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Abstract

Multi-view clustering has gained broad attention owing to its
capacity to exploit complementary information across multi-
ple data views. Although existing methods demonstrate de-
lightful clustering performance, most of them are of high
time complexity and cannot handle large-scale data. Ma-
trix factorization-based models are a representative of solv-
ing this problem. However, they assume that the views share
a dimension-fixed consensus coefficient matrix and view-
specific base matrices, limiting their representability. More-
over, a series of large-scale algorithms that bear one or more
hyperparameters are impractical in real-world applications.
To address the two issues, we propose an auto-weighted
multi-view clustering (AWMVC) algorithm. Specifically,
AWMVC first learns coefficient matrices from correspond-
ing base matrices of different dimensions, then fuses them
to obtain an optimal consensus matrix. By mapping orig-
inal features into distinctive low-dimensional spaces, we
can attain more comprehensive knowledge, thus obtain-
ing better clustering results. Moreover, we design a six-
step alternative optimization algorithm proven to be conver-
gent theoretically. Also, AWMVC shows excellent perfor-
mance on various benchmark datasets compared with ex-
isting ones. The code of AWMVC is publicly available at
https://github.com/wanxinhang/AAAI-2023-AWMVC.

Introduction
With the rapid development of multimedia techniques, data
can be described from various modalities (Xia et al. 2022c).
For instance, an object could be recognized by an intelli-
gent robot from its eyes (image), ears (transform sound into
texts), and past knowledge (knowledge graph). How to un-
cover items’ intrinsic structure and label them is crucial in
many applications (Zhang et al. 2022b; Yang et al. 2022; Xia
et al. 2022b), such as the recommender system and decision
support system. Multi-view clustering, which explores com-
plementary information among views and discovers the un-
derlying structure for clustering, is an effective method to
conduct a clustering process for data from multiple sources.

To the best of our knowledge, existing multi-view cluster-
ing algorithms can be divided into four categories including
multi-view subspace clustering (Gao et al. 2015; Liu et al.
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2021a, 2022a), multiple kernel clustering (Zhang et al. 2021;
Li et al. 2022a; Zhang et al. 2022a; Wan et al. 2022), graph-
based methods (Liang et al. 2020; Tang et al. 2020; Liu
et al. 2022b,c; Xia et al. 2022a), and matrix factorization-
based methods (Khan et al. 2019; Gao et al. 2019). Under
the assumption that a linear combination of data samples can
reconstruct themselves, multi-view subspace clustering ob-
tains a reconstruction matrix upon a self-expressive frame-
work. For instance, (Zhang et al. 2017) simultaneously ex-
plores the latent representation of data samples and the un-
derlying complementary information to attain a more com-
prehensive reconstruction matrix. Multiple kernel clustering
(Liu 2021) always seeks a common cluster assignment ma-
trix by jointly maximizing the partition matrix and kernel
coefficients. As pointed out by (Li et al. 2022b), graph-based
methods rely on spectral clustering, which performs eigen-
decomposition upon the Laplacian matrix to partition the
data cloud with a linear/nonlinear relationship.

Despite the above three categories of algorithms display-
ing acceptable clustering performance, they encounter the
square or cubic time complexity, which limits the applica-
bility in large-scale data. To handle the issue, a series of re-
searches (Liu et al. 2013; Gao et al. 2019) based on non-
negative matrix factorization (NMF) appear due to its low
time complexity. NMF-based multi-view clustering factor-
izes the original features into two components, i.e., a con-
sensus coefficient matrix and view-specific base matrices.
For example, (Wang et al. 2018) proposes a method to re-
duce the redundancy using a diversity term and solves the re-
sultant optimization problem in linear execution time. How-
ever, the algorithm puts up with two hyperparameters, re-
straining the practicability in many applications. Based on
the observation that the non-negative constraint leads to a
less discriminatory embedding, (Liu et al. 2021b) removes
the restriction and proposes an MF-based algorithm. How-
ever, it assumes that the latent embedding of multiple views
is under a fixed latent dimension, which harms the expres-
siveness of the model and the ability to extract complemen-
tary information between views.

