms for bandits with time horizon
T suffer Ω(

√
T ) regret. In this paper, we study MAB and

SLB with quantum reward oracles and propose quantum al-
gorithms for both models with O(poly(log T )) regrets, expo-
nentially improving the dependence in terms of T . To the best
of our knowledge, this is the first provable quantum speedup
for regrets of bandit problems and in general exploitation in
reinforcement learning. Compared to previous literature on
quantum exploration algorithms for MAB and reinforcement
learning, our quantum input model is simpler and only as-
sumes quantum oracles for each individual arm.

Introduction
Bandits are a fundamental model in reinforcement learn-
ing applied to problems where an agent has a fixed set of
choices and the goal is to maximize its gain, while each
choice’s properties are only partially known at the time
of allocation but may become better understood as itera-
tions continue (Lattimore and Szepesvári 2020; Sutton and
Barto 2018). Bandits exemplify the exploration-exploitation
tradeoff where exploration aims to find the best choice and
exploitation aims to obtain as many rewards as possible.
Bandits have wide applications in machine learning, opera-
tions research, engineering, and many other areas (Chapelle,
Manavoglu, and Rosales 2014; Lei, Tewari, and Murphy
2017; Silver et al. 2016; Villar, Bowden, and Wason 2015).

In this paper, we investigate two important bandit mod-
els: multi-armed bandits and stochastic linear bandits. In the
multi-armed bandit (MAB) problem, there are n arms where
each arm i ∈ [n] := {1, 2, . . . , n} is associated with an un-
known reward distribution. We denote the expected reward
of arm i as µ(i) ∈ [0, 1]. MAB has T rounds. At round

*The missing proofs in this paper can be found in
arXiv:2205.14988

†Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

t = 1, 2, . . . , T , the learner chooses an arm it and receives a
reward yt, a random variable drawn from the reward distri-
bution of it. Denote the best arm with the largest expected
reward to be i∗. The goal is to minimize the cumulative re-
gret with respect to the best arm i∗ over T rounds:

R(T ) =

T∑
t=1

(µ(i∗)− µ(it)) . (1)

In the stochastic linear bandit (SLB) problem, the learner
can play actions from a fixed action set A ⊆ Rd. There is
an unknown parameter θ∗ ∈ Rd which determines the mean
reward of each action1. The expected reward of action x is
µ(x) = x>θ∗ ∈ [0, 1]. It is often assumed that the action x
and the θ∗ have bounded L2-norm. That is, for some param-
eters L, S > 0,

‖x‖2 ≤ L for all x ∈ A, and ‖θ∗‖2 ≤ S. (2)

Let x∗ = argmaxx∈A x
>θ∗ be the action with the largest

expected reward. Same as MAB, SLB also has T rounds. In
round t, the learner chooses an action xt ∈ A and observes
some realization of the reward yt. The goal is again to mini-
mize the cumulative regret

R(T ) =
T∑
t=1

(x∗ − xt)>θ∗. (3)

Regarding the assumption on the reward distributions for
both settings, a common assumption is σ-sub-Gaussian.
Suppose y is a random reward of some action x, then for
any α ∈ R, the noise η = y − µ(x) has zero mean and
satisfies E[exp(αX)] ≤ exp

(
α2σ2/2

)
. In this paper, we

consider the bounded value assumption and the bounded
variance assumption. The bounded value assumption re-
quires all rewards to be in a bounded interval, and with-
out loss of generality, we assume that the reward is in [0, 1].
The bounded variance assumption requires the variances of
all reward distributions to have a universal upper bound
σ2. Note that the bounded value assumption is more strict

1The “action” is the same as “arm” throughout the paper.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10087



than the sub-Gaussian assumption, and the sub-Gaussian as-
sumption is more strict than the bounded variance assump-
tion. Nevertheless, even for the bounded value assumption,
regrets of classical algorithms for MAB and SLB suffer from
Ω(
√
nT ) (Auer et al. 2002) and Ω(d

√
T ) (Dani, Hayes,

and Kakade 2008) lower bounds, respectively. Fundamen-
tally different models are required to overcome this Ω(

√
T )

bound and quantum computation comes to our aid.
In our quantum bandit models, we assume that each time

we pull an arm, instead of observing an immediate reward as
our feedback, we get a chance to access a quantum unitary
oracleO or its inverseO† once, whereO encodes the reward
distribution of this arm,

