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Abstract

Clustered federated learning (FL) has been shown to produce
promising results by grouping clients into clusters. This is
especially effective in scenarios where separate groups of
clients have significant differences in the distributions of their
local data. Existing clustered FL algorithms are essentially
trying to group together clients with similar distributions so
that clients in the same cluster can leverage each other’s
data to better perform federated learning. However, prior
clustered FL algorithms attempt to learn these distribution
similarities indirectly during training, which can be quite
time consuming as many rounds of federated learning may be
required until the formation of clusters is stabilized. In this
paper, we propose a new approach to federated learning that
directly aims to efficiently identify distribution similarities
among clients by analyzing the principal angles between
the client data subspaces. Each client applies a truncated
singular value decomposition (SVD) step on its local data in a
single-shot manner to derive a small set of principal vectors,
which provides a signature that succinctly captures the main
characteristics of the underlying distribution. This small set of
principal vectors is provided to the server so that the server can
directly identify distribution similarities among the clients to
form clusters. This is achieved by comparing the similarities of
the principal angles between the client data subspaces spanned
by those principal vectors. The approach provides a simple,
yet effective clustered FL framework that addresses a broad
range of data heterogeneity issues beyond simpler forms of
Non-IIDness like label skews. Our clustered FL approach also
enables convergence guarantees for non-convex objectives.

Introduction
Federated Learning (FL) (McMahan and Ramage 2017)
enables a set of clients to collaboratively learn a shared
prediction model without sharing their local data. Some
FL approaches aim to train a common global model for all
clients (McMahan et al. 2017; Li et al. 2020; Wang et al. 2020;
Karimireddy et al. 2020; Mendieta et al. 2022). However, in
many FL applications where there may be data heterogeneity
among clients, a single relevant global model may not exist.
Alternatively, personalized FL approaches have been studied.
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One approach is to first train a global model and then allow
each client to fine-tune it via a few rounds of stochastic
gradient descent (SGD) (Fallah, Mokhtari, and Ozdaglar
2020; Vahidian et al. 2022; Liang et al. 2020a). Another
approach is for each client to jointly train a global model as
well as a local model, and then interpolate them to derive
a personalized model (Deng, Kamani, and Mahdavi 2020;
Mansour et al. 2020). In the former case, the approach often
fails to derive a model that generalizes well to the local
distributions of each client. In the latter case, when local
distributions and the average distribution are far apart, the
approach often degenerates to every client learning only
on its own local data. Recently, clustered FL (Ghosh et al.
2020; Sattler, Müller, and Samek 2021; Morafah et al. 2022;
Mansour et al. 2020) has been proposed to allow the grouping
of clients into clusters so that clients belonging to the same
cluster can share the same optimal model. Clustered FL has
been shown to produce significantly better results, especially
when separate groups of clients have significant differences
in the distributions of their local data. This possibly due to
distinct learning tasks or the mixture of distributions of the
local data considered, not necessarily limited to simpler forms
of data heterogeneity such as label skews from otherwise the
same dataset.

Essentially, what prior clustered FL algorithms are trying
to do is to group together clients with similar distributions
so that clients in the same cluster can leverage each other’s
data to perform federated learning more effectively. Previous
clustered FL algorithms attempt to learn these distribution
similarities indirectly when clients learn the cluster to which
they should belong as well as the cluster model during
training. For example, the clustered FL approach presented
in (Sattler, Müller, and Samek 2021) alternately estimates the
cluster identities of clients and optimizes the cluster model
parameters via SGD.