We propose auto-weighted multi-view clustering for
large-scale data (AWMVC) to address the abovementioned
drawbacks. To enhance the data embedding and gain com-
plementary information among views, we obtain various co-
efficient matrices learned by base matrices under diverse di-
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mensions, then integrate the coefficient matrices into a con-
sensus one. It is worth noting that the diverse coefficient ma-
trices can guide a more robust consensus item. As feedback,
the consensus one promotes the quality of coefficient matri-
ces likewise. In addition, the proposed method is parameter-
free. Considering that the quality of each specific dimen-
sion exists differences, we automatically measure the im-
portance of each one by the corresponding contributions to
the final result. We develop a six-step alternate optimiza-
tion algorithm with proven convergence to solve the result-
ing optimization problem. The linear time complexity and
parameter-free property enable AWMVC to handle large-
scale data. Compared with state-of-the-art multi-view clus-
tering algorithms on various benchmark datasets, AWMVC
displays effectiveness and superiority. In general, the contri-
butions of the paper are summarized as follows:

1. We remove the non-negative constraint of NMF and ob-
tain coefficient matrices with view-specific base matrices
of different dimensions, then integrate the coefficient ma-
trices into a consensus one and combine these two sepa-
rate steps into a unified one, which filters redundant in-
formation and attains a more comprehensive knowledge.

2. The proposed algorithm can be carried out in linear time
complexity with no hyperparameters, which is suitable
for large-scale applications. The importance of each part
is automatically tuned by its corresponding contribution
to the final result. Therefore, the clustering result is su-
perior with more discriminatory information.

3. We develop a six-step alternative optimization algorithm
with proven convergence. To validate the effectiveness of
AWMVC, we conduct extensive experiments on various
datasets. The results demonstrate the efficiency and ex-
cellent performance of the proposed method.

Related Work
In this section, we briefly overview MF-based single-view
clustering and MF-based multi-view clustering separately.

MF-Based Single-View Clustering
Given a single-view dataset X = [x1, . . . ,xn] ∈ Rd×n,
where d and n denote the number of features and samples
respectively, NMF seeks to factorize data matrix into two
non-negative components, i.e., base matrix H ∈ Rd×k and
coefficient matrix Z ∈ Rk×n with k indicating the cluster
numbers. The goal of NMF is to approximate the product of
H and Z to X as follows

min
H≥0,Z≥0

f(X,HZ), (1)

where f(·) is a loss function. Most papers measure the loss
between the two items by adopting the Frobenius norm (Liu
et al. 2013, 2020). Based on the observation that the orthog-
onality constraint on NMF leads to rigorous clustering inter-
pretation (Ding et al. 2006), a large number of researchers
have investigated the NMF of orthogonality constraint. By
imposing orthogonality constraints on base matrices, Eq. (1)
can be formulated into

min
H≥0,Z≥0

∥X−HZ∥2F s.t. H⊤H = Ik. (2)

Noticing that the non-negative constraint produces less
discriminatory information, (Liu et al. 2021b) removes the
restriction and proposes an MF-based method, as shown

min
H,Z

∥X−HZ∥2F s.t. H⊤H = Ik. (3)

After getting the coefficient matrix Z, a traditional clus-
tering method like k-means is conducted to obtain the final
cluster assignments.

MF-Based Multi-View Clustering
Given the multi-view data

{
X(v)

}V

v=1
, in which X(v) ∈

Rdv×n and dv denotes its feature dimension, MF-based
multi-view clustering aims to seek a consensus matrix Z to
extract information among views. One of the most represen-
tative formulas is as follows (Wang et al. 2018)

min
H,Z

V∑
v=1

1

2

∥∥∥X(v) −H(v)Z(v)
∥∥∥2
F
+

λ
∑
v ̸=w

DIVE
(
Z(v),Z(w)