O : |0〉 7→
∑
ω∈Ω

√
P (ω)|ω〉|y(ω)〉 (4)

where |·〉 is the so-called Dirac notation used to denote the
quantum states, we will introduce it in the next section.
y : Ω → R is a random variable whose domain is a finite
sample space, and P is a probability measure of Ω. Such
an oracle plays the role of reward in our quantum bandit
models, and it is a natural generalization of classical reward
models. If we perform a measurement onO|0〉with the stan-
dard basis immediately after we invokeO, we will observe a
realization of the random reward y, reducing to the classical
bandit models. When we consider a learning environment
simulated by a quantum algorithm, the simulation directly
gives the quantum oracle. Such a situation arises in many
reinforcement learning settings where the learning agents
are in an artificial environment including games AI, autopi-
lot, etc.; see for instance (Dunjko, Taylor, and Briegel 2015,
2016).

Quantum computing is an emerging technology, and there
is a surging interest in understanding quantum versions
of machine learning algorithms (see for instance the sur-
veys (Arunachalam and de Wolf 2017; Biamonte et al. 2017;
Dunjko and Briegel 2018; Schuld, Sinayskiy, and Petruc-
cione 2015)). For bandit problems, Casalé et al. (Casalé et al.
2020) initiated the study of quantum algorithms for best-arm
identification of MAB, and Wang et al. (Wang et al. 2021b)
proved optimal results for best-arm identification of MAB
with Bernoulli arms. As an extension, Wang et al. (Wang
et al. 2021a) proposed quantum algorithms for finding an
optimal policy for a Markov decision process with quantum
speedup. These results focused on the exploration of rein-
forcement learning models, and in terms of the tradeoff be-
tween exploration and exploitation, the only work we are
aware of is (Lumbreras, Haapasalo, and Tomamichel 2022),
which proved that the regret of online learning of proper-
ties of quantum states has lower bounds Ω(

√
T ). (He et al.

2022) studied the quantum algorithm of adversarial convex
bandit which has better dependence on the dimension of ac-
tion space compared to classical algorithms. As far as we
know, the quantum speedup of the regret of bandit models is
yet to explore.

Contributions. We initiate the study of quantum algo-
rithms for bandits, including MAB and SLB. Specifically,
we formulate the quantum counterparts of bandit models

where the learner can access a quantum oracle which en-
codes the reward distributions of different arms. For both
models, we propose quantum algorithms which achieve
poly(log T ) regret. Our results are summarized in Table 1.
Note that our regret bounds have a worse dependence on n
and d because pulling every arm once already incurs Ω(n)
regret, and as a result, the Ω(n) factor is inevitable in our
current algorithm.

Technically, we adapt classical UCB-type algorithms
by employing Quantum Monte Carlo method (Montanaro
2015) (QMC) to explore the arms. QMC has a quadratic
better sample complexity compared with classical methods,
and this is the essence of our quantum speedup of the regret
bound. However, different from the classical empirical mean
estimator, QMC cannot provide any classical information
feedback before it measures its quantum state. This means
our quantum algorithm cannot observe feedback each round.
Moreover, a quantum state collapses when it is measured
and can not be reused again. This unique problem intro-
duced by quantum subroutine makes the direct combination
of traditional UCB-framework and QMC fail to achieve log-
arithmic regret. To address this problem, we propose a novel
adaptive staging technique, where our algorithms adaptively
divide consecutive time slots into stages with carefully se-
lected stage lengths. Arm switching and measurement only
happen at the end of a stage. For MAB, our algorithm QUCB
doubles the length of the stage whenever we select an arm
which has been selected before. For SLB, to exploit the lin-
ear dependency of arms, we introduce weighted least square
estimators to estimate the parameter θ∗, this estimator is dif-
ferent from the unweighted least square estimator used in
traditional UCB-type algorithms. Moreover, we propose a
novel stage length which is closely related to the variance-
covariance matrices of these weighted least square estima-
tors. We see these novel adaptive staging techniques as our
main technical contribution. Along with these techniques,
we can combine the traditional UCB framework with QMC
to achieve O(poly(log T )) regret in both Quantum MAB
and Quantum SLB settings.

Finally, we corroborate our theoretical findings with nu-
merical experiments. The results are consistent with our the-
oretical results, visually proving the quantum speedup of
bandit problems. We also consider the presence of quantum
noise, and discuss the effects of different levels of quantum
noise.

