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Abstract

Compared to point estimates calculated by standard neural
networks, Bayesian neural networks (BNN) provide proba-
bility distributions over the output predictions and model pa-
rameters, i.e., the weights. Training the weight distribution of
a BNN, however, is more involved due to the intractability
of the underlying Bayesian inference problem and thus, re-
quires efficient approximations. In this paper, we propose a
novel approach for BNN learning via closed-form Bayesian
inference. For this purpose, the calculation of the predictive
distribution of the output and the update of the weight distri-
bution are treated as Bayesian filtering and smoothing prob-
lems, where the weights are modeled as Gaussian random
variables. This allows closed-form expressions for training
the network’s parameters in a sequential/online fashion with-
out gradient descent. We demonstrate our method on several
UCI datasets and compare it to the state of the art.

1 Introduction
Deep Learning has been continuously attracting researchers
for its applicability in many fields such as medical diag-
nostics (Amisha, Pathania, and Rathaur 2019), autonomous
control (Zeng et al. 2020), or intelligent mass-productions
(El-Shamouty et al. 2019). However, conventional deep
Neural Networks (NNs) usually perform maximum likeli-
hood estimation, which results solely in a point estimate
without consideration of uncertainty in the data and the
learned model. In domains with high safety standards or fi-
nancial risks this approach is not sufficient and limits the
number of possible applications. Bayesian methods offer
ways to overcome this issue by quantifying uncertainties us-
ing Bayes’ rule and probabilistic reasoning, which results in
a distribution over network parameters and predictions in-
stead of point estimates. A quantification of the uncertainty
indicates whether the predictions are trustworthy and reli-
able (Begoli, Bhattacharya, and Kusnezov 2019). Popular
approaches like Markov Chain Monte Carlo (MCMC) are
computationally demanding, whereas variational inference
(VI) or ensemble methods rely on noisy gradient compu-
tations and need to be trained using batched training data
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and several iterations. Due to these characteristics, the men-
tioned methods are not directly applicable in online learn-
ing settings (Parisi et al. 2019), but first approaches using a
data memory exist (Nguyen et al. 2018; Kurle et al. 2019).
In addition, gradient-based methods may suffer from poor
choices of the optimization hyper-parameters or bad local
minima (Bengio 2012). This behavior is mitigated by adap-
tive learning rates, stochastic gradient descent (SGD), and
modern optimizers, but still persists.

In this paper we develop a novel online learning approach
for Bayesian Neural Networks (BNN) (MacKay 1992) that
is named Kalman Bayesian Neural Network (KBNN). The
key idea is to train the BNN via sequential Bayesian filtering
without the need of gradient-based optimization. Bayesian
filtering is commonly used to estimate probability density
functions (PDF) from noisy observations in Markov chains
(Särkkä 2013; Huber 2015). Many NN architectures like the
one studied in this paper also form a Markov chain (Achille
and Soatto 2018). Our approach is motivated by the work of
Puskorius and Feldkamp (2001), in which the training pro-
cedure is also treated as a filtering problem, which however
uses local linearization based on backpropagated gradient
information to compute weight updates. While the special
case of online training of a single perceptron is discussed by
Huber (2020), we aim at constructing a learning algorithm
for a universal multilayer perceptron (MLP).

The KBNN consists of a forward pass for inferring the
output distribution given an input sample and a backward
pass to adjust the network parameters given a corresponding
output sample. A part of the backward pass is visualized in
Fig. 1. By assuming that the weights and outputs of each net-
work layer are Gaussian distributed, it is sufficient to com-
pute the mean and covariance in a moment matching fash-
ion. In doing so, it is possible to provide closed-form expres-
sions for the forward pass as well as the update equations of
the weights in the backward pass for commonly used activa-
tion functions like sigmoid or ReLU. The main contributions
of this paper are: (a) We introduce an approach that strictly
follows Bayesian inference. Thus, learning the network pa-
rameters is not reformulated as optimization problem. The
use of Bayesian filtering and smoothing techniques instead
enables native online training of BNNs, where we show the
relationship to the famous Kalman filtering and smoothing
equations (Kalman 1960; Rauch, Tung, and Striebel 1965).
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Figure 1: Probabilistic graphical model for an arbitrary layer
l = 1 . . . L. During the backward pass, first aln is updated
via a Kalman smoothing step and afterwards zl and wl

n are
updated jointly again via smoothing. For the output layer
l = L the ground truth y is known from the data D and
thus, for updating the output zl+1 a filtering step instead of
a smoothing step is performed. Smoothing I refers to (12)
while smoothing II refers to (13) and (14).