)
s.t. 1 ≤ v, w ≤ V,H(v) ≥ 0,Z(v) ≥ 0,Z(w) ≥ 0,

(4)

where DIVE (·, ·) is to ensure the diversity of the representa-
tion matrices and λ is the balanced hyperparameter. The con-
sensus matrix Z is acquired via the average value of Z(v). On
the contrary, some methods have been proposed to directly
attain a common underlying matrix across views, shown as
follows

min
H,Z

V∑
v=1

1

2

∥∥∥X(v) −H(v)Z
∥∥∥2
F
+ λΦ(H,Z)

s.t. H(v)⊤H(v) = Ik,

(5)

where Φ(·) are some regularization terms on H and Z.
Although these above methods display acceptable per-

formance, they suffer from two drawbacks that are hard to
solve. First, most MFMVC algorithms decompose data ma-
trices from multiple views into a fixed-dimension embed-
ding, which ruins the representational power of the model.
Meanwhile, insufficient data acquisition cannot ensure com-
plementary knowledge among views. As a consequence, the
final partition matrix fails to extract adequate information.
Second, to balance the weights between the loss function
and regularization terms, hyperparameters are inevitable in
many methods, limiting their extensions to large-scale ap-
plications. In the next section, we propose a novel auto-
weighted multi-view clustering method for large-scale data
to handle these problems.

Methodology
In this section, we first provide the objective formulation of
AWMVC, then offer a six-step alternate optimization algo-
rithm to solve the resultant problem. After that, we will dis-
cuss its time complexity and convergence.
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The Proposed Method
As mentioned above, current MFMVC methods are pre-
sented as Eq. (5). Although they demonstrate advantages
among exiting MVC algorithms, there are still some draw-
backs they fail to solve simultaneously. We observe that
MFMVC encounters two main problems. First, the current
MFMVC maps original features of various views into a fixed
dimension. However, data matrices from multiple sources
usually belong to specific latent dimensions, and the clus-
tering result significantly depends on the dimensions. Most
researchers ignore this shortcoming and merely set it equal
to the number of clusters to avoid selecting the dimensions
from a range of values. In contrast, others tackle this prob-
lem by introducing a hyperparameter. To deal with this issue,
we project the original feature matrix of each view into sev-
eral dimensions and automatically balance their weights ac-
cording to their corresponding contributions. Second, state-
of-the-art methods encounter one or more hyperparameters,
preventing them from being applied to large-scale applica-
tions. Consequently, we eliminate the regularization term,
and the optimization goal is as follows

min
α,H,Z

m∑
p=1

V∑
v=1

1

2
α2
p

∥∥∥X(v) −H(v)
p Zp

∥∥∥2
F

s.t. α⊤1 = 1,α ≥ 0,H(v)
p

⊤
H(v)

p = Ik,

(6)

where m denotes the total number of latent embedding of
each view, and αp indicates the weight of Zp.

By solving Eq. (6), we obtain Zp with different dimen-
sions. How to fuse them efficiently is a new issue. We ad-
dress this problem via mapping them into a k-dimension
space by a rotation matrix. The separate process between
coefficient matrices learning and the consensus one learning
may result in a sub-optimal result, so we unify them into a
unified step as

min
m∑

p=1

V∑
v=1

1

2
α2
p

∥∥∥X(v) −H(v)
p Zp

∥∥∥2
F

−
m∑

p=1

βp Tr
(
Zp

⊤WpM
)

s.t. α⊤1 = 1,

m∑
p=1

β2
p = 1,α ≥ 0,β ≥ 0,

ZpZp
⊤ = Idp ,Wp

⊤Wp = Ik,MM⊤ = Ik,

(7)

where dp is the dimension of p-th latent embedding, M de-
notes the consensus coefficient matrix. To simplify the opti-
mization process, we impose orthogonality constraint on Zp

rather than H
(v)
p .

After attaining M, we conduct k-means on it to get the
final result.

Optimization
The optimization problem in Eq. (7) is not jointly convex
when considering all variables simultaneously. Hence, we
propose an alternating algorithm to optimize each variable
while the others maintain fixed.