Preliminaries of Quantum Computation
Basics. A quantum state can be seen as a L2-normalized
column vector ~x = (x1, x2, . . . , xm) in Hilbert space Cm.
Intuitively, ~x is a superposition of m classical states, and
|xi|2 is the probability for having the i-th state. In quan-
tum computation, people use the Dirac ket notation |x〉
to denote the quantum state ~x, and denote ~x† by the bra
notation 〈x|. Given two quantum states |x〉 ∈ Cm and
|y〉 ∈ Cn, we denote their tensor product by |x〉|y〉 :=
(x1y1, x1y2, . . . , xmyn−1, xmyn).

To observe classical information from a quantum state,
one can perform a quantum measurement on this quantum
state. Usually, a POVM (positive operator-valued measure)
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Model Reference Setting Assumption Regret
MAB (Auer, Cesa-Bianchi, and Fischer 2002) Classical sub-Gaussian Θ(

√
nT )

MAB Theorem 1 Quantum bounded value O(n log(T ))

MAB Theorem 2 Quantum bounded variance O(n log5/2(T ) log log(T ))

SLB (Abbasi-Yadkori, Pál, and Szepesvári 2011) Classical sub-Gaussian Θ̃
(
d
√
T
)

SLB Theorem 3 Quantum bounded value O(d2 log5/2(T ))

SLB Theorem 4 Quantum bounded variance O(d2 log4(T ) log log(T ))

Table 1: Regret bounds on multi-armed bandits (MAB) and stochastic linear bandits (SLB).

is used, which is a set of positive semi-definite Hermitian
matrices {Ei}i∈Λ satisfying

∑
i∈ΛEi = I , Λ here is the in-

dex set of the POVM. After applying the POVM on |x〉, out-
come i is observed with probability 〈x|Ei|x〉. The assump-
tion

∑
i∈ΛEi = I guarantees that all probabilities add up to

1.
A quantum algorithm applies unitary operators to an in-

put quantum state. In many cases, information of the input
instance is encoded in a unitary operator O. This unitary is
called a quantum oracle which can be used multiple times
by a quantum algorithm.

Quantum reward oracle. We generalize MAB and SLB
to their quantum counterparts, where we can exploit the
power of quantum algorithms. Our quantum bandit prob-
lems basically follow the framework of classical bandit
problems. There are also T rounds. In every round, the
learner must select an action, and the regret is defined as
(1) and (3). For stochastic linear bandits, we also admit the
bounded norm assumption (2). The main difference is that,
in our quantum version, the immediate sample reward is re-
placed with a chance to access an unitary oracle Ox or its
inverse encoding the reward distribution Px of the selected
arm x. Formally, let Ωx be the sample space of the distri-
bution Px. We assume that there is a finite2 sample space
Ω such that Ωx ⊆ Ω for all x ∈ A (or for all i ∈ [n] in
the MAB setting). Ox is defined as follows (Oi is defined
similarly by replacing x with i):

Ox : |0〉 7→
∑
ω∈Ωx

√
Px(ω)|ω〉|yx(ω)〉 (5)

where yx : Ωx → R is the random reward associated with
arm x. We say Ox encodes probability measure Px and ran-
dom variable yx.

During a quantum bandit task, the learner maintains a
quantum circuit. At round t = 1, 2, . . . , T , it chooses an
arm xt by invoking either of the unitary oracles Oxt or
O†xt at most once. After this, the immediate expected regret

2This assumption requires the reward noise distribution to have
finite support, which is not stated explicitly in classical setups.
However, when a classical bandit algorithm is running on a physi-
cal realization of the classical computer, any real number is repre-
sented in finite bits as a floating-point number. In this sense, no
classical bandit algorithm can really sample from a distribution
with infinite support. Therefore, this assumption is no more strin-
gent in nature than that of the classical bandits.