(b) We extend the work of Huber (2020) being applicable
only for a single neuron to the case of an MLP. In doing so,
all calculations necessary are performed in closed form. For
ReLU and linear activations they are exact. (c) We compare
the performance of our approach on various common bench-
marking datasets to inference techniques such as MCMC, VI
and expectation propagation (EP).

2 Related Work
Laplace Approximation The idea of Bayesian inference
in the NN setting goes back to the work by MacKay (1992),
where a probability distribution over the model parameters
is learned via Laplace transformation. Here, a Gaussian dis-
tribution is fitted to the vicinity of the maximum posterior
estimate. Due to that point of time, Bayesian inference was
limited to small networks and datasets. This approxima-
tion technique recently gained increased interest by (Ritter,
Botev, and Barber 2018a; Kristiadi, Hein, and Hennig 2020).
Snoek et al. (2015); Kristiadi, Hein, and Hennig (2020) for
instance use it to provide uncertainty estimates only for the
last layer of an MLP.

MCMC One of the most explored ideas for probabilistic
inference in general and for learning BNNs in particular is
MCMC (Metropolis et al. 1953), which allows approximat-
ing probability integrals with the Monte Carlo method via
sampling from a Markov process. Many improvements have
been suggested for the initial Metropolis-Hastings algorithm
such as Gibbs sampling (Geman and Geman 1984), hy-
brid Monte Carlo (Neal 1995), or Hamiltonian Monte Carlo
(HMC) (Duane et al. 1987). An important extension to HMC
is the No-U-Turn Sampler (NUTS) (Hoffman and Gelman
2014), which mostly performs more efficiently. One down-
side of most MCMC approaches is the high computational
cost necessary for performing density estimation. Further,
only samples and no closed-form representation of the dis-
tribution are available.

Variational Inference The usage of VI for BNN training
was introduced by Graves (2011). VI is based on the idea of

approximating the complicated weight posterior by means
of a simple distribution like a Gaussian. This approximation
is achieved by minimizing the empirical lower bound to the
reverse Kullback-Leibler divergence using gradient descent.
In Kingma and Welling (2014), the gradient is estimated via
sampling leading to high variance gradients and thus, merely
a decent performance only in smaller architectures. In Hoff-
man et al. (2013) a more scalable method called Stochastic
Variational Inference (SVI) is proposed, which computes a
scaled gradient on randomly sampled subsets of data to up-
date the variational parameters, instead of computing gradi-
ents from the full dataset. A deterministic calculation is pro-
posed in Wu et al. (2019), which uses a closed-form forward
pass as in our work. Gal and Ghahramani (2016) found that
the dropout technique introduced by Srivastava et al. (2014)
approximates the variational distribution while being rela-
tively computationally cheap.

Expectation Propagation Minimizing the forward
Kullback-Leibler divergence instead of its reverse version
leads to EP (Minka 2001). In contrast to VI, EP is not
guaranteed to convergence in general. A practical EP ver-
sion for BNNs named probabilistic backpropagation (PBP)
was proposed in Hernández-Lobato and Adams (2015)
and extended in Ghosh, Fave, and Yedidia (2016), which
share similarities with our work. The forward pass of PBP
also utilizes closed-form moment propagation. However,
Ghosh, Fave, and Yedidia (2016) and Hernández-Lobato
and Adams (2015) employ the mean-field approximation,
i.e., fully factorized Gaussian distributions, while we allow
correlated weights per neuron. Significant difference are
given for the backward pass. Here, the KBNN requires no
explicit calculation of the marginal likelihood and its first
and second order derivatives.

Kalman Filtering Closest to our work is the usage of
Kalman filtering for training BNNs. One of the first ap-
proaches was proposed by Watanabe and Tzafesta (1990),
where the weights of the networks are assumed to be Gaus-
sian. The mean and variance of the individual weights are
updated by means of an extended Kalman filter, which how-
ever requires local linearization for updating the hidden neu-
rons. This work was extended by Puskorius and Feldkamp
(2001) to allow layer-wise correlated or even network-wide
correlated neurons. To avoid linearization, Huber (2020)
proposes the so-called Bayesian perceptron. Even though
limited to a single neuron, this work shows that closed-form
Bayesian inference for calculating the mean and covariance
parameters of the weight posterior distribution is possible.
In the following, we extend this single neuron approach to
an MLP by utilizing Bayesian filtering and smoothing.

Online Learning In the context of online learning
Bayesian methods are a popular choice, since uncertainties
over the data and the model can be taken into account di-
rectly. Opper (1998) use a moment matching approach for
online learning which is similar to our work. Kirkpatrick
et al. (2017) and Ritter, Botev, and Barber (2018b) deal with
the issue of catastrophic forgetting in neural networks for
continual learning tasks. There are a few works that include
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data memory to improve online learning capabilities (Minka,
Xiang, and Qi 2009; Nguyen et al. 2018; Kurle et al. 2019).

