
Training-Time Attacks against k-Nearest Neighbors

Ara Vartanian1, Will Rosenbaum2, Scott Alfeld2

1 University of Wisconsin–Madison
2 Amherst College

aravart@cs.wisc.edu, {wrosenbaum, salfeld}@amherst.edu

Abstract

Nearest neighbor-based methods are commonly used for clas-
sification tasks and as subroutines of other data-analysis
methods. An attacker with the capability of inserting their
own data points into the training set can manipulate the
inferred nearest neighbor structure. We distill this goal to
the task of performing a training-set data insertion attack
against k-Nearest Neighbor classification (kNN). We prove
that computing an optimal training-time (a.k.a. poisoning) at-
tack against kNN classification is NP-Hard, even when k = 1
and the attacker can insert only a single data point. We pro-
vide an anytime algorithm to perform such an attack, and a
greedy algorithm for general k and attacker budget. We pro-
vide theoretical bounds and empirically demonstrate the ef-
fectiveness and practicality of our methods on synthetic and
real-world datasets. Empirically, we find that kNN is vulner-
able in practice and that dimensionality reduction is an effec-
tive defense. We conclude with a discussion of open problems
illuminated by our analysis.

1 Introduction
Using machine learning (ML) and automated data analy-
sis methods in practice introduces security vulnerabilities.
An attacker can assert their limited influence over the in-
put data to manipulate the output of the learning system.
Here, we consider training-time (a.k.a. poisoning) attacks
against nearest-neighbor based classification, where the at-
tacker perturbs data prior to learning.
k-Nearest Neighbors (kNN) is a classical non-parametric

ML algorithm, where a data point label is chosen by se-
lecting the plurality class of its k closest neighbors in the
training set. Outside of classification, many algorithms con-
struct a nearest neighbor graph (connecting each data point
to its closest neighbors) as a subroutine. Examples include
ISOMAP (Tenenbaum, de Silva, and Langford (2000)), per-
sistent homology (Zhu (2013); Zhu et al. (2016)), and vari-
ous spectral clustering algorithms (Luxburg (2007)).

We study neighbor-based classification as the canoni-
cal process of constructing nearest-neighbor graphs. An at-
tacker which can affect classifications can similarly alter the
nearest-neighbor graph. We lay the foundation for a theo-

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

retical understanding of training-time attacks against kNN.
The primary contributions are:

1. We prove that computing an optimal training-time attack
against k-Nearest Neighbor classification is NP-Hard.

2. We present a dynamic programming anytime algorithm
that, if run to completion, computes an optimal single-
point attack against kNN. Using this procedure as a sub-
routine, we employ and provide bounds for a greedy ap-
proach to efficiently construct an effective attack of any
size against kNN.

3. We perform an empirical investigation on a method of de-
fense against our attack. For example, reducing the num-
ber of dimensions via PCA in the MNIST dataset de-
creased the attacker’s average effectiveness by as much
as 26% while increasing prediction error by less than 1%.

In Section 2, after defining the learner and threat models
for attacking kNN, we translate the attacker’s task into a ge-
ometric problem. In Section 3, we prove that computing the
optimal attack is NP-Hard, even for an attacker who targets
one class with one additional data point. In Section 4, we
present a (worst-case exponential-time) algorithm for find-
ing the optimal single-point attack against kNN that uses dy-
namic programming to find successively better attacks as it
proceeds, allowing it to be used as an anytime algorithm. We
then employ a greedy algorithm to construct a data-insertion
attack of any size against kNN. We show a bound for our
greedy algorithm which is dependent on k (but independent
of the attacker’s budget). We discuss the “plug-and-play” na-
ture of our analysis, in that any future improvements to the
single-point attacks algorithm automatically yield a better
bound for our general attack. In Section 5, we empirically
demonstrate the effectiveness and practicality of our attack
on synthetic and real world data. We then turn our atten-
tion to defense, and empirically investigate defense strate-
gies based on dimensionality reduction. We discuss related
work in Section 6 and conclude in Section 7 with a discus-
sion of open problems.

2 Problem Setup
We focus on the role of an attacker, inserting training data
so as to manipulate what is learned. A summary of notation
used in this work is presented in the appendix.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10053

2.1 Learner Model
We consider a learning algorithm A performing k-Nearest
Neighbors (kNN) classification. Given a training set D of
|D| points in d dimensions and query point x, the learner
predicts

A[x;D] = Plurality label of the k points in D closest to x

where “closest” is defined in terms of an `p norm for p ∈
(1,∞). The specific implementation is not important to the
work presented here. For simplicity of exposition, we ignore
cases involving ties (two or more points in D are exactly the
same distance from the query point) as well as cases where
no strict plurality exists. Our methods can handle such cases
(using e.g., random tie breaking) with minor modifications.

2.2 Threat Model
kNN is a non-parametric learner. As such, we consider
a score function for the attacker based on the number of
prescribed points A classifies according to the attacker’s
wishes. This measure of the effectiveness – the success
rate of an attack – is in contrast to most previous work
on training-time attacks against parametric learners, where
the effectiveness is defined in terms of a distance between
(learned and target) models (Vorobeychik and Kantarcioglu
(2018)). We consider an attacker aiming to control the pre-
dicted labels of a set of points important to them. For ex-
ample they may have a collection of emails that she would
like classified as ham. They accomplish their task by con-
structing examples and inserting them into the training set.
We formalize this threat model as follows.