Unfortunately, the prior clustered FL approaches have the
following challenges which in turn limits their applicability in
real-world problems. 1) Since previous clustered FL training
algorithms start with randomly initialized cluster models
that are inherently noisy, the overall training process can be
quite time consuming as many rounds of federated learning
may be required until the formation of clusters is stabilized.
2) Approaches like IFCA (Ghosh et al. 2020) assumes a
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pre-defined number of clusters, but requiring the number of
clusters to be fixed a priori, regardless of the differences
in the actual data distributions or learning tasks among the
clients, could lead to poor performance for many clients. 3)
In each iteration, all cluster models have to be downloaded
by the active clients in that round, which can be very costly
in communications. 4) Both of the approaches i.e., those that
train a common global model for all clients and personalized
approaches including IFCA lack the flexibility to trade
off between personalization and globalization. The above-
mentioned drawbacks of the prior works, naturally lead to
the following important question. How a server can realize
clustered FL efficiently by grouping the clients into clusters in
a one-shot manner without requiring the number of clusters to
be known apriori, but with substantially less communication
cost? In this work, we propose a novel algorithm, Principal
Angles analysis for Clustered Federated Learning (PACFL),
to address the above-mentioned challenges of clustered FL.
Our contributions. We propose a new algorithm, PACFL,
for federated learning that directly aims to efficiently identify
distribution similarities among clients by analyzing the
principal angles between the client data subspaces. Each
client wishing to join the federation applies a truncated
SVD step on its local data in a one-shot manner to derive
a small set of principal vectors, which form the principal
bases of the underlying data. These principal bases provide
a signature that succinctly captures the main characteristics
of the underlying distribution. The client then provides
this small set of principal vectors to the server so that the
server can directly identify distribution similarities among
the clients to form clusters. The privacy of data is preserved
since no client data is ever sent to the server but a few (2-5)
principal vectors out of ≈ 500. Thus, the clients data cannot
be reconstructed from those (2-5) number of left singular
vectors. However, in privacy sensitive setups to provide extra
protection and prevent any information leakage from clients
to server, mechanisms like the ones presented in (Bonawitz
et al. 2017), or encryption mechanism or differential privacy
method that achieves this end can be employed.

On the server side, it efficiently identifies distribution
similarities among clients by comparing the principal
angles between the client data subspaces spanned by the
provided principal vectors – the greater the difference in
data heterogeneity between two clients, the more orthogonal
their subspaces. Unlike prior clustered FL approaches,
which require time consuming iterative learning of the
clusters and substantial communication costs, our approach
provides a simple yet effective clustered FL framework that
addresses a broad range of data heterogeneity issues beyond
simpler forms of Non-IIDness like label skews. Clients can
immediately collaborate with other clients in the same cluster
from the get go.

Our novel PACFL approach has the flexibility to trade
off between personalization and globalization. PACFL
can naturally span the spectrum of identifying IID data
distribution scenarios in which all clients should share
training within only 1 cluster, to the other end of the spectrum
where clients have extremely Non-IID data distributions in
which each client would be best trained on just its own local

Figure 1: There must be a translation protocol enabling
the server to understand the similarity/dissimilarity of the
clients’ data without sharing data. This 2D figure intuitively
demonstrates how the principal angle between the client data
subspaces captures the statistical heterogeneity. Fig. 1 Shows
the subspaces spanned by the Ups of four different datasets
(left to right: CIFAR-10, SVHN, FMNIST, and USPS). As
can be seen the principal angle between the subspaces of
CIFAR-10 and SVHN is smaller than that of CIFAR-10 and
USPS.

data (i.e., each client becomes its cluster).
Our framework also naturally provides an elegant approach

to handle newcomer clients unseen at training time by
matching them with a cluster model that the client can further
personalized with local training. Realistically, new clients
may arrive to the federation after the distributed training
procedure. In our framework, the newcomer client simply
provides its principal vectors to the server, and the server
identifies via angle similarity analysis which existing cluster
model would be most suitable, or the server can inform the
client that it should train on its own local data to form a
new cluster if the client’s data distribution is not sufficiently
similar to the distributions of the existing clusters. On the
other hand, it is generally unclear how prior personalized
or clustered FL algorithms can be extended to provide
newcomer clients with similar capabilities.

Finally, we provide a convergence analysis of PACFL in
the supplementary material.