3 Problem Formulation
Given a dataset D = {(xi,yi)}Ni=1 of N i.i.d. pairs of train-
ing instances with inputs xi ∈ Rd and outputs yi ∈ Re, we
want to train an MLP with L layers in a supervised learning
setup. In each layer l = 1 . . . L, a nonlinear transformation

zl+1 = f(al) with al = Wl · zl +wl
0 (1)

is performed with weight matrix Wl ≜ [w1 . . . wMl
]T ∈

RMl×Ml−1 with wi ∈ RMl−1 being the i-th neuron’s weight
vector, bias wl

0 ∈ RMl , and nonlinear activation function
f(·), where Ml is the number of neurons of the l-th layer.
The output zl+1 of layer l becomes the input of the subse-
quent layer l + 1. For the first layer z1 = x and for the last
layer zL+1 = y. To simplify the notation, we avoid the layer
superscript l for a and W whenever possible.

By redefining the input zl ≜ [1 zl1 . . . zlMl−1
]T we can

conveniently incorporate the bias w0 into the weights ac-
cording to wi ≜ [wi

0 w
i
1 . . . wi

Ml−1
]T where wi

0 is the i-
th element of w0 and thus, W ∈ RMl×(Ml−1+1). Further,
W ≜ {Wl}Ll=1 comprises all weight matrices. Whenever
appropriate, we use w ≜ [wT

1 . . . wT
Ml

]T = vec(W) to
simplify the calculations and notation.

The MLP is treated as a BNN. Accordingly, the weights in
W are random variables with (prior) probability distribution
p(W). The task now is two-fold (MacKay 1992; Neal 1995):
(i) Calculating the posterior distribution of the weights

p(W|D) = p(Y|X,W) · p(W)

p(Y|X)
, (2)

with normalization term p(Y|X) and X ≜ [x1 . . . xN ],
Y ≜ [y1 . . . yN ] being the input and output data from D,
respectively. (ii) Calculating the predictive distribution

p(y|x,D) =
∫

p(y|x,W) · p(W|D) dW (3)

of the BNN given a new input x. Unfortunately, both equa-
tions cannot be solved exactly in closed form in general. To
provide an approximate but closed-form solution we employ
techniques from Bayesian filtering and smoothing, which is
usually applied to Markov processes in order to estimate a
state variable over time from noisy observations. Equation
(1) forms a continuous-valued Markov chain with random
variables a, W, and z as depicted in the graphical model
Fig. 1. Hence, (3) can be solved layer-wise by means of
consecutive prediction steps of a Bayesian filter and will be
addressed in the forward pass of the proposed KBNN. Solv-
ing (2) to train the weights requires filtering and smoothing
steps of a Bayesian filter and is covered by the backward
pass of the KBNN. To obtain closed-form expressions in
both passes, we make two key assumptions.

Assumption 1 For BNNs it is very common to apply the
strict version of the mean-field approximation, where all
weights are assumed to be independent. In this paper, it is

merely assumed that all neurons are pair-wise independent,
so that the weights of individual neurons are dependent. This
assumption significantly simplifies the calculations. The im-
plications of dependent neurons are discussed in Puskorius
and Feldkamp (2001) and Sec. 6.

Assumption 2 For a single neuron, the corresponding
quantities in (1) are assumed to be jointly Gaussian dis-
tributed. Due to this assumption, particularly the posterior
in (2) and the predictive distribution in (3) are approximated
by means of Gaussian distributions and thus, our approach
becomes an assumed density filter (Maybeck 1979; Opper
1998). In doing so, it is sufficient to calculate the first two
moments (mean and covariance) of the posterior and predic-
tive distribution. For ReLU activations this approach even
transforms into moment matching.

Based on these assumptions, the posterior weight distri-
bution of a layer is given in factorized form p(W|D) =∏Ml

i=1N (wi|µi
w,C

i
w), where N (x|µx,Cx) is a Gaussian

PDF with mean vector µx and covariance matrix Cx. The
limitations arising from these assumptions are discussed in
greater detail in the Sec. 6.