µ(x∗)− µ(x) is added to the cumulative regret. The learner
can choose whether to perform a quantum measurement at
any round. During two successive rounds, it can place ar-
bitrary unitaries in the circuit. We call the bandit problem
equipped with the quantum reward oracle defined above
the Quantum Multi-armed Bandits (QMAB) and Quantum
Stochastic Linear Bandits (QSLB).
Remark 1. In previous papers (Casalé et al. 2020; Wang
et al. 2021b) investigating the quantum best arm identifica-
tion problem, they consider the MAB model with Bernoulli
rewards using a stronger coherent query model allowing su-
perposition between different arms. That is,

O : |i〉I |0〉B 7→ |i〉I(
√
pi|1〉B +

√
1− pi|0〉B) (6)

where the state of the quantum register I corresponds to arm
i, and pi represents the mean rewards of arm i. This is a
stronger oracle assumption compared with our assumption
(5). Because our model only has Oi for each arm separately
and cannot entangle different arms. In another word, if we
are given the oracle in (6), then we can construct oraclesOx
in (5) by calling O with the register I fixed at x. We adopt
(5) because in regret minimization problem, one should em-
phasize the exploration-exploitation tradeoff, and we must
bind the action of the learner and the feedback the learner
gets in a single round. The coherent model is not suitable
for our setting since it explores all arms together, while (5)
makes more direct and fair comparisons to classical bandit
models.

Quantum Monte Carlo method. To achieve quantum
speedup for QMAB and QSLB, we use the Quantum Monte
Carlo method (Montanaro 2015) stated below to estimate the
mean rewards of actions.

Lemma 1 (Quantum Monte Carlo method (Montanaro
2015)). Assume that y : Ω → R is a random variable with
bounded variance, Ω is equipped with a probability measure
P , and the quantum unitary oracle O encodes P and y.

• If y ∈ [0, 1], there is a constant C1 > 1 and a quan-
tum algorithm QMC1(O, ε, δ) which returns an estimate
ŷ of E[y] such that Pr (|ŷ − E[y]| ≥ ε) ≤ δ using at most
C1

ε log 1
δ queries to O and O†.

• If y has bounded variance, i.e., Var(y) ≤ σ2, then for
ε < 4σ, there is a constant C2 > 1 and a quan-
tum algorithm QMC2(O, ε, δ) which returns an estimate
ŷ of E[y] such that Pr (|ŷ − E[y]| ≥ ε) ≤ δ using at
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most C2σ
ε log

3/2
2 ( 8σ

ε ) log2(log2
8σ
ε ) log 1

δ queries to O
and O†.

Note that Lemma 1 demonstrates a quadratic quantum
speedup in ε for estimating E[y] because classical methods
such as the Chernoff bound take O(1/ε2 log(1/δ)) samples
to estimate E[y] within ε with probability at least 1− δ. This
is a key observation utilized by our quantum algorithms.

Quantum Multi-Armed Bandits
In this section, we present an algorithm called QUCB (Algo-
rithm 1) for QMAB with O(n log T ) regret. QUCB adopts
the canonical upper confidence bound (UCB) framework,
combined with Quantum Monte Carlo method. During its
execution, it maintains three quantities for each arm i: an es-
timate µ̂(i) of µ(i), a confidence radius ri such that µ(i) ∈
[µ̂(i)− ri, µ̂(i) + ri] with high probability. Besides, it main-
tains Ni, the stage length when the algorithm decides to pull
arm i.

Classical UCB algorithms for MAB also maintain a con-
fidence interval during the MAB game, the length of this
confidence interval decreases as the number of times the
corresponding arm is selected. To be exact, if an arm is se-
lected for N rounds, then the length of the confidence inter-
val of its reward isO

(
1√
N

)
. Since we can obtain a quadratic

speedup by using QMC to estimate the mean reward of an
arm, the length of the confidence interval is expected to
be improved to O

(
1
N

)
, then it will be enough to derive a

O(n log T ) regret bound. But the introduction of QMC leads
to another problem, that is, before we measure the quantum
state, we cannot observe any feedback. Moreover, if we mea-
sure the quantum state, then the state collapses. To solve this
unique problem of quantum bandits, QUCB adaptively di-
vides whole T rounds into several stages and it only updates
the confidence interval and switches its arm at the beginning
of each stage. Specifically, in each stage s, it first chooses
arm is which has the largest µ(is) + ris , i.e., the right end-
point of the arm’s confidence interval. Then, ris is reduced
by half and Nis is doubled, and the algorithm plays arm is
for nextNis rounds. During this stage, QMC is invoked with
Nis queries to Ois to update a new estimation µ̂(is) which
has better accuracy. After having done all the above, the al-
gorithm enters into the next stage. The algorithm terminates
after it plays T rounds. We show in Theorem 1 and Corol-
lary 1 that Algorithm 1 achieves an O(n log T ) expected cu-
mulative regret.
Theorem 1. Let C1 be the constant specified in Lemma 1.
Under the bounded value assumption, with probability at
least 1 − nδ log2

(
T

nC1 log 1
δ

)
, the cumulative regret of

QUCB1(δ) satisfies R(T ) ≤ 8(n− 1)C1 log 1
δ .