H
(v)
p Subproblem Considering that the base matrices are

independent of each other, we list the optimization process
of p-th base matrix of v-th view H

(v)
p as an example. When

other variables except for H(v)
p are fixed, the optimization

problem in Eq. (7) is reformulated as

min
∥∥∥X(v) −H(v)

p Zp

∥∥∥2
F
. (8)

Differentiating the objective function respecting H
(v)
p and

setting the derivative to zero, it is obtained that H(v)
p is up-

dated by
H(v)

p = X(v)Zp
⊤. (9)

M Subproblem Fixing H, Z, W, α, β, Eq. (7) is reduced
to

maxTr (MA) s.t. MM⊤ = Ik, (10)
where

A =
m∑

p=1

βpZp
⊤Wp. (11)

Eq. (10) can be effectively solved via SVD with compu-
tational complexity O

(
nk2

)
.

Wp Subproblem With other variables fixed in Eq. (7),
Wp can be updated by the following formula

maxTr
(
Wp

⊤ZpM
⊤
)

s.t. Wp
⊤Wp = Ik. (12)

Similar to Eq. (10), it can be effectually solved by SVD
with computational complexity O

(
dpk

2
)
.

Zp Subproblem By dropping the irrelevant variables in-
volved in Eq. (7), the objective formulation concerning Zp

can be rewritten as

min
1

2
α2
p

V∑
v=1

∥∥∥X(v) −H(v)
p Zp

∥∥∥2
F
− βp Tr

(
Zp

⊤WpM
)

s.t. ZpZp
⊤ = Idp

,
(13)

which can be further transformed into
maxTr (ZpB) s.t. ZpZp

⊤ = Idp
, (14)

where

B = α2
p

V∑
v=1

X(v)⊤H(v)
p + βpM

⊤Wp
⊤. (15)

Same as Eq. (10), it can be efficiently solved via SVD
with computational complexity O

(
ndp

2
)
.

αp Subproblem Given other variables, the formulation
about α can be solved via optimizing the following formula

min
m∑

p=1

α2
pr

2
p s.t. α⊤1 = 1,α ≥ 0, (16)

where

r2p =
V∑

v=1

∥∥∥X(v) −H(v)
p Zp

∥∥∥2
F
. (17)

Based on Cauchy-Schwarz inequality, αp is updated by

αp =

1
r2p∑m

p=1
1
r2p

. (18)
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βp Subproblem Fixing H, Z, W, M, α, Eq. (7) is re-
duced to

max
m∑

p=1

βpθp s.t.
m∑

p=1

β2
p = 1,β ≥ 0, (19)

where
θp = Tr

(
Zp

⊤WpM
)
. (20)

The optimal solution for Eq. (19) is

βp =
θp√∑m
p=1 θ

2
p

. (21)

Algorithm 1: Auto-Weighted Multi-View Clustering for
Large-Scale Data

Input: Dataset
{
X(v)

}V

v=1
, cluster number k.

Output: A consensus coefficient matrix M.
1: Initialize Z, W, α = 1/m, β = 1/

√
m.

2: while not converged do
3: Update H

(v)
p via Eq. (9).

4: Update M via Eq. (10).
5: Update Wp via Eq. (12).
6: Update Zp via Eq. (14).
7: Update α via Eq. (18).
8: Update β via Eq. (21).
9: end while

The alternate optimization process of AWMVC is sum-
marized in Algorithm 1. After attaining the consensus co-
efficient matrix M, we conduct k-means on it to obtain the
final cluster assignments.

Discussion
Firstly, we analyze the time complexity of our proposed
method. Then the convergence of AWMVC is proven the-
oretically. Afterward, we will discuss the extension of
AWMVC.

Time complexity In the optimization process, the time
complexity of updating M, Wp and Zp is provided as
O
(
nk2

)
, O

(
dpk

2
)

and O
(
ndp

2
)
, respectively. When

updating H
(v)
p , it costs O (dvdpn) to execute matrix mul-

tiplication to obtain the optimal H(v)
p . Updating α and β

takes O (dvdpn) and O (kdpn) to execute matrix multi-
plication, then costs O (m) to calculate them, separately.
Thus, at each iteration, the time complexity of AWMVC is
O
(
nk2 +

∑m
p=1

(
dpk

2 + ndp
2
)
+
∑V

v=1

∑m
p=1 dvdpn

)
,

which is linear to the data number n. In addition, our
proposed method is free of hyperparameters. Therefore, it is
suitable for large-scale data.