4 The Kalman Bayesian Neural Network
For deriving the forward and backward pass of the KBNN
we process each training data instance (xi,yi) individually
and sequentially. This is possible as the data is assumed to be
i.i.d. and thus, the likelihood in (2) can be factorized accord-
ing to p(Y|X,W) =

∏
i p(yi|xi,W). Hence, we obtain

the posterior p(W|Di) ∝ p(yi|xi,W) · p(W|Di−1), with
Di = {(xj ,yj)}ij=1 ⊂ D and p(W|D) ≡ p(W|DN ), by
means of recursively processing the data instances, where
the recursion commences from the prior p(W). During each
recursion step it is not necessary to update all weights of
the BNN simultaneously. Instead, we can make use of the
Markov chain characteristic of the network (cf. Fig. 1). In
doing so, the weight matrix of each layer can be updated
one after the other. This updating is essentially performed
during the backward pass, but requires intermediate predic-
tive quantities a and z that are calculated during the forward
pass. Thus, the forward pass is not only necessary to calcu-
late the predictive distribution of the BNN for new inputs,
but is also a crucial component of the backward pass. Hence,
we start with deriving the forward pass, where we omit the
quantity D in the following to simplify the notation.

4.1 Forward Pass
During the forward pass the predictive distribution
p(y|x,D) for a given input x has to be computed. For
this purpose, information is propagated forward through the
BNN in order to calculate the predictive distributions of all
random variables a and z along the path from the input to
the output. Since these two quantities occur in each layer
with the same dependencies, we restrict the derivation to a
single layer without loss of generality. For the l-th layer the
predictive distribution of the output zl+1 is given by

p(zl+1|x) =
∫

p(zl+1|a) · p(a|x) da (4)
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with

p(a|x) =
∫

p(a|zl,W) · p(zl|x) · p(W) dzl dW. (5)

All quantities in (5) are related according to (1). Further,
p(zl|x) and p(W) are assumed to be Gaussian. The pre-
dictive distribution p(a|x) however, is not Gaussian due to
the multiplicative nonlinearity in (1), but it is approximated
by the GaussianN (a|µa,Ca) with mean vector and covari-
ance matrix matching the moments of the true distribution.
The elements of the mean vector µa are given by

µn
a = E[wT

n · zl] = E[wT
n ] · E[zl] = (µn

w)
T · µl

z , (6)

while the covariance matrix is diagonal due to Assumption 1
with elements

(σn
a )

2 = E
[
a2n

]
− (µn

a)
2 = E

[
(wT

n · zl)2
]
− (µn

a)
2

= (µn
w)

TCl
zµ

n
w+(µl

z)
TCn

wµ
l
z+Tr(Cn

wC
l
z) , (7)

where n = 1 . . .Ml is the neuron index, Tr(·) is the matrix
trace, and µl

z,C
l
z are the mean and covariance of zl. For the

first layer zl = x and thus, no random variable. This allows
solving (5) exactly as al in (1) becomes a linear function,
where p(a|x) is actually Gaussian. With p(zl|x) = δ(zl −
x) in (5) the means (6) and variances (7) become µn

a = xT ·
µn

w and (σn
a )

2 = xTCn
wx, respectively, which corresponds

to a Kalman prediction step.
The predictive distribution zl+1 in (4) is also approxi-

mated with a Gaussian N (zl+1|µl+1
z ,Cl+1

z ), where the el-
ements of the mean vector and (diagonal) covariance matrix
are given by

µl+1,n
z = E[f(an)] , (8)

(σl+1,n
z )2 = E

[
f(an)

2
]
− (µl+1,n

z )2 , (9)

respectively, and thus depend on the nonlinear activation
function. For ReLU activations, the expected values in (8)
and (9) can be calculated exactly in closed form and thus,
we obtain a moment matching approximation. For sigmoidal
activations like sigmoid or hyperbolic tangent, the expected
values can be tightly approximated in closed form, except
for the special case of a probit activation, where we again
obtain a moment matching. Detailed derivations for both ac-
tivations can be found in Huber (2020).

The distribution p(zl+1|x) is then used for solving the
corresponding integrals (4) and (5) of the subsequent layer
l + 1. For l = L, we have zl+1 = y and thus p(zl+1|x)
coincides with the desired predictive distribution p(y|x,D).
It is worth mentioning that the calculated moments of each
layer must be stored, as they are needed for the weight up-
date procedure during the backward pass.