The attacker, ATKR, has full knowledge of the training set
D,the value of k, and p (the norm used) . ATKR has a budget
of b and their capability is to insert a set ∆ of b points to
D, each with features of their choosing1 each with label we
denote as y+.

In addition, ATKR has an target pool T =
{(xtar

1 , y
+), . . . , (xtar

n , y
+)}. The score of an attack is

the number of points in T thatA labels consistently with T :

score(∆, T ,D,A) =
∑

(x,y)∈T 1(A[x;D∪∆]=y). (1)

When T ,D and A are clear from context, we de-
note this quantity by score(∆). ATKR’s goal is to find
an attack ∆ that maximizes their score, i.e., to find
arg max∆∈(Rd)b score(∆, T ,D,A).

2.3 Geometric View
We rephrase the problem of finding an optimal single-point
training-time attack against kNN as the geometric problem
of computing the maximum intersection of d-dimensional
balls in Rd.

We define the influencing region (IR) of a point (xtar
i , y

tar
i)

in the target pool to be the set of feature vectors x such that
adding the element (x, y+) to the training set with some
multiplicity ` changes the prediction of xtar

i to y+:

IR(x,y,D)={x′ : ∃` | y=A[x;D∪{(x′,y+)`}] 6=A[x;D]} (2)

1Constraints on which feature values ATKR can select, should
any exist, can be incorporated into the attack algorithms as dis-
cussed in Section 4.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 1: Synthetic Illustration. An illustration the balls (in
this case, disks) induced by D (the training set) and T (the
target pool) for 1NN in d = 2 dimensions. A training set
from the well-known construction of two “moons” is shown
as +’s and−’s, together with the decision boundary induced
by it. We plot an example T as green dots. The color of each
point in the plane indicates the total score increase (TSI)
associated with adding a single + element at that point in
the plane: darker shades of blue indicate larger TSI values.
Each colored region is an intersection of disks centered at
the points in T . The optimal single-point attack inserts a +
in one of the darkest blue regions.

Here, we use {(x′, y+)`} to denote the multiset contain-
ing the element (x′, y+) with multiplicity `. Observe that
IR(x, y+) is empty if A [x;D] = y+.

In the case of k-Nearest Neighbor classification using
`p distance each IR(x, y+,D) is a (possibly empty) ball2
centered at x. Specifically, IR(x, y+,D) can be computed
as follows. Let x1,x2, . . . ,xk be x’s k nearest neigh-
bors in (strictly) increasing order of distance from x. Let
j be the largest index such that setting the labels of
xj ,xj+1, . . . ,xk all to y+ changes A’s prediction of x to
y+. Then IR(x, y+,D) is the ball centered at x with radius
r = ‖x− xj‖p.

To see that this this procedure correctly computes
IR(x, y+,D), first observe that by adding (x′, y+) toD with
multiplicity ` = k − j + 1 and ‖x − x′‖2 < r, these new
points replace xj ,xj+1, . . . ,xk among x’s k nearest neigh-
bors. Thus, y+ = A

[
x;D ∪ {(x′, y+)`}

]
. Conversely, if

‖x− x′‖p > r, then adding (x′, y+) with any multiplicity
cannot change the labels of x’s j nearest neighbors. There-
fore, by the maximality of j, adding these points does not
change A’s prediction of x.

Given a point (x, y+) ∈ T , we can associate a cost
and value with IR(x, y+,D). The cost c = c(x, y+,D)
is the minimum multiplicity of a point (x′, y+) with x′ ∈
IR(x, y+,D) such that adding (x′, y+) with multiplicity c

2Recall that a ball B with center c and radius r is defined as
B =

{
x ∈ Rd

∣∣∣ ‖x− c‖p ≤ r
}

.

10054

changes the classification of x to y+. Note that for kNN, we
always have c ≤ dk/2e.3 The value v is determined by

v =

{
1 if y+ 6= A[x;D]

0 otherwise.
(3)

Thus, v is the change score of an attack upon adding
(x′, y+) to ∆ with multiplicity c, while ATKR’s score is
unchanged when adding (x′, y+) with any multiplicity less
than c. Given D and T , Algorithm 1 constructs a family
Blab = {((x, r), v, c)}i consisting of the influencing re-
gions of points in T , together with their associated values
and costs.

We define the total score increase (TSI) of an attack point
(x, y+) with multiplicity ` to be the increase in ATKR’s
score if (x, y+) is added to ∆ with multiplicity `. TSI can
be computed directly from Blab:

TSI(x, y+, `,Blab) =
∑

((x′,r),v,c)∈Blab

v · 1‖x−x′‖2<r · 1`≥c

(4)
This expression is central to the discussion of both our

hardness result and our (greedy) algorithm for computing
the full (b > 1) attack. Figure 1 shows an example for p = 2
of constructing hyperspheres and the induced TSI values.

3 Proof of Hardness
We define the problem ATK-KNN and show that it is NP-
hard in general. An instance of ATK-KNN consists of a
quadruple (D, T , b, p), where D, T ⊆ Rd × C, b is a pos-
itive integer (ATKR’s point budget), and p ≥ 1 is the `p
norm used. Without loss of generality, we assume that all
(x, y) ∈ D are labeled the same fixed label y−, and ATKR
wishes for A to classify all (x, y+) ∈ T as y+ 6= y−. The
desired output is the maximum score achieveable by adding
any b element set ∆ ⊆ Rd × C to D:

3In the case where y+ = A [x;D] (hence IR(x, y+) = ∅), we
assign a cost of c = 0.