Convergence The objective value in Eq. (7) decreases
monotonically when one variable updates with the others
fixed. Therefore, to prove the convergence of AWMVC, we
merely need to show that the formulation has a lower bound.

The proven process is provided as follows: By Cauchy-
Schwartz inequality, we have

Tr
(
Zp

⊤WpM
)
≤ ∥Z⊤

p ∥F ∥Wp∥F ∥M∥F . (22)

Considering that β satisfies
∑m

p=1 β
2
p = 1 and β ≥ 0, it

is easy to conclude that β ≤ 1. Based on the above analysis,
we can obtain

m∑
p=1

βp Tr
(
Zp

⊤WpM
)
≤

m∑
p=1

Tr
(
Zp

⊤WpM
)

≤
m∑

p=1

∥Z⊤
p ∥F ∥Wp∥F ∥M∥F =

m∑
p=1

k
√

dp.

(23)

Therefore, there is a lower bound for the formula of Eq.
(7), with a specific value as follows

m∑
p=1

V∑
v=1

1

2
α2
p

∥∥∥X(v) −H(v)
p Zp

∥∥∥2
F
−

m∑
p=1

βp Tr
(
Zp

⊤WpM
)
≥ −

m∑
p=1

k
√
dp.

(24)

In our alternating optimization process, the objective
value monotonically decreases with each iteration. As a con-
sequence, the algorithm is convergent in theoretic. Further-
more, we will verify the convergence of AWMVC in our
experiment.

Extension Our proposed method gives the inspiration to
map data features into different latent embedding under spe-
cific dimensions and fuse the embedding efficiently. This
way, the consensus matrix extracts more complementary and
comprehensive information than a fixed dimension. In addi-
tion, the model is free of hyperparameters and fitting to han-
dle large-scale datasets. Also, this idea can easily extend to
various fields, including multi-view clustering.

Experimental Results
In this section, we conduct comprehensive experiments on
various large-scale benchmark datasets to verify the excel-
lent performance of AWMVC, involving clustering perfor-
mance comparison, convergence and evolution, and running
time comparison. Moreover, we analyze dimension weights
and conduct an ablation study to evaluate the validity of our
proposed algorithm.

Experiment Settings
Seven benchmark datasets are adopted to verify the promis-
ing performance of AWMVC, and the maximum number
of samples used is more than 100,000. The datasets used
in our experiment include Flower171, AwA2, Caltech2563,

1https://www.robots.ox.ac.uk/vgg/data/flowers/
2https://cvml.ist.ac.at/AwA/
3https://www.kaggle.com/datasets/jessicali9530/caltech256/
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Datasets Samples Views Clusters
Flower17 1360 7 17

AwA 30475 6 50
Caltech256 30607 4 257

MNIST 60000 3 10
VGGFace2 72283 4 200

TinyImageNet 100000 4 200
YouTubeFace50 126054 4 50

Table 1: Datasets used in our experiments.

MNIST4, VGGFace25, TinyImageNet6, YouTubeFace507.
The detailed information of each dataset is listed in Table
1.

Our proposed algorithm is compared with eight state-of-
the-art methods, and the comparative algorithms are summa-
rized as follows

1. Parameter-free auto-weighted multiple graph learn-
ing (AMGL) (Nie, Li, and Li 2016). The algorithm au-
tomatically learns an optimal weight for each graph and
obtains an optimal global result.

2. Unified One-step Multi-view Spectral Clustering
(UOMVSC) (Tang et al. 2022). This work integrates
spectral embedding and k-means into a unified frame-
work.

3. Multi-view clustering via joint nonnegative matrix
factorization (MNMF) (Liu et al. 2013). MNMF pro-
poses a matrix-factorization framework to push cluster-
ing results of each view into a consensus one.