Proof. At the end of each stage (including the initialization
stage described in line 1-5 of Algorithm 1), by Lemma 1,
QMC have enough queries to output an estimation µ̂(i) such
that

|µ̂(i)− µ(i)| ≤ ri (7)

holds with probability at least 1− δ for any i ∈ [n].

Algorithm 1: QUCB1(δ)

Parameters: fail probability δ
1: for i = 1→ n do
2: ri ← 1 and Ni ← C1

ri
log 1

δ

3: play arm i for consecutive Ni rounds
4: run QMC1(Oi, ri, δ) to get an estimation µ̂(i) for

µ(i)
5: end for
6: for each stage s = 1, 2, . . . (terminate when we have

used T queries to all Oi) do
7: Let is ← argmaxi µ̂(i) + ri (if argmax has multiple

choices, pick an arbitrary one)
8: update ris ← ris/2 and Nis ← C1

ris
log 1

δ

9: Play is for the next Nis rounds, update µ̂(is) by run-
ing QMC1(Ois , ris , δ)

10: end for

For each arm i, let Si be the set of stages when arm i is
played, and denote |Si| = Ki. Initial stages are not included
in Si. According to Algorithm 1, each time we find arm i in
the argmax in Line 7 in some stages, ri is reduced by half,
andNi is doubled subsequently. Then we play arm i for con-
secutiveNi rounds. This means that the number of rounds of
each stage in Si are 2C1 log 1

δ , 4C1 log 1
δ , . . ., 2KiC1 log 1

δ .
In total, arm i has been played for

(
2Ki+1 − 1

)
C1 log 1

δ
rounds. Because the total number of rounds is at most T ,
we have

nC1 log
1

δ
+

n∑
i=1

(
2Ki+1 − 1

)
C1 log

1

δ
≤ T. (8)

where the first term of (8) is the number of rounds in the
initialization stage. Because 2x is a convex function in x ∈
[0,+∞), by Jensen’s inequality we have

∑n
i=1 2Ki+1 ≥ n ·

21/n
∑n
i=1(Ki+1). Plugging this into (8), we have

n∑
i=1

Ki ≤ n log2

(
T

nC1 log 1
δ

)
− n.

Since QMC is called for n +
∑n
i=1Ki times, by the union

bound, with probability at least 1−nδ log2

(
T

nC1 log 1
δ

)
, the

output estimate of every invocation of QMC satisfies (7). We
refer to the event as the good event and assume that it holds
below.

Recall that i∗ is the optimal arm and is is the arm chosen
by the algorithm during stage s. By the argmax in Line 7
of Algorithm 1, µ̂(is) + ris ≥ µ̂(i∗) + ri∗ . Under the good
event, µ(is) + ris ≥ µ̂(is) and µ̂(i∗) + ri∗ ≥ µ(i∗). There-
fore, µ(is) + 2ris ≥ µ̂(is) + ris ≥ µ̂(i∗) + ri∗ ≥ µ(i∗), and
it follows that ∆is := µ(i∗)− µ(is) ≤ 2ris .

For each arm i, we denote by R(T ; i) the contribution of
arm i to the cumulative regret over T rounds. By our nota-
tion above, arm i is pulled in Ki stages and the initializa-
tion stage. In initialization stages it is pulled for C1 log 1

δ

times. In each stage of Si it is pulled for Ni = 2C1 log 1
δ ,

4C1 log 1
δ , . . ., 2KiC1 log 1

δ times respectively, and the re-
ward gap ∆i ≤ 2ri in the last stage is 2 · 1

2Ki−1 = 22−Ki .
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Note that the index of the stage in Si does not influence the
gap ∆is . Therefore, we can use 22−Ki to bound the gap of
µ(i∗) and µ(is). For those arm iwhich are only pulled in the
initialization stage, we bound their reward gap to 1. Thus, we
have

R(T ; i) ≤ max

{
Ki∑
k=0

2kC1 log
1

δ
· 22−Ki , C1 log

1

δ

}

≤ 8C1 log
1

δ
.

The cumulative regret is the summation of R(T ; i) for i 6=
i∗; we have

R(T ) =
∑
i6=i∗

R(T ; i) ≤ 8(n− 1)C1 log
1

δ
.