4.2 Backward Pass
The training of conventional MLPs relies on a problem spe-
cific loss function being optimized with SGD, where the en-
tire dataset D is processed repeatedly. The backward pass
of the KBNN updates the weights by means of sequentially
processing the data once without gradient-based optimiza-
tion thanks to strictly following Bayes’ rule in (2). Like with

the forward pass, the Markov property of the network al-
lows updating the weights layer-wise. Given any training in-
stance (x,y), updating the l-th layer requires considering
joint Gaussian PDFs of the form

p(s, t|x,y) = N
(
s, t

∣∣∣∣[µ+
s

µ+
t

]
,

[
C+

s Cst

CT
st C+

t

])
= p(s|t,x) · p(t|x,y) (10)

twice: (I) s = an, t = zl+1
n and (II) s =

[
wT (zl)T

]T
,

t = a as the graphical model in Fig. 1 indicates. Here,
w = vec(W) is the vectorized weight matrix as defined in
Sec. 3. The Gaussian p(t|x,y) = N (t|µ+

t ,C
+
t ) is already

known from the previous step, while the conditional Gaus-
sian p(s|t,x) = N (s|µ−

s + J · (t − µ−
t ),C

−
s − J · CT

st)
with Kalman gain J = Cst · (C−

t )
−1 (Huber 2015; Särkkä

2013). The superscript − indicates quantities p(·|x) of the
forward pass, while + is the updated version p(·|x,y) re-
sulting from the backward pass. Calculating the product of
the two Gaussian PDFs in (10) and marginalizing t yields

µ+
s = µ−

s + J · (µ+
t − µ−

t ) ,

C+
s = C−

s + J · (C+
t −C−

t ) · JT
(11)

being the mean and covariance of p(s|x,y), respectively.
These equations correspond to the Kalman or Rauch-Tung-
Striebel smoother (Rauch, Tung, and Striebel 1965).

For the smoothing step (I), (11) becomes

µn,+
a = µn,−

a + kT
n · (µl+1,+

z − µl+1,−
z ) ,

(σn,+
a )2 = (σn,−

a )2 + kT
n · (Cl+1,+

z −Cl+1,−
z )·kn ,

(12)

for neuron n = 1 . . .Ml with kn = (Cl+1,−
z )−1 · (σn

az)
2.

All quantities in (12) can be calculated in closed form but
the cross-covariance (σn

az)
2, which depends on the activa-

tion function. As with the forward pass, ReLU allows an
analytical solution, while for sigmoidal activations a closed-
form approximation exists. For details be referred to Huber
(2020).

The result s of step (I) becomes the quantity t of step (II),
for which the mean and covariance in (11) are given by[

µ+
w

µl,+
z

]
=

[
µw

µl,−
z

]
+ L · (µ+

a − µ−
a ) , (13)[

C+
w Cwz

CT
wz Cl,+

z

]
= C+ L · (C+

a −C−
a ) · LT, (14)

with L = Cwza ·(C−
a )

−1, C = diag(Cw,C
l,−
z ), and C+

a =
diag((σ1,+

a )2, . . . , (σMl,+
a )2). The structure of the covari-

ance can be explained as follows. At the forward pass, W
and zl are independent as a is not observed and these three
quantities are connected via a v-structure W → a ← zl

(cf. Fig. 1). Thus, C has a block-diagonal structure. At the
backward pass, a descendent of zl, namely y is observed and
thus, W and zl are dependent. The mean µ+

w and covariance
C+

w are the updated weight parameters of p(w|x,y,Di−1),
while µl,+

z and Cl,+
z are used for the quantity t of step (I) of

layer l−1. This update rule differs from Huber (2020) since
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Algorithm 1: Backward pass for training on dataset D
1: for each training instance (xi,yi) ∈ D do
2:

(
µl,−

a ,Cl,−
a ,µl+1,−

z ,Cl+1,−
z

)
← ForwardPass(xi)

3:
(
µL+1,+

z ,CL+1,+
z

)
← (yi,0)

4: for l = L to 1 do
5: Update µ+

a , C+
a via (12)

6: Update µ+
w , C+

w , µl,+
z , Cl,+

z via (13) and (14)
7: Store (µw,Cw)← (µ+

w ,C
+
w)

8: end for
9: end for

zl is not deterministic for any layer but the input layer. All
quantities are known except of Cwza, which is given by

Cwza = E

[([
w
z

]
−
[
µw

µ−
z

])
· (a− µ−

a )
T

]
=

[
diag

(
C1

w · µl,−
z , . . . ,CMl

w · µl,−
z

)
Cl,−

z · µ1
w · · · Cl,−

z · µMl
w

]
. (15)

The black-diagonal structure of the upper part of Cwza is
due to Assumption 1.

The sequence of smoothing operations is not surprising as
updating is not performed with the data directly but with pre-
viously estimated quantities. The only exception is layer L,
where the recursion starts. Here, in step (I) t = zL+1=y is
deterministic, thus µL+1,+

z =y and CL+1,+
z =0. By substi-

tuting these quantities in (12) the Kalman smoother becomes
a (nonlinear) Kalman filter (Kalman 1960). The backward
pass is summarized in Algorithm 1.