Algorithm 1: ConstructIRs
Input:
D = {(xtr, ytr)}i, T = {(xtar, ytar)}i, y+

Output:
Blab = {((c, r), v, c)}i

1 Blab ← []
2 for (x, ytar) ∈ T do
3 nbr← [x1,x2, . . . ,xk] where xi is x’s ith nearest

neighbor in D
4 lbl← [y1, y2, . . . , yk] where yi is xi’s label in D
5 v ← value according to (3)
6 j ← k

7 while plurality(lbl) 6= y+ do
8 lbl[j]← y+

9 j ← j − 1

10 Append ((x, ‖x− xj+1‖2), v, k − j + 1) to Blab

11 return Blab

ATK-KNN(D, T , b, p) = max
∆:|∆|=b

score(∆, T ,D, kNN).

Note that ATK-KNN is a special case of attacking kNN.
Namely, k = b = 1, and all points in the target pool are
the same label. In what follows we prove that ATK-KNN
is NP-Hard. In the appendix, we show that the general case
(higher k, b, and a heterogeneous target pool) is no easier.
Theorem 1. ATK-KNN is NP-hard.

When b = |∆| = 1, ATK-KNN can be reduced to the
problem of finding the maximum intersection of a family B
of d-balls in Rd using Algorithm 1. For b > 1 and k = 1,
ATK-KNN reduces to finding a set of b points in Rd inter-
secting the maximum number of d-balls B ∈ B. We refer
to the latter problem as the maximum intersection problem,
or MAX-INT. We show that even for b = 1, MAX-INT
is NP-hard. We then show that the instances of MAX-INT
constructed in our reduction can be realized as instances of
ATK-KNN, thereby establishing Theorem 1 for k = 1. We
then give a simple modification of our construction that es-
tablishes the result for general k and b as well. We sketch the
argument here; details appear in the appendix.

A d-dimensional instance of MAX-INT consists of a set
B = {B1, B2, . . . , B`}, where each Bi has a rational center
and rational squared radius. The goal is to find the maximum
number of mutually intersecting d-balls in B, i.e., to find
max

{
|I| |

⋂
i∈I Bi 6= ∅

}
.

We prove that MAX-INT is NP-hard via a reduction from
the maximum independent set (MAX-IS) problem. Recall
that given a graph G = (V,E), an independent set I ⊆ V
is a set of vertices such that no pair of vertices in I share an
edge. MAX-IS is to find the maximum cardinality among
all independent sets in G. MAX-IS is known to be NP-
complete (Garey and Johnson 1979).
Theorem 2. MAX-INT is NP-hard.

Towards proving Theorem 2, let G = (V,E) be a graph
on d vertices. We denote V = {1, 2, . . . , d} and edges in
E by ij. The idea of the reduction is to associate a ball
Bi ⊆ Rd with each vertex i ∈ V and a ball Bij with
each edge ij ∈ E. Each triple of the form Bi, Bj , Bij
intersect pairwise, but the three do not mutally intersect
(see Figure 2). The interpretation is that choosing a point
x ∈ Bi corresponds to i being in an independent set I , while
x ∈ Bij corresponds to the edge ij being satisfied (i.e., i and
j are not both in I). In our construction, a point x is con-
tained in the largest number of balls in B = {Bi}∪ {Bij} if
and only if the set of vertices I = {i |x ∈ Bi} is a maximum
independent set.

Formally, we define the reduction ϕ from MAX-IS to
MAX-INT as follows. Given a graph G, we define a col-
lection of balls ϕ(G) = B = {Bi | i ∈ V } ∪ {Bij | ij ∈ E}
in Rd, where Bi has center rei and radius r, while Bij has
center−r(ei+ej) and radius r p

√
2− ε. Here ei denotes the

ith standard basis vector in Rd. Values r and ε are positive
numbers whose values will be determined later. That is,

Bi=
{

x∈Rd
∣∣|xi−r|p+

∑
k 6=i|xk|p≤rp

}
, (5)

Bij=
{

x∈Rd
∣∣ |xi+r|p+|xj+r|p+

∑
k 6=i,j |xk|p≤2|r−ε|p

}
. (6)

10055

Figure 2: The configuration B for 2 dimensions. The
disks intersect pair-wise, but not mutually. The instance of
ATK-KNN where points inD are indicated with “+” signs,
and points in T are indicated with “−” signs realizes B.

The configuration B is depicted in Figure 2 for d = p = 2.
We view B as a multiset where each Bi occurs with multi-
plicity 1, and each Bij occurs with multiplicity d.

For any graph G, B = ϕ(G) can be computed in polyno-
mial time. The G has an independent set I of size M if and
only if B has a maximum intersection of size |V | |E| + M
(see appendix). Thus, ϕ is a polynomial-time reduction from
MAX-IS to MAX-INT, and Theorem 2 follows.

Given our proof of Theorem 2, Theorem 1 follows by con-
structing instances of ATK-KNN realizing each instance of
MAX-INT constructed in the proof of Theorem 2. To this
end, we note that choosing

T ={(rei,y
−) | i∈V }∪{(−rei−rej ,y

−) | ij∈E} (7)
D={(2rei,y

+) | i∈V }∪{(−(2r−ε)(ei+ej),y
+) | ij∈E} (8)

suffices (see Figure 2). The proof appears in the appendix.