It completes the proof since we have good event with prob-
ability at least 1− nδ log2

(
T

nC1 log 1
δ

)
.

Corollary 1. Set δ = 1
T , QUCB1(δ) satisfies

E[R(T )] ≤ (8(n− 1)C1 + 1) log2 T = O(n log T ).

For the bounded variance assumption, we can slightly
modify Algorithm 1 to obtain a new algorithm called
QUCB2(δ) and bound its regret to poly-logarithmic order
with similar proofs.
Theorem 2. Let C2 be the constant in Lemma 1. Under
the bounded variance assumption, with probability at least
1−nδ log2

(
T

nC2 log 1
δ

)
, the cumulative regret of QUCB2(δ)

satisfies R(T ) ≤ O
(
nσ log3/2(T ) log log(T ) log 1

δ

)
.

Moreover, setting δ = 1/T ,

E[R(T )] = O
(
nσ log5/2(T ) log log(T )

)
.

Quantum Stochastic Linear Bandits
In this section, we present the algorithm QLinUCB as well
as its analysis for quantum stochastic linear bandits, show-
ing a poly(log T ) regret bound of QLinUCB. For QSLB set-
ting, we combine LinUCB with QMC to exploit the power
of quantum oracle. Recall the obstacles introduced by the
quantum subroutine we encountered when we design the al-
gorithm for QMAB. In the QSLB setting, we face the same
problem and we again use the staging technique to solve the
problem. However, the doubling stage length in QUCB does
not work here, and it can only lead to a regret bound related
to the size of the action set. We aim to obtain a regret bound
which have a dependence on the dimension of the action set
rather than its size. In fact, similar to classical SLB, we allow
the action set to be infinite. Thus, we must consider the lin-
ear dependence of different actions, and use different stage
lengths from QUCB to fit this situation.

As a quantum variant of the classical algorithm LinUCB,
QLinUCB also adopts the canonical upper confidence bound
(UCB) framework. It runs in several stages. In stage s, it
first constructs a confidence region Cs−1 for the true param-
eter θ∗, and then picks the best action xs ∈ A over Cs−1 as

shown in the line 4 of Algorithm 2. After xs is determined,
it sets an carefully selected accuracy value εs for stage s
and plays action xs for the next C1

εs
log m

δ rounds, where

m := d log(L
2T 2

dλ + 1) is an upper bound for the number
of total stages, see Lemma 2. When playing action xs dur-
ing this stage, the algorithm implements a quantum circuit
for QMC(Oxs , εs, δm ) and gets an estimate ys of x>s θ

∗ with
accuracy εs and error probability less than δ/m. After that,
it updates the estimate θ̂s of θ∗ using a weighted least square
estimator. That is,

θ̂s = argmin
θ∈Θ

s∑
k=1

1

ε2k
‖x>k θ − yk‖22 + λ‖θ‖22. (9)

where λ is a regularizing parameter. We give estimates yk
different weights according to their accuracy in this least
square estimator. Note that classical LinUCB use an un-
weighted least square estimator to estimate the parameter
θ∗, and this is another modification we makes other than the
staging technique and the introduction of QMC. The estima-
tor (9) has simple closed-form solution as follows. Let

Vs = λI +
s∑

k=1

1

ε2k
xkx

>
k = λI +X>s WsXs

Then
θ̂s := V −1

s X>s WsYs,

where Xs, Ys,Ws are defined in line 9, 10, 11 of Algo-
rithm 2. Besides, with the definition of Vs, QLinUCB ac-
tually sets εs = ‖xs‖V −1

s−1
where Vs−1 is calculated in stage

s− 1. Our choice of εs and the 1
ε2k

weight of the least square
estimator in (9) are the key components of the quantum
speedup of QLinUCB.

Although the stage length of QLinUCB is not doubling
like what happens in QUCB, we find the quantity det(Vs)
get doubled each stage, that is, det(Vs+1) = 2 det(Vs).
Since det(Vs) is closely related to the total number of rounds
of s stages, thus det(Vs) can not grow too large. Using these
facts, we can still upper bound the number of total stages to
O(d log T ), which is shown in Lemma 2.

Lemma 2. Algorithm 2 has at most m = d log(L
2T 2

dλ + 1)
stages, where λ is the regularizing parameter in (9).