Clustered Federated Learning
Preliminaries
Principal angles between two subspaces. Let U =
span{u1, ...,up} and W = span{w1, ...,wq} be p and
q-dimensional subspaces of Rn where {u1, ...,up} and
{w1, ...,wq} are orthonormal, with 1 ≤ p ≤ q. There exists
a sequence of p angles 0 ≤ Θ1 ≤ Θ2 ≤ ... ≤ Θp ≤ π/2
called the principal angles, which are defined as

Θ(U ,W) = min
u∈U,w∈W

arccos

( ∣∣uTw
∣∣

∥u∥ ∥w∥

)
(1)

where ∥.∥ is the induced norm. The smallest principal angle is
Θ1 (u1,w1) with vectors u1 and w1 being the corresponding
principal vectors. The principal angle distance is a metric for
measuring the distance between subspaces (Jain, Netrapalli,
and Sanghavi 2013). Additional background is presented in
the supplementary material.
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Dataset CIFAR-10 SVHN FMNIST USPS

CIFAR-10 0 6.13 45.79 66.26
(0) (12.3) (91.6) (132.5)

SVHN 6.13 0 43.42 64.86
(12.3) (0) (86.8) (129.7)

FMNIST 45.79 43.42 0 43.36
(91.6) (86.8) (0) (86.7)

USPS 66.26 64.86 43.36 0
(132.5) (129.7) (86.7) (0)

Table 1: This table shows how distribution similarities
between datasets can be accurately estimated by a proximity
matrix of principal angles. Entries are x(y), where x and y
are respectively the smallest principal angle and summation
over the principal angles between two datasets. p in Up is 2.

How Principal Angles Can Capture the Similarity
Between Data/Features
The cosine similarity is a distance metric between vectors
that is known to be more tractable and interpretable than
the alternatives while exhibiting high precision clustering
properties, see, e.g. (Qian et al. 2004). The idea is to note that
for any two vectors x and y, by the dot product calculation
x · y = ∥x∥∥y∥ cos θ, we see that inverting the operation to
solve for θ yields the angle between two vectors as emanating
from the origin, which is a scale-invariant indication of their
alignment. It presents a natural geometric understanding of
the proportional volume of the embedded space that lies
between the two vectors. Finally, by choosing to cluster using
the data rather than the model, the variance of each SGD
sample declines resulting in smoother training. By contrast,
clustering by model parameters has the effect of increasing
the bias of the clients’ models to be closer to each other.

In order to obtain a computationally tractable small set
of vectors to represent the data features, we propose to
apply truncated SVD on each dataset. We take a small
set of principal vectors, which form the principal bases of
the underlying data distribution. Truncated SVD is known
to yield a good quality balance between computational
expense and representative quality of representative subspace
methods (Talwalkar et al. 2013). Assume there are K number
of datasets. We propose to apply truncated SVD (detailed in
the supplementary material) on these data matrices, Dk, k =
1, ...,K , whose columns are the input features of each dataset.
Further, let Uk

p = [u1,u2, ...,up], (p≪ rank (Dk)) be the
p most significant left singular vectors for dataset k. We
constitute the proximity matrix A as in Eq. 2 whose entries
are the smallest principle angle between the pairs of Uk

p or
as in Eq. 3 whose entries are the summation over the angle in
between of the corresponding u vectors (in identical order)
in each pair within Uk

p , where tr (.) is the trace operator, and

Ai,j = Θ1

(
Ui

p,U
j
p

)
, i, j = 1, ...,K (2)

Ai,j = tr
(
arccos

(
Ui T

p ∗Uj
p

))
, i, j = 1, ...,K (3)

The smaller the entry of Ai,j is, the more similar datasets
i and j are 1. Before we proceed further, through some

1It is noteworthy that in practice both of these equations work

experiments on benchmark datasets, we highlight how the
proposed method perfectly distinguishes different datasets
based on their hidden data distribution by inspecting the
angle between their data subspaces spanned by their first p
left singular vectors. For a visual illustration of the result, we
refer to Fig. 1. As can be seen the principal angle between
the subspaces of CIFAR-10 and SVHN is smaller than that
of CIFAR-10 and USPS. Table 1 shows the exact principal
angles between every pairs of these datasets’ subspaces. The
entries of this table is presented as x(y), where x is the
smallest principal angle between two datasets obtained from
Eq. 2, and y is the summation over the principal angles
between two datasets obtained from Eq. 3. Table 1 reveals that
the similarity and dissimilarity of the four different datasets
have been accurately captured by the proposed method. We
will provide more examples in the supplementary material
and will show that the similarity/dissimilarity being captured
by the proposed method is consistent with well-known
distance measures between two distributions including
Bhattacharyya Distance (BD), Maximum Mean Discrepancy
(MMD) (Gretton et al. 2012), and Kullback–Leibler (KL)
distance (Hershey and Olsen 2007).