4 Proposed Methods
Having proven the hardness of ATKR’s task, we now present
two algorithms for attacking kNN. The first algorithm finds
a one-point attack that maximizes the coverage of the attack
point—i.e., the number of influencing regions in which it
is contained. The second attack greedily performs one-point
attacks to construct a full attack. Since finding the optimal
single point to add toD is NP-Hard, we compute a one-point
attack with an anytime algorithm that finds successively bet-
ter solutions over time.

Our algorithms use Algorithm 1 as a preprocessing step
to convert a training set and target pool to a labeled collec-
tion of balls.4 The problem of mounting an optimal attack
in which a single point is added to ∆ with multiplicity ` is
completely determined by Blab via Equation (4).

4.1 Constructing a One-Point Attack
We present an anytime algorithm which Constructs a
Hypergraph for One-Point Poisoning Attacks (CHOPPA).
Consider the hypergraph G = (V,E) where each vertex

4A simple optimization is to remove from Blab all balls with
radius 0 and any for which yorigi = y when C = {y}. For ease of
notation we ignore this optimization, maintaining |Blab| = |T |.

corresponds to one of the influencing regions and the hyper-
edge e = {vi, . . . , vj} exists if the intersection vi∩· · ·∩vj is
non-empty. Each hyper-edge represents a set of target points
which can be influenced by a single training point with some
multiplicity, `. We say that a point x′ covers e if x′ is con-
tained in the intersection of influencing regions in e. We de-
note coverage(x) the size of the maximal hyper-edge cov-
ered by x. While x lies in the intersection of coverage(x)
influencing regions, adding (x, y+) to D will only increase
TSI by coverage(x) if the point is added with sufficient
multiplicity—i.e., the the maximum cost of any labeled ball
in e. Given a maximum allowable multiplicity `, CHOPPA
returns both an attack point x that covers some hyper-edge
e and the minimum multiplicity `x ≤ ` needed to change
the classification of points in e.

An optimal coverage single-point attack places a new
training point in intersection with the largest coverage. In
the case of attacking 1NN, an optimal coverage single point
attack also maximizes the TSI of any single-point attack.
For k > 1 adding any single point (with multiplicity 1)
may have TSI = 0, though adding the point with multi-
plicity ` = k′ = dk/2e sufficies to achieve coverage(x) =
TSI(x, y). Thus, in general, we must have ` ≥ k′ in order
to guarantee that a nontrivial (single point) attack exists.

Algorithm 2: CHOPPA
Input:
D = {(xtr, ytr)}i, T = {(xtar, ytar)}i, y+

T, ` Time budget, Point budget
Output:
(x, `x) Attack point and associated cost

1 H← ConstructIRs(D, T , y+)
2 edges← [∅]
3 done← False
4 b← ⊥, `best ← 0
5 while not done ∧ T not exhausted do
6 newEdges← ∅
7 for e ∈ {e ∪ {h} | e ∈ edges, h ∈ H} do
8 if all (|e| − 1)-sized subsets of e are in edges
9 ∧ There exists a point of mutual overlap then

10 newEdges← newEdges ∪ {e}
11 x← any point in intersection
12 if TSI(x, y+, `,H) > TSI(b, y+, `,H)

then
13 b← x, `best ← max {c | (B, v, c) ∈ e}

14 edges← newEdges
15 if edges = ∅ then
16 done← True

17 return (b, `best)

To compute G, we utilize the following observation: If
an edge e of size m is not an element of E, then neither is
any superset of e. We use a dynamic-programming approach
which first considers edges of size m = 1, then m = 2,
etc. The run time is highly dependent on the structure of G.
When all balls are identical there are an exponential number
of edges to check, whereas if no two balls intersect, the al-
gorithm terminates before checking for any size 3 sets. By

10056

Algorithm 3: GIT2ACHOPPA
Input:
D = {(xtr, ytr)}i, T = {(xtar, ytar)}i, y+

T, b Time budget, Point budget
Output:
∆ = {((x1, y1), `1), . . . , ((xb, ym), `m)} The attack

1 ∆← [], brem ← b
2 while brem > 0 do
3 ((x, y), `)← CHOPPA

(
D ∪∆, T , y+, T

b
, brem

)
4 if ⊥ returned, then break
5 ∆←∆ ∪ {(x, y+)}
6 brem ← brem − `

7 return ∆

keeping track of the best point (a point with maximal TSI)
as the algorithm considers larger cardinality collections of
balls we allow for early termination given a time budget,
making our solution deployable as an anytime algorithm.

4.2 Constructing a Full Attack
For the full attack, ATKR has a initial budget of b points
to add to ∆. We adopt the following greedy strategy:
invoke CHOPPA to find an optimal single-point attack
with multiplicity ` set to the minimum of ATKR’s re-
maining budget and k′ = dk/2e. Then add the point
x returned by CHOPPA to ∆ with multiplicity `x =
min {c(x′) |x ∈ IR(x′, y,D ∪∆)}, and deduct `x from the
remaining budget.As CHOPPA is an anytime algorithm, we
split a total time budget T evenly across the b calls.5 We
call this method Greedy Identification of a Training-Time
Attack via CHOPPA (GIT2ACHOPPA). It is a greedy any-
time algorithm for the general b > 1 attack. The pseudocode
is shown in Algorithm 3.