5 Experiments
In this section, we validate the proposed KBNN in both clas-
sification and regression tasks on benchmark datasets. Four
experiments are conducted: (i) Evaluating the KBNN on
a synthetic regression task, (ii) binary classification on the
well-known Moon dataset, (iii) online learning on the Moon
dataset, and (iv) comparison with other approximate infer-
ence approaches on nine UCI regression datasets (Dua and
Graff 2017). The KBNN implementation merely requires
matrix operations and is realized in PyTorch. The perfor-
mance of the methods is assessed by means of the root mean
square error (RMSE) for regression tasks, the accuracy for
classification tasks, the negative log-likelihood (NLL) for
quantifying the uncertainty, and the training time. A PC with
Intel i7-8850H CPU, 16GB RAM but without GPU is used.

Regression on Synthetic Data We generate a synthetic
dataset with 800 data instances from the polynomial y =
x3 + ϵn, where ϵn ∼ N (0, 9) similar to Hernández-Lobato
and Adams (2015), while x is sampled uniformly from the
interval [−4, 4]. We use a standard MLP with one hidden
layer and 100 hidden neurons, and ReLU activation for the
hidden layer. The output activation is linear. We compare
KBNN with PBP (Hernández-Lobato and Adams 2015) and
Monte Carlo (MC) Dropout (Gal and Ghahramani 2016).
For both PBP and MC Dropout we use the implementations
of the authors. For MC Dropout we use dropout probabil-
ity 0.1, same as the authors used for regression tasks (Gal

Ground Truth
KBNN
MC Dropout

PBPy = x 3

±2σ
±2σ
±2σ

x →

y 
→

25

50

75

0

-25

-50

-75

-6 -4 -2 0 2 4 6

Figure 2: Predictions of KBNN, MC Dropout and PBP
trained for one epoch on the regression task y = x3 + ϵn.

# data Accuracy NLL Training Time / s
5 47.53%± 0.60% 0.18± 0.02 0.01± 4.00 ∗ 10−4

50 88%± 1.63% 0.11± 0.01 0.13± 1.20 ∗ 10−3

500 92.07%± 2.28% 0.05± 0.01 1.25± 3.53 ∗ 10−3

1, 000 97.87%± 2.33% 0.03± 0.004 2.49± 8.13 ∗ 10−3

1, 350 99.93%± 0.20% 0.03± 0.003 3.40± 5.72 ∗ 10−3

Table 1: Sequential learning on the Moon dataset.

and Ghahramani 2016). All methods merely use one epoch
for training in order to simulate an online learning scenario.
In Fig. 2 the results of all methods are depicted. KBNN,
PBP and MC Dropout are able to approximate the underly-
ing nonlinear function and perform similar, where PBP and
MC Dropout tend to underestimate the aleatoric uncertainty.

Binary Classification To validate the capabilities of the
KBNN for sequential/online learning in binary classifica-
tion tasks, we perform classification on the Moon dataset
(Pedregosa et al. 2011) with 1,500 instances in total. The
data is presented in a continuous stream to the learning al-
gorithm, starting with a single data instance. Training ends,
when 90% of the dataset, i.e., 1,350 instances are processed.
We measure the performance of the model on the remaining
10% of the instances during training to evaluate the learning
progress. To demonstrate learning for multiple layers we use
two hidden layers, each with 10 neurons. The hidden activa-
tions are ReLU, the output activation is a sigmoid function.

Table 1 lists how the accuracy and NLL of the KBNN
on the test set evolve for an increasing number of processed
training data. These results are averages over ten random tri-
als. After several seconds of training the proposed model
achieves a high accuracy and low NLL on the test set.

Online Learning In order to validate the online learning
capability of the KBNN on non-stationary data, it is applied
to the classification of a rotating Moon dataset, similar as in
(Kurle et al. 2019). We use the same network architecture as
in Sec. 5. At the first iteration, we train the KBNN with the
standard Moon dataset comprising 1,500 instances. Then,
we continue training the KBNN for 18 iterations, where for
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Figure 3: Online learning on the non-stationary Moon dataset. Predictive mean (top row) and variance (bottom row) after
rotating by (a) 60, (b) 120, (c) 180, and (d) 240 degrees, respectively.

each iteration the dataset is rotated by 20 degrees and com-
prises only 100 data instances. Fig. 3 shows the changing
decision boundary (predictive mean) after 60, 120, 180, and
240 degrees rotations. After each rotation, the KBNN can
always efficiently adapt to the new data distributions.