4. Scalable Multi-view Subspace Clustering with Uni-
fied Anchors (SMVSC) (Sun et al. 2021). SMVSC ob-
tains consensus anchor points to get more discriminative
information and puts anchor learning and subspace learn-
ing into a unified optimization framework.

5. Binary Multi-View Clustering (BMVC) (Zhang et al.
2019). This paper puts discrete representation learning
and binary clustering structure learning together.

6. Large-scale Multi-view Subspace Clustering in Lin-
ear Time (LMVSC) (Kang et al. 2020). LMVSC inte-
grates anchor graphs and conducts spectral clustering on
a smaller graph.

7. Fast Parameter-Free Multi-View Subspace Cluster-
ing With Consensus Anchor Guidance (FPMVS-
CAG) (Wang et al. 2022). This paper simultaneously
conducts anchor selection and subspace graph construc-
tion and proposes a parameter-free algorithm.

8. One-pass Multi-view Clustering for Large-scale Data
(OPMC) (Liu et al. 2021b). OPMC removes the non-
negativity constraint of NMFMVC and proposes a
method to obtain a discrete clustering partition matrix.

4http://yann.lecun.com/exdb/mnist/
5http://www.robots.ox.ac.uk/∼vgg/data/vgg face2/
6http://cs231n.stanford.edu/tiny-imagenet-200.zip
7http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+

Video+Games+Dataset

The implementations of the above methods are public on
the corresponding papers, and we run them without any
changes. Considering that all the methods need to conduct
k-means to attain final cluster assignments, we run 50 times
k-means to eliminate the randomness in initialization. For
methods with hyperparameters, we tune them with grid-
search recommended in their papers and report the best re-
sults. In our experiment, we simply set m = 3 and the di-
mensions range from k to mk. All the experiments are con-
ducted on a desktop computer with Intel(R) Core(TM) i9-
10850K CPU and 96G RAM.

Experiment Results
We compare AWMVC with eight algorithms on seven
widely used benchmark datasets based on four clustering
metrics, including accuracy (ACC), normalized mutual in-
formation (NMI), purity, and Fscore. The results are shown
in Table 2. It is worth noting that the best outcome is marked
in bold, and the second best is underlined. In addition, ’-’
indicates that the algorithm fails to run smoothly due to an
out-of-memory error. From the table, it is observed that

1. The proposed method consistently exceeds the com-
petitors on Flower17, Caltech256, VGGFace2, and
YouTubeFace50. On other datasets, AWMVC also
demonstrates comparable results. For instance, AWMVC
outperforms the second best algorithm on all datasets
by 21.67%, 1.73%, 13.84%, 0.01%, 55.45%, 0.39%, and
3.86% in terms of ACC, respectively. The improvements
on others clustering indicators are similar. The supe-
rior clustering performance verifies the superiority of
AWMVC.

2. Most large-scale algorithms fail to handle regular
datasets, and AWMVC overcomes this drawback. For
instance, anchor-based methods always utilize anchor
points to represent the data cloud. However, cause of
the information loss between anchors and the data cloud,
this method is hard to work well on regular datasets.
AWMVC is suitable for diverse applications. Our ap-
proach attains promising results for routine datasets like
Flower17 and Caltech256, and on large-scale scenarios
such as YouTubeFace50, the results are the same excel-
lent.

3. Compared with SMVSC, BMVC, and LMVSC, which
suffer from hyperparameters, AWMVC achieves better
results. In practical applications, these methods ought to
tune the hyperparameters many times to choose the best
one, resulting in huge time and space resource consump-
tion. In contrast, our proposed method is parameter-free
and more suitable for practical situations.