Since CHOPPA is an anytime algorithm, it may not always
return an optimal single-point attack. Nonetheless, the fol-
lowing theorem asserts that if each call to CHOPPA runs to
completion, and thus returns an optimal single-point attack,
then the b-point attack found by GIT2ACHOPPA is approx-
imately optimal. In the appendix, we prove and generalize
this result, and describe further practical optimizations.
Theorem 3. Let k′ = dk/2e. Suppose each call to
CHOPPA in GIT2ACHOPPA returns an optimal single-point
attack against kNN. Then the score of the ∆ returned by
GIT2ACHOPPA is a 1

k′ (1 − 1/e)-fraction of the optimal b-
point attack’s score.

In practice, a user can detect when CHOPPA has run
to completion (hence yielding an optimal result). Theo-
rem 3 can then be used as a post-hoc bound. If each call
to CHOPPA returns a solution that within a β factor of the
optimal single-point attack, then the solution returned by
GIT2ACHOPPA is a 1

k′ (1 − 1/eβ)-factor approximation to
the optimal b-point attack. Details appear in the appendix.

We provide a full proof of Theorem 3 in the appendix, and
provide a high level overview of the argument here. First,

5Examining more sophisticated scheduling is left as future
work.

consider the case k = 1. The problem of mounting an opti-
mal b-point attack can then be reduced to the maximum cov-
erage problem (MCP) defined by (Hochbaum and Pathria
1998). An instance of the b-MCP consists of (1) a univer-
sal set U of elements where each x ∈ U has an associated
weight w(x), and (2) a family S of subsets of U . The goal is
to find a family of sets F ⊆ S of size b that maximizes the
quantity

∑
x w(x), where the sum is taken over

⋃
F .

For ATK-KNN, we have U = T , and weights w(x′, y′)
are ±1 depending on if y′ = y+. Each S ∈ S consists of
elements in T whose influencing regions mutually intersect.

In general, MCP is NP-hard, but Hochbaum and Pathria
(1998) show that choosing sets greedily from S gives a (1−
1/e)-factor approximation to the optimal solution. Under the
assumptions that CHOPPA returns optimal single-point at-
tacks and k = 1, GIT2ACHOPPA simulates Hochbaum and
Pathria’s algorithm, whence Theorem 3 follows.

For k > 1, an optimal b-point attack is no longer equiv-
alent to MCP. Indeed, a point (x′, y′) ∈ T may need to be
“covered” with multiplicity greater than 1 in order to have
its prediction flipped, and it may be covered by multiple dif-
ferent sets in S . Thus, the k > 1 case appears to be strictly
more general than the MCP and the related “budgeted MCP”
studied in (Khuller, Moss, and Naor 1999).

To obtain Theorem 3 for k > 1, let ∆opt be an optimal
b-point attack—i.e., one that maximizes TSI(∆). For any
set ∆, let
coverage(∆) = |{(x′, y′) ∈ T |∆ ∩ IR(x′, y,D) 6= ∅}| .
When k = 1, we have TSI(∆) = coverage(∆), and for all
k, TSI(∆) ≤ coverage(∆). Let ∆cov be a b′-point attack
that maximizes coverage(∆). Then we have
TSI(∆opt) ≤ coverage(∆opt) ≤ k′coverage(∆cov).

Now consider the set ∆∗ returned by GIT2ACHOPPA in an
execution in which each call to CHOPPA returns an optimal
point. Since points are added to ∆∗ with multiplicities as
large as k′, it may contain as few as b′ = bb/k′c distinct
points, and we have

coverage(∆cov) ≤ (1− 1/e)−1coverage(∆∗).

By construction—since each point ∆∗ is taken with suf-
ficient multiplicity—we additionally have TSI(∆∗) =
coverage(∆∗). Combining the previous two expressions
with (9) proves Theorem 3.

5 Experiments
Having laid the foundation for a theoretical understanding
of attacking kNN at training time, we turn to the ques-
tion of how well our attack works in practice with our
ultimate application being defense. We explore the effec-
tiveness of CHOPPA on synthetic data in scenarios small
enough to compute the optimal one-point attack, then turn
to real-world data and investigate GIT2ACHOPPA on larger
instances. Driven by the results on the synthetic data and
with defense in mind, we look at the effect of dimensional-
ity reduction on the attacks. Experiments were run on 128-
core machines from AWS EC2. The QCLPs were solved us-
ing Mosek (ApS (2019)). Pre-processing, plotting, and data

10057

d: 2 4 8 16 32
Normal `2 27.2 36.8 53.2 83.4 100.0

`∞ 27.0 37.2 51.0 73.8 88.6
Uniform `2 27.0 34.2 54.4 83.6 100.0

`∞ 27.0 35.6 61.0 94.0 100.0

Table 1: ATKR’s Scores on Synthetic Data. For dimensions
d = {2, 4, 8, 16, 32} and both `2 and `∞ norms, we report
the ATKR score (as a percentage of successfully attacked
points), averaged over trials and training set sizes. ATKR’s
effectiveness increases with dimension. All standard error
of the means were less than 8.2%. Details are presented in
Appendix D.

analysis were performed with pandas (The Pandas Devel-
opment Team (2020)), scikit-learn (Pedregosa et al. (2011))
and matplotlib (Hunter (2007)).