UCI Regression Datasets In this section we compare
the KBNN to SVI, MCMC and PBP for regression tasks
on nine UCI datasets: Boston, Concrete, Energy, Wine,
Naval, Yacht, Kni8nm, Power and Year. These datasets
are commonly used for BNN performance evaluation (cf.
Hernández-Lobato and Adams (2015)). Like in the previ-
ous sections, the datasets are split into random train and test
sets with 90% and 10% of the data, respectively. For SVI
and MCMC we use implementations build in the probabilis-
tic programming package Pyro (Bingham et al. 2019). All
methods are compared using the same network architecture
with one hidden layer comprising 50 units and ReLU activa-
tions as proposed in Hernández-Lobato and Adams (2015).
We use 40 epochs for PBP as in Hernández-Lobato and
Adams (2015) and 5, 000 epochs for SVI, after which the
trained models converged well mostly. MCMC is conducted
with NUTS and we draw 100 samples from the posterior.
Although KBNN is designed for online learning, i.e., pro-
cessing the data only once, we also executed KBNN with 10
epochs of training—denoted KBNN 10 in the following—
to improve the performance. We repeat the experiments ten
times with random initializations and average the results.

Tables 2 and 3 show the average RMSE and NLL on the
test sets as well as the training time. KBNN 1, i.e., the on-
line version, achieves a performance being close to other
methods on some datasets while requiring significantly less
training time for all datasets. Particularly compared to SVI,
the performance gap between KBNN 1 and SVI is nar-
row. KBNN 10 outperforms SVI in most cases and PBP

and MCMC on some datasets. For the Concrete, Naval and
Year datasets, KBNN even outperforms MCMC and PBP
in terms of RMSE and PBP also on Boston and Energy.
For an increasing number of epochs the NLL value of the
KBNN increases in-between for the Boston, Concrete and
Wine datasets. This increase is caused by too low variances.

KBNN 1 is clearly faster than the other methods. The
training time roughly grows linearly with the number of data
instances. Thus, compared to SVI, which is designed for
scaling well with large datasets (Zhang et al. 2019), KBNN
has a runtime advantage on smaller datasets while this gap
closes for larger datasets and more epochs of training. How-
ever, it is worth mentioning that as a method with online
learning capabilities in contrast to SVI, MCMC and PBP,
our method shows great single sample learning efficiency.
If SVI or PBP learn for only one epoch, their performance
significantly drops and is worse than KBNN 1, especially
for the small datasets. Averaged over all datasets, the time
of KBNN 1 to process a single input is 1.659 ± 0.041 ms,
which is promising for real-time tasks.

We also performed a series of experiments with either a
different number of hidden neurons or different number of
hidden layers to assess the scalability of the KBNN.

6 Discussion
In this paper we introduced an approach to perform sequen-
tial and online learning of BNNs via assumed Gaussian fil-
tering/smoothing. The state of the art in training BNNs are
VI-based methods. Although being Bayesian, these meth-
ods treat training as an optimization problem. Instead, the
proposed KBNN approach is fully Bayesian in the sense
that the training strictly aims at (approximately) solving
Bayes’ rule (2). Utilizing concepts from Bayesian filtering
and smoothing allows updating the mean and covariance of
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Dataset N d SVI MCMC PBP KBNN 1 KBNN 10
Boston 506 13 3.434± 0.131 2.553± 0.027 2.740± 0.095 3.893± 0.200 2.695± 0.155
Concrete 1, 030 8 7.597± 0.283 6.227± 0.108 5.874± 0.054 8.396± 0.497 5.703± 0.183
Energy 768 8 4.025± 0.074 0.906± 0.049 3.274± 0.049 4.155± 0.087 2.404± 0.259
Wine 4, 898 11 0.726± 0.007 0.656± 0.004 0.667± 0.002 0.719± 0.011 0.666± 0.006
Naval 11, 934 16 0.025± 0.012 0.008± 0.001 0.006± 6.12 ∗ 10−5 0.034± 0.005 0.004± 0.001
Yacht 308 6 1.157± 0.222 0.879± 0.294 0.867± 0.047 3.752± 0.240 1.584± 0.178
Kin8nm 8, 192 8 0.101± 0.002 0.081± 0.003 0.100± 0.003 0.174± 0.006 0.110± 0.005
Power 9, 568 4 4.419± 0.046 287.227± 200.167 4.060± 0.009 4.243± 0.011 4.167± 0.034
Year 515, 345 90 25.163± 1.990 NA 8.879± 0.004 8.887± 0.014 8.874± 0.015

Table 2: RMSE on the test set for nine different UCI regression datasets.