Convergence and Evolution
As proved above, our proposed algorithm is convergent in
theoretic. To verify it in practice and discuss the conver-
gence rate, we plot the objective value of AWMVC changes
with iterations on AwA and VGGFace2, shown in Figure 1.
From the figure, it is seen that the objective value decreases
monotonously and converges in less than ten iterations. In
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Datasets AMGL UOMVSC MNMF SMVSC BMVC LMVSC FPMVS-CAG OPMC AWMVC
Hyperparameter number 0 1 1 1 4 1 0 0 0

ACC
Flower17 9.70 36.32 35.81 27.94 26.99 40.37 26.03 32.13 49.12

AwA - - 7.72 9.19 8.67 7.97 9.11 9.26 9.42
Caltech256 - - 2.71 9.67 8.63 9.87 9.49 11.20 12.75

MNIST - - 98.06 98.75 45.95 98.57 98.84 98.58 98.85
VGGFace2 - - 0.90 3.08 3.99 4.40 3.15 3.88 6.84

TinyImageNet - - 0.50 3.03 4.09 4.39 2.93 5.15 5.17
YouTubeFace50 - - 4.82 67.79 66.00 72.73 66.31 69.36 75.54

NMI
Flower17 10.25 34.95 35.25 25.12 25.62 38.29 26.04 29.69 49.78

AwA - - 9.65 10.68 11.95 9.32 10.84 12.22 11.31
Caltech256 - - 1.96 24.42 31.83 32.14 22.03 32.72 34.61

MNIST - - 94.74 96.27 39.59 95.93 96.51 95.85 96.47
VGGFace2 - - 0.61 10.35 15.04 14.04 9.57 13.29 18.59

TinyImageNet - - 0.41 10.64 13.75 13.32 10.16 16.13 14.54
YouTubeFace50 - - 0.08 82.76 81.90 83.98 83.51 82.36 85.97

Purity
Flower17 10.76 37.94 37.06 29.26 29.41 41.69 27.43 33.60 51.18

AwA - - 9.99 10.02 10.94 10.25 9.69 11.19 11.51
Caltech256 - - 3.54 11.42 14.94 16.52 11.07 16.93 18.83

MNIST - - 98.06 98.75 47.66 98.57 98.84 98.58 98.85
VGGFace2 - - 1.17 3.15 4.66 5.05 3.22 4.43 7.57

TinyImageNet - - 0.70 3.18 4.69 5.05 2.96 5.88 5.77
YouTubeFace50 - - 4.85 71.09 73.64 78.24 69.32 72.53 79.31

Fscore
Flower17 11.49 19.69 23.00 16.00 16.61 26.12 16.65 12.85 34.60

AwA - - 4.15 6.15 4.32 3.99 6.40 2.47 4.56
Caltech256 - - 1.18 5.09 6.25 6.54 5.65 9.26 11.03

MNIST - - 96.19 97.51 33.57 97.19 97.68 96.85 97.71
VGGFace2 - - 1.06 1.46 1.46 1.43 1.46 0.72 2.43

TinyImageNet - - 0.99 1.53 1.55 1.38 1.75 1.30 1.70
YouTubeFace50 - - 4.39 60.74 57.09 67.14 61.99 62.06 70.49

Table 2: Empirical evaluation and comparison of AWMVC with eight baseline methods on 7 benchmark datasets in terms of
clustering accuracy (ACC), normalized mutual information (NMI), Purity, and Fscore.

Figure 1: The objective values of AWMVC vary with itera-
tions (above) and the evolution of the consensus coefficient
matrix M (below). The results on other datasets are similar
and omitted due to space limitations.

addition, to investigate the evolution of the consensus co-
efficient matrix of AWMVC, in each iteration, we take M
as the input to conduct k-means on the same datasets. The
results are also shown in Figure 1. From the figure, it is ob-
tained that the clustering performance gradually gets better
and then stays stable, which shows the effectiveness of our
proposed method.

Dimension Weights
We plot the optimized weights for different dimensions on
seven datasets in Figure 2. Considering that the embedding
with higher dimensions contains richer information, their fi-
nal weights ought to be larger, and the results on all datasets
are as expected in our experiments. Consequently, our model
can effectually integrate diverse and complementary infor-
mation among views in a discriminatory way.