In all experiments presented here we focus mostly on
kNN using Euclidean distance, deferring some experiments
using the `∞-norm to the appendix. Given a set of balls e, we
determine whether or not there exists a point in the intersec-
tion

⋂
iBi. For the `∞-norm, a simple interval intersection

algorithm suffices. For the Euclidean norm, this is done by
constructing the following quadratically constrained linear
program (QCLP):6

minx 1 s.t. ‖(x− c1)‖22 ≤ r21, . . . , ‖(x− c|e|)‖22 ≤ r2|e|. (9)

The objective function of (9) is not important; if there ex-
ists any feasible point, then the balls have a point of mutual
overlap. To reduce the number of times a QCLP solver is
invoked, we make a further optimization. When consider-
ing a potential hyper-edge e = B1, . . . B|e| the following
condition is necessary for e to be in E: All subsets of e of
size |e|−1 must be inE. This check is computationally effi-
cient because, when the check is performed, all edges of size
|e|−1 have already been comptued. This is implemented on
line 8 in Algorithm 2. If the first clause is false, the latter is
not checked (the QCLP solver is not invoked).

5.1 Synthetic Experiments
We construct two families of synthetic experiments—
Uniform and Normal—small enough to compute the op-
timal one-point attack. To create each instance, we sample
m training points and 10 target points from the appropri-
ate distribution, X ∼ Unif([0, 1]d) for Uniform, X ∼
Normal(0, Id) for Normal. For each family this procedure
is repeated for the grid of values m ∈ {8, 16, 32, 64, 128}
and d ∈ {2, 4, 8, 16, 32}. For each (m, d) pair and family
we perform 10 trials. Averages are reported in Table 1, with
full details in Appendix D . Universally, ATKR is more suc-
cessful in high dimenions. This suggests a natural defense
strategy: perform dimension reduction prior to learning.

5.2 MNIST and HAPT
We consider two real-world datasets. MNIST (LeCun,
Cortes, and Burges (2010)) consists of 28 × 28 greyscale

6If ATKR is constrained in her selection of x, these constraints
can be added to (9).

21 23 25 27 29

d

0

20

40

60

80

100

At
ta

ck
er

's
 S

co
re

 (%
)

b= 1
5
10
15
20

Figure 3: ATKR’s Effectiveness as a Function of Dimen-
sion. For the original datasets and those reduced via PCA,
we plot ATKR’s score as a percentage of |T | averaged over
10 trials for each label. Error bars denote standard error of
the mean. Attacks on MNIST (HAPT) datasets are shown as
solid (dashed) lines. Universally, reducing the dimension is
an effective defense.

images of handwritten digits (d = 784). Human Activity
Recognition (HAPT) (Anguita et al. (2013)), is a dataset of
sensor recordings of subjects performing a range of daily
activities (d = 561). We use 6 of the labels from HAPT,
omitting labels representing transitions between activities.

For MNIST, we consider 10 attackers, one targeting each
digit, and for HAPT we consider 6. Each attacker has an tar-
get pool of 50 points sampled uniformly at random from the
original set that are originally classified as their label of in-
terest. To evaluate dimensionality reduction as a form of de-
fense we used Principle Component Analysis (PCA) (F.R.S.
(1901)) on each dataset to reduce its dimension to d =
21, 23, 25, 27, 29. We train a 1NN classifier using 10,000 and
6,000 points from MNIST and HAPT, respectively, (1,000
from each class). Every attacker uses GIT2ACHOPPA with
a budget of b = 1, 5, 10, 20 and a time budget of b minutes.
ATKR’s effectiveness as a function of which class is attacked
are omitted for brevity, as we noticed no definitive connec-
tion between classes that are difficult to classify and classes
that are difficult to attack. Results are presented in Figure 3.

The attackers are very effective. Even with a modest bud-
get of b = 10, ATKR is able to affect the predicted label of
over half the target pool in both original datasets. Secondly,
as in the synthetic experiments, the effectiveness of the at-
tacks decreases as the data’s dimension is reduced.

For dimensionality reduction to be a useful defense strat-
egy, the defender would need to reduce the dimension while
maintaining good performance on the underlying task. To
understand the effects of reducing the dimension on the
learning process, we report the percentage of variance ex-
plained (a measure independent of the choice of learner)
and the zero-one loss of 1NN measured on a hold-out set

10058

MNIST Hapt
d HOL VarE HOL VarE

Original 0.102 (0.483) 1.000 0.087 (0.285) 1.000
512 0.126 (0.119) 0.999 0.093 (0.141) 1.000
128 0.111 (0.145) 0.936 0.081 (0.158) 0.983
32 0.103 (0.143) 0.745 0.111 (0.154) 0.891
8 0.201 (0.203) 0.438 0.217 (0.158) 0.774
2 0.613 (0.619) 0.169 0.431 (0.426) 0.661

Table 2: Loss and Variance Explained. We report the zero-
one loss on a held out dataset (HOL) for `2-norm (`∞-norm)
and the proportion of variance explained (VarE) for the
each dataset (the original and those with dimension reduced
by PCA). Reducing the dimension to 32 or 128 hardens the
learner against attack while maintaining similar HOL.

of size 1,000 (randomly selected, disjoint from the training
set) in Table 2. kNN continues to perform well even as the
dimension is reduced (a well understood phenomenon) un-
til the dimension is very low. ATKR’s score, on the other
hand, steadily decreases with the dimension. In the case of
MNIST data, reducing to 32 dimensions decreased the at-
tacker’s effectiveness by between 26% (b = 1) and 12%
(b = 20) while increasing prediction error by less than 1%.
PCA served as a more costly defense for the HAPT data.
At d = 32 the attacker’s score decreased by between 11%
and 8%, but the prediction loss increased by about 28%. Di-
mensionality reduction can be an effective defense for kNN
against training-time attacks. Experiments on other real-
world datasets showed qualitatively similar behavior and re-
sults are presented in Appendix D.