NLL training time
Dataset SVI MCMC PBP KBNN 1 KBNN 10 SVI MCMC PBP KBNN 1 KBNN 10
Boston 2.690± 0.04 2.346± 0.01 2.421± 0.04 3.183± 0.05 2.767± 0.39 21.4 446.0 8.2 0.8 8.7
Concrete 3.446± 0.04 3.236± 0.02 3.119± 0.01 3.676± 0.12 8.428± 0.95 22.5 481.7 12.7 1.7 17.5
Energy 2.877± 0.03 1.315± 0.18 2.680± 0.02 3.078± 0.02 2.394± 0.16 21.6 405.9 10.2 1.2 13.2
Wine 1.107± 0.01 1.003± 0.01 1.014± 0.00 1.529± 0.20 1.127± 0.12 23.8 520.3 49.1 8.3 86.7
Naval −1.817± 0.18 −3.424± 0.09 −3.736± 0.02 1.266± 0.26 0.128± 0.01 42.8 367.0 116.1 20.5 205.3
Yacht 1.435± 0.34 1.649± 0.46 1.558± 0.04 3.033± 0.02 2.325± 0.06 21.5 357.4 5.9 0.5 5.0
Kin8nm −0.869± 0.03 −1.094± 0.03 −0.882± 0.03 −0.255± 0.14 −0.758± 0.04 57.6 1200.0 107.9 20.2 204.0
Power 3.162± 0.07 598.460± 422.97 2.820± 0.00 3.062± 0.04 2.922± 0.02 56.6 769.9 93.4 20.0 208.6
Year 6.801± 0.77 NA 3.588± 0.00 4.638± 0.22 4.315± 0.12 5419.7 NA 5694.9 2021.7 20801.8

Table 3: NLL on the test set and training time on the training set for the UCI regression datasets.

the weight posterior in closed form and in an online fashion,
which are two key features compared to the state of the art.

Strengths Given the Assumptions 1 and 2, which do not
hinder the learning abilities of the KBNN in practice, our
approach performs approximate but fully Bayesian infer-
ence for training. For ReLU activations it provides moment
matching Gaussian approximations of the predictive and
posterior distribution. This is clearly an advantage compared
to other methods that rely on stochastic gradient descent.
The absence of gradients proves to be data efficient and en-
ables the usage of activation functions that cannot be used
in gradient-based learning, e.g., the Heaviside activation or
non-differentiable activation schemes.

A second advantage of the proposed method is the ability
of learning from sequential data streams without retraining.
As shown in the conducted experiments every data instance
has to be seen only once during training while still achieving
decent performance on the respective test set. This can be es-
pecially useful in online learning scenarios or in the context
of model-based reinforcement learning where retraining is
needed to update the model of the environment.

The update rule of the weights’ means (13) can more ab-
stractly be written as new = old + L · ∆, which is similar
to the backpropagation update rule. But instead of a scalar
learning rate being a hyper-parameter, KBNN uses the ma-
trix L, i.e., it uses a matrix-valued, intrinsically calculated
learning rate where each weight obtains its individual rate.

Limitations To keep the probability distribution of the
network parameters manageable in complexity, indepen-
dence between the weights of different neurons is assumed
(cf. Assumption 1). Abandoning this independence would
require the calculation of cross-covariances between neu-

rons. This affects our approach mainly in two ways. First,
the memory and computational demand for additionally cal-
culating these terms increases quadratically with the number
of neurons per layer. Second, the necessary additional cal-
culation of E[f(ai) · f(aj)] to obtain the cross-covariance
between the activations of neurons i, j = 1 . . .Ml in the
forward pass is challenging. It is questionable if an analytic
solution even for ReLU activations exists (Wu et al. 2019).

The considered assumptions significantly simplify the
necessary computations and enable closed-form calculations
of the quantities of interest. While Assumption 2 is very
reasonable for regression tasks, it is not well justified for
classification tasks where one would rather want to use for
instance a Bernoulli distribution for the output (Kristiadi,
Hein, and Hennig 2020). The use of distributions other than
a Gaussian as in our case would only be possible if the
Kalman filter in the last layer is replaced by more advanced
filters such as a particle filter, which uses sampling to ap-
proximate the posterior (Särkkä 2013). The Gaussian as-
sumption seems not to impair the performance of the KBNN
in classification tasks, at least in the conducted experiments.

Open Issues and Future Work For multi-class classifica-
tion problems it is common to use a soft-max activation at
the output layer. Unfortunately, there generally is no closed-
form solution of (8) and (9) if f(.) is a soft-max function. At
least (8) can be calculated if the mean-field approximation is
applied (Lu, Ie, and Sha 2021). Using a hard-max activation
instead of soft-max allows a closed-form solution.

PBP learns its hyper-parameters, which is not the case
for the KBNN. To avoid tedious hyper-parameter tuning,
adopting a hierarchical Bayesian approach as in (Hernández-
Lobato and Adams 2015) is part of future work.
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