Then we show in the following lemma that the confidence
regions we construct in each stage contain the true parameter
θ∗ with high probability.
Lemma 3. With probability at least 1 − δ, for all s ≥ 0,
θ∗ ∈ Cs := {θ ∈ Rd : ‖θ − θ̂s‖Vs ≤ λ1/2S +

√
ds}.

Together with Lemma 2 and Lemma 3, following the stan-
dard optimism in the face of uncertainty proof we can bound
the cumulative regret of each stage to O

(
d
√

log T
)
, leading

to our regret bound.
Theorem 3. Under the bounded value assumption, with
probability at least 1 − δ, the regret of QLinUCB1(δ) sat-
isfies

R(T ) = O

(
d2 log3/2

(
L2T 2

dλ
+ 1

)
log

d log(L
2T 2

dλ + 1)

δ

)
.
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Algorithm 2: QLinUCB1(δ)

Parameters: fail probability δ
1: Initialize V0 ← λId, θ̂0 ← 0 ∈ Rd and m ←
d log(L

2T 2

dλ + 1).
2: for each stage s = 1, 2, . . . (terminate when we have

used T queries to all Oi) do
3: Cs−1 ← {θ ∈ Rd : ‖θ − θ̂s−1‖Vs−1 ≤ λ1/2S +√

d(s− 1)}.
4: (xs, θ̃s)← argmax(x,θ)∈A×Cs−1

x>θ.
5: εs ← ‖xs‖V −1

s−1
.

6: for the next C1

εs
log m

δ rounds do
7: Play action xs and run QMC1(Oxs , εs, δ/m), get-

ting ys as an estimation of x>s θ
∗.

8: end for
9: Xs ← (x1, x2, . . . , xs)

> ∈ Rs×d.
10: Ys ← (y1, y2, . . . , ys)

> ∈ Rs.
11: Ws ← diag

(
1
ε21
, 1
ε22
, . . . , 1

ε2s

)
12: Update Vs ← Vs−1 + 1

ε2s
xsx
>
s and θ̂s ←

V −1
s X>s WsYs.

13: end for

Moreover, the expected regret of QLinUCB2(mT ) satisfies

E[R(T )] = O

(
d2 log5/2

(
L2T 2

dλ
+ 1

))
.

For the bounded variance assumption, we have
a similar result with an additional overhead of
O
(

log3/2(T ) log log(T )
)

in the regret bound.

Theorem 4. Under the bounded variance assumption, with
probability at least 1−δ, the regret of QLinUCB2(δ) satisfies

R(T ) = O
(
σd2 log3 (σLT ) log log (σLT ) log

m

δ

)
.

Moreover, setting δ = m
T , we have

E[R(T )] = O
(
σd2 log4 (σLT ) log log (σLT )

)
.

Numerical Experiments
We conduct experiments to demonstrate the performance of
our two quantum variants of bandit algorithms. For sim-
plicity, we use the Bernoulli rewards in both bandit set-
tings. When considering the Bernoulli noise, we can use the
Quantum Amplitude Estimation algorithm in (Brassard et al.
2002) as our mean estimator. In this section, we first perform
simulations without the quantum noise, where we can run al-
gorithms for a huge amount of rounds to show the advantage
of QUCB and QLinUCB on regret. Then, we consider the
presence of quantum noise and study the influence of quan-
tum noise to regret. Specifically, we consider a widely used
quantum noise model called depolarizing noise. For all ex-
periments, we repeat for 100 times and calculate the average
regret and standard deviation. Our experiments are executed
on a computer equipped with Xeon E5-2620 CPU and 64GB
memory.

Experiments without Quantum Noise
QMAB setting. For the QMAB setting, we run UCB and
QUCB on a 2-arm bandit for T = 106 rounds. Clas-
sical UCB algorithm has an instance-dependent O(log T )
bound. Let SA be the set of all sub-optimal arms,
then its cumulative regret R(T ) satisfies E[R(T )] ≤
O
(∑

i∈SA
1

∆i
log T

)
(Lattimore and Szepesvári 2020),

where ∆i is the reward gap of arm i. That is to say if the re-
ward gap is independent with time horizon T , then UCB also
has an O(log T ) regret. Thus, to compare UCB and QUCB,
we set the reward gap of our experimental instance relatively
small. Overall, we set the mean reward of the optimal arm to
be 0.5, then we let the reward gaps of the sub-optimal arm
be 0.01. The result are shown in Figure 1 (a). From the re-
sult, we can see that QUCB has much lower expected regret
and variance than UCB when the reward gap is small. Fur-
thermore, we find that even if we set the parameter δ much
greater than 1/T which is the parameter used in Corollary 1,
the regret still maintains low variance, which means the error
probability is not as high as our theoretical bound.