6 Related Work
Since its introduction (Fix and Hodges (1989)), kNN and
related algorithms (e.g., rNN) have been extensively studied
in contexts where no adversary is at play (Shakhnarovich,
Darrell, and Indyk (2006); Bhatia et al. (2010)).

Training-time (a.k.a. poisoning or input manipulation) at-
tacks were developed against various machine learning algo-
rithms from deep networks (Koh and Liang (2017)) to sup-
port vector machines (Biggio, Nelson, and Laskov (2012))
to linear regression models (Jagielski et al. (2018); Alfeld
et al. (2019)) to collaborative filtering (Li et al. (2016); Chen
et al. (2020)) and online centroid anomaly detection (Kloft
and Laskov (2010)). We complement this by furthering
knowledge of another canonical learning method. We be-
lieve we are the first to investigate (theoretically or other-
wise) training-time attacks against kNN.

Deployment-time attacks, often called “adversarial exam-
ples” or “adversarial perturbations”, have been given a great
deal of attention, especially against neural networks in re-
cent years. With a focus on graph neural-networks Entezari
et al. similarly observed that attackers are generally are less
effective in low dimensions (Entezari et al. (2020)). We di-
rect the reader to Biggio and Roli (2018); Vorobeychik and
Kantarcioglu (2018); Joseph et al. (2018) for a general re-
view and to Serban, Poll, and Visser (2020); Hazan, Papan-
dreou, and Tarlow (2017) specifically for neural networks.

Others have developed attacks against and analyzed the ro-
bustness of kNN and other non-parametric methods Wang,
Jha, and Chaudhuri (2018); Bhattacharjee and Chaudhuri
(2020)). In contrast to our work, they model an attacker act-
ing at deployment-time, not training-time.

ATK-KNN is closely related to the “product positioning
problem” in marketing theory (Albers and Brockhoff 1977),
whose complexity is analyized in (Crama, Hansen, and Jau-
mard 1995). Their analysis gives an alternative proof of the
special case of our Theorem 2 when p = 2 via a reduction
from the maximum clique problem. Our proof of Theorem 2
is an adaptation of the argument in (Amaldi and Kann 1995),
which shows that finding the maximum number of feasible
linear constraints is NP-hard. The advantage of our proof of
Theorem 2 is threefold: it is more general in that it covers
`p norms for p ∈ (1,∞), it is both technically simpler than
the argument of Crama, Hansen, and Jaumard (1995) and it
is conceptually consistent with the remainder of our paper.
Crama, Hansen, and Jaumard (1995) also describes an algo-
rithm for MAX-INT that runs in time O(nd+1), where n
and d denote the number of points (i.e., size of our train-
ing set) and the dimension, respectively. The high-degree
polynomial run-time of Crama et al.’s algorithm, however,
is inherent to their approach, as they first test a set of Θ(nd)
potential single-point attacks before evaluating the scores of
these attacks. As an anytime algorithm, CHOPPA finds good
(albeit not necessarily optimal) solutions quickly.

7 Conclusions
We investigated the task of performing training-time attacks
against nearest-neighbor based classifiers. We model an at-
tacker adding points to the training set with the goal of af-
fecting the classifications of points in an target pool. We
proved that finding an optimal attack against kNN is NP-
Hard, even when the attacker can add only a single data point
to the training set. We introduced the anytime algorithm
CHOPPA to efficiently compute an effective one-point attack
and GIT2ACHOPPA to compute a general attack. We pro-
vided a bound for GIT2ACHOPPA when CHOPPA finds the
optimal solution, and this bound holds in general if CHOPPA
is replaced with a constant-approximation algorithm. With
an eye toward defense strategies, we conducted an empirical
investigation on synthetic and real-world data. Our experi-
ments demonstrated both that the attack is highly effective
in practice and that dimensionality reduction is often an ef-
fective defense strategy.

We close with open problems as potential future work:
1. Is there a polynomial-time, constant-factor approxima-
tion algorithm which solves the same problem as CHOPPA?
Such an algorithm with approximation ratio α would yield a
(1 − e−α)/k′ approximation when used as a subroutine by
GIT2ACHOPPA. 2. Is there a bound for GIT2ACHOPPA’s
performance that is independent of k? 3. Our defense re-
duces the dimensionality d. We observe empirically that this
reduces the effectiveness of the optimal attack. However, the
worst-case runtime of CHOPPA decreases with d. Are there
effective defenses which act by increasing the computational
burden of the attacker instead of (or in addition to) reducting
the effectiveness of the optimal attack?