Running Time Comparison
To compare the computational efficiency of the proposed al-
gorithm, we report the execution time of AWMVC and the
compared methods on seven benchmark datasets in Table 3.
From the table, it can be seen that:
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Datasets AMGL UOMVSC MNMF SMVSC BMVC LMVSC FPMVS-CAG OPMC AWMVC
Flower17 378.82 192.57 176.95 77.38 1.72 2.55 100.89 45.48 42.76

AwA - - 3532.20 1061.88 67.87 206.83 2834.32 693.25 434.70
Caltech256 - - 1435.04 1716.02 53.09 797.29 2588.30 212.99 796.32

MNIST - - 367.46 604.59 13.85 342.26 607.07 29.07 562.31
VGGFace2 - - 2526.49 2378.45 74.53 1631.52 4058.34 499.50 1733.50

TinyImageNet - - 6464.19 7992.69 138.87 2436.29 5870.46 972.72 3165.95
YouTubeFace50 - - 2517.03 1818.27 98.71 1801.96 2690.21 101.92 4160.96

Table 3: Running time comparison with state-of-the-art algorithms on seven benchmark datasets.
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Figure 2: Dimension weights of AWMVC on seven bench-
mark datasets. From left to right, the dimensions are k,2k
and 3k, respectively.

1. Compared with graph-based methods such as AMGL and
UOMVSC, AWMVC is time-consuming and can han-
dle large-scale situations. Also, AWMVC shows superior
clustering performance, demonstrating its efficiency.

2. In comparison to MF-based methods like MNMF and
OPMC, AWMVC is parameter-free. MNMF undergoes
a hyperparameter and needs to run the implementation
multiple times to choose a ’suitable’ value. Although
OPMC is parameter-free, the initialization significantly
impacts the final result. Therefore, the algorithm has to
be repeated many times to attain a minor loss. In con-
trast, we merely perform AWMVC once to get the clus-
tering result. Thus, our proposed method is more time-
economic in total.

3. The difference in running time between multi-view sub-
space clustering and AWMVC is slight. For instance,
compared to SMVSC and FPMVS-CAG, AWMVC con-
sumes less time on almost all datasets except YouTube-
Face50. Furthermore, AWMVC attains better cluster re-
sults. Therefore, the computation cost of AWMVC is
more worthwhile.

Ablation Study
Our proposed algorithm factorizes data matrices of multi-
ple views into coefficient matrices under diverse dimensions,
then auto-weights them to learn a consensus matrix. To eval-
uate the validity of our model, we formulate two algorithms
for comparison, including AWMVC-P and AWMVC-α. To
investigate the availability of mapping data matrices into
diverse dimensions, we develop the AWMVC-P method,
whose embedding number equals 1 and the corresponding

Datasets AWMVC-P AWMVC-α AWMVC
Flower17 46.53 48.03 49.12

AwA 9.44 9.32 9.42
Caltech256 11.68 12.38 12.75

MNIST 96.84 98.15 98.85
VGGFace2 6.53 6.39 6.84

TinyImageNet 5.02 5.05 5.17
YouTubeFace50 73.71 72.63 75.54

Table 4: The ablation study of our proposed method on seven
benchmark datasets in terms of ACC. The best results are
marked in bold.

dimension d = k. For AWMVC-α method, we allocate each
embedding with the same weights to research the influence
of the discriminatory factor α on AWMVC. The results of
our ablation study are reported in Table 4. The table shows
that the clustering performance descends when one of the
critical components of AWMVC is dropped out. Therefore,
the success of our work is related to the mapping of data to
multiple dimensions and the obtained discriminatory infor-
mation.

Conclusion
This paper proposes a novel matrix factorization-based
method termed auto-weighted multi-view clustering for
large-scale data (AWMVC). Distinct from existing large-
scale multi-view clustering algorithms, AWMVC maps data
matrices into diverse latent spaces and combines the co-
efficient matrices from different spaces into a consensus
one utilizing discriminatory information. To solve the re-
sultant problem, we develop a six-step alternating algorithm
with proven convergence, both theoretical and experimen-
tal. The linear complexity and parameter-free property en-
able it to handle large-scale datasets. Comprehensive exper-
iments demonstrate its superior performance, and the ab-
lation study verifies the effectiveness of the critical com-
ponents of AWMVC. Besides, mapping data matrices into
diverse dimensions can be easily used with existing multi-
view clustering methods. In future work, we intend to extend
it to handle incomplete views.
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