QSLB setting. For the QSLB setting, we study an in-
stance in R2. We take time horizon T = 106. We use the
finite action set and spread 50 actions equally spaced on
the positive part of the unit circle. We set parameter θ∗ =
(cos(0.35π), sin(0.35π)). We compare our algorithm with
the well-known LinUCB. The simulation result is shown in
Figure 1 (b), λ is set to 1 throughout the numerical exper-
iments. It can be observed that QLinUCB has lower regret
than LinUCB, and they both have small variances.

Experiments with Depolarizing Noise
To study the effects of quantum noise on our two algorithms,
we conduct simulations with depolarizing noise channels us-
ing the Python open-source quantum computing tools kit
“Qiskit”.

Noise model. We choose {U1,U2,U3,CNOT} as our ba-
sis gates set, and we consider the depolarizing noise model.
This model is considered in quantum computers with many
qubits and gates, including Sycamore (Arute et al. 2019).
The depolarizing noise channel E is defined as an opera-
tor acting on the density operator: E(ρ) = (1 − err)ρ +
err · tr(ρ) Im2m , where err is the error rate and m is the
number of qubits of this channel. For error rate, we try
{0.001, 0.002, 0.005, 0.01} for two-qubit channel, and set
the single-qubit error rate as the 1

3 of the two-qubit error rate.
Besides, we also try single-qubit error of 0.00213 and a two-
qubit error of 0.00683, which are the error rate of Sycamore.

Results. For the QMAB setting, we choose the 2-arm in-
stance with rewards {0.4, 0.5}. For the QSLB setting, we
use the same instance as the noise-free experiment. Since
simulating quantum noise channels on a classical computer
is time-consuming, we set the time horizon of the bandit in-
stances to be 105. Note that, since the time horizon in our in-
stance is relatively small, the quantum variants of UCB can-
not outperform the classical UCB in this case even though
the quantum variants have advantages in asymptotic order.
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(a) QMAB experiments without quantum noise (b) QSLB experiments without quantum noise

(c) QMAB experiments with quantum noise (d) QSLB experiments with quantum noise

Figure 1: Results of the numerical experiments. In (c) and (d), the number 0.00333 + 0.01 in the legend means that we set the
error rate of a single-qubit channel to be 0.00333 and the error rate of a two-qubit channel to be 0.01.

This is because QMC introduces larger constant factors.
In this section, we only focus on the performance of the
quantum algorithms with different error rates. We plot the
results in Figure 1 (c) and (d). From the figures, the ex-
pected regret of QUCB is not affected much by depolariz-
ing noise when the two-qubit depolarizing error rate is at
most 0.00683. Even if the error rates are 0.00333 and 0.01,
the regret of QUCB is still much better than pulling arms
randomly (which incurs an expected regret of 5000 at the
end). However, the presence of depolarizing noise does in-
crease the variance of the regret. As for QLinUCB, when the
two-qubit channel error rate is no more than 0.00683, the re-
gret keeps almost unchanged and small variance all the time.
When the two-qubits channel error rate is 0.01, QLinUCB
suffers from higher expected regret and variance. Overall, at
the level of noise that can be achieved by today’s quantum
computers, the regrets of our algorithms are only relatively
little affected when the time horizon is in the order of 105.

Conclusion
In this paper, we proved that quantum versions of multi-
arm bandits and stochastic linear bandits both enjoy

O(poly(log T )) regrets. To the best of our knowledge, this
is the first provable quantum speedup for regrets of bandit
problems and in general exploitation in reinforcement learn-
ing. Compared to previous literature on quantum exploration
algorithms for MAB and reinforcement learning, our quan-
tum input model is simpler and only assumes quantum ora-
cles for each individual arm. We also corroborate our results
with numerical experiments.

Our work raises several natural questions for future inves-
tigation. First, it is natural to seek quantum speedups for re-
grets of other bandit problems. Second, additional research
is needed to achieve speedup in n and d for the regrets of
MAB and SLB, respectively; this may require a reasonable
new model. Third, it is worth understanding whether algo-
rithms with T -independent regret exist, or we can prove a
matching quantum lower bound.
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