10059

References
Albers, S.; and Brockhoff, K. 1977. A procedure for new
product positioning in an attribute space. European Jour-
nal of Operational Research, 1(4): 230–238.
Alfeld, S.; Vartanian, A.; Newman-Johnson, L.; and Ru-
binstein, B. I. 2019. Attacking Data Transforming Learn-
ers at Training Time. In AAAI, volume 33, 3167–3174.
Amaldi, E.; and Kann, V. 1995. The complexity and
approximability of finding maximum feasible subsys-
tems of linear relations. Theoretical Computer Science,
147(1): 181–210.
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-
Ortiz, J. L. 2013. A public domain dataset for human
activity recognition using smartphones. In Esann, vol-
ume 3, 3.
ApS, M. 2019. MOSEK Optimizer API for Python 9.2.35.
Bhatia, N.; et al. 2010. Survey of nearest neighbor tech-
niques. International Journal of Computer Science and
Information Security.
Bhattacharjee, R.; and Chaudhuri, K. 2020. When are
Non-Parametric Methods Robust? In ICML, 832–841.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poison-
ing Attacks against Support Vector Machines. In ICML,
1467–1474.
Biggio, B.; and Roli, F. 2018. Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition, 84: 317–331.
Chen, L.; Xu, Y.; Xie, F.; Huang, M.; and Zheng, Z. 2020.
Data poisoning attacks on neighborhood-based recom-
mender systems. Transactions on Emerging Telecommu-
nications Technologies, e3872.
Crama, Y.; Hansen, P.; and Jaumard, B. 1995. Complex-
ity of Product Positioning and Ball Intersection Problems.
Mathematics of Operations Research, 20(4): 885–894.
Entezari, N.; Al-Sayouri, S. A.; Darvishzadeh, A.; and
Papalexakis, E. E. 2020. All You Need Is Low (Rank)
Defending Against Adversarial Attacks on Graphs. In
WSDM, 169–177.
Fix, E.; and Hodges, J. L. 1989. Discriminatory Anal-
ysis. Nonparametric Discrimination: Consistency Prop-
erties. International Statistical Review / Revue Interna-
tionale de Statistique, 57(3): 238–247.
F.R.S., K. P. 1901. On lines and planes of closest fit to
systems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science,
2(11): 559–572.
Garey, M. R.; and Johnson, D. S. 1979. Computers and
intractability, volume 174. freeman San Francisco.
Guyon, I.; Gunn, S. R.; Ben-Hur, A.; and Dror, G. 2004.
Result Analysis of the NIPS 2003 Feature Selection Chal-
lenge. In NIPS, volume 4, 545–552.
Hazan, T.; Papandreou, G.; and Tarlow, D. 2017. Adver-
sarial Perturbations of Deep Neural Networks, 311–342.
MIT Press.
Hochbaum, D. S.; and Pathria, A. 1998. Analysis of the
greedy approach in problems of maximum k-coverage.
Naval Research Logistics (NRL), 45(6): 615–627.
Hunter, J. D. 2007. Matplotlib: A 2D graphics environ-
ment. Computing In Science & Engineering, 9(3).

Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru,
C.; and Li, B. 2018. Manipulating Machine Learning:
Poisoning Attacks and Countermeasures for Regression
Learning. In 2018 IEEE Symposium on Security and Pri-
vacy (SP), 19–35.
Joseph, A. D.; Nelson, B.; Rubinstein, B. I.; and Tygar, J.
2018. Adversarial machine learning. Cambridge Univer-
sity Press.
Khuller, S.; Moss, A.; and Naor, J. S. 1999. The bud-
geted maximum coverage problem. Information Process-
ing Letters, 70(1): 39–45.
Kloft, M.; and Laskov, P. 2010. Online Anomaly Detec-
tion under Adversarial Impact. In AISTATS, 405–412.
Koh, P. W.; and Liang, P. 2017. Understanding Black-
box Predictions via Influence Functions. In ICML, 1885–
1894.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Avail-
able: http://yann.lecun.com/exdb/mnist, 2.
Li, B.; Wang, Y.; Singh, A.; and Vorobeychik, Y. 2016.
Data Poisoning Attacks on Factorization-Based Collabo-
rative Filtering. In Advances in Neural Information Pro-
cessing Systems 29, 1885–1893.
Luxburg, U. V. 2007. A Tutorial on Spectral Clustering.
Statistics and Computing, 17(4): 395–416.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cour-
napeau, D.; Brucher, M.; Perrot, M.; and Duchesnay, E.
2011. Scikit-learn: Machine Learning in Python. JMLR,
12: 2825–2830.
Sakar, B. E.; Isenkul, M. E.; Sakar, C. O.; Sertbas, A.;
Gurgen, F.; Delil, S.; Apaydin, H.; and Kursun, O. 2013.
Collection and analysis of a Parkinson speech dataset
with multiple types of sound recordings. IEEE Journal
of Biomedical and Health Informatics, 17(4): 828–834.
Serban, A.; Poll, E.; and Visser, J. 2020. Adversarial ex-
amples on object recognition: A comprehensive survey.
ACM Computing Surveys (CSUR), 53(3): 1–38.
Shakhnarovich, G.; Darrell, T.; and Indyk, P. 2006.
Nearest-Neighbor Methods in Learning and Vision: The-
ory and Practice. Neural Information Processing Series.
MIT Press.
Tenenbaum, J. B.; de Silva, V.; and Langford, J. C. 2000.
A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290: 2319–2323.
The Pandas Development Team. 2020. pandas-
dev/pandas: Pandas.
Vorobeychik, Y.; and Kantarcioglu, M. 2018. Adversarial
machine learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 12(3): 1–169.
Wang, Y.; Jha, S.; and Chaudhuri, K. 2018. Analyzing the
robustness of nearest neighbors to adversarial examples.
In ICML, 5133–5142. PMLR.
Zhu, X. 2013. Persistent homology: An introduction and
a new text representation for natural language processing.
In IJCAI, 1953–1959.
Zhu, X.; Vartanian, A.; Bansal, M.; Nguyen, D.; and
Brandl, L. 2016. Stochastic Multiresolution Persistent
Homology Kernel. In IJCAI, 2449–2457.

10060