Overview of PACFL
In this section, we begin by presenting our PACFL framework.
The proposed approach, PACFL, is described in Algorithm 1.
We first turn our attention to clustering clients data in
a federated network. The proposed method is one-shot
clustering and can be used as a simple pre-processing stage
to characterize personalized federated learning to achieve
superior performance relative to the recent iterative approach
for clustered FL proposed in (Ghosh et al. 2020). Before
federation, each available client, k, performs truncated
SVD on its own data matrix, Dk

2, and sends the p most
significant left singular vectors Up, as their data signature
to the central server. Next, the server obtains the proximity
matrix A as in Eq. 2 or Eq. 3 where K = |St|, and St is
the set of available clients. When the number of clusters
is unknown, for forming disjoint clusters, the server can
employ agglomerative hierarchical clustering (HC) (Day and
Edelsbrunner 1984) on the proximity matrix A. For more
details on HC, please see the supplementary material. Hence,
the cluster ID of clients is determined.

For training, the algorithm starts with a single initial model
parameters θ0g . In the first iteration of PACFL a random
subset of available clients St ⊆ [N ], |St| = n is selected by
the server and the server broadcasts θ0g to all clients. The
clients start training on their local data and perform some
steps of stochastic gradient descent (SGD) updates, and

accurately. However, theoretically and rigorously speaking, when
the number of the principal vectors, p, is bigger than 1, it can happen
that one of the principal vectors of client k yields a small angle with
its corresponding one for client k′ while the other principal vectors
of client k yield big angle with their corresponding ones for client
k′. With that in mind, Eq. 3 is a more rigorous measure and it always
truly captures the similarity between the client data subspaces.

2Considering a client owns M data samples, each including N
features, we assumed that the M data samples are organized as the
columns of a matrix Dk ∈ RN×M .
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Algorithm 1: PACFL

1: Require: Number of available clients N , sampling rate
R ∈ (0, 1], clustering threshold β

2: Server: Initialize the server model with θ0g .
3: for each round t = 1, 2,... do
4: m← max(R ·N, 1)
5: St ← {k1, ..., kn} % set of n available clients %
6: for each client k ∈ St in parallel do
7: if t = 1 % It is done in one-shot % then
8: client k sends Uk

p to the server
9: U = [Uk1

p , ...,Ukn
p ]

10: A← server forms A based on Eq. 2 or Eq. 3
11: {C1, ..., CZ} = HC(A, β)
12: θ0g,z ← θ0g % initializing all clusters with θ0g %
13: else if k is a new arriving client then
14: client k sends Uk

p to the server
15: A, U = PME(A, U, Uk

p) % Alg. 2 %
16: {C1, ..., CZ} ← HC(A, β) % Update the

clusters, determine the cluster ID of new client k
%

17: client k receives the corresponding cluster model
θtg,z from the server

18: else
19: client k sends its cluster ID to the server and

receives the corresponding cluster model θtg,z
from the server

20: end if
21: θt+1

k,z ← ClientUpdate(k; θtg,z): by SGD training
22: end for
23: for z = 1 : Z % Z is the number of formed clusters

% do
24: θt+1

g,z =
∑

k∈Cz
|Dk|θt+1

k,z /
∑

k∈Cz
|Dk| % model

averaging for each cluster %
25: end for
26: end for

get the updated model. The clients will only need to send
their cluster membership ID and model parameters back to
the central server. After receiving the model and cluster ID
memberships from all the participating clients, the server
then collects all the parameter updates from clients whose
cluster ID are the same and conducts model averaging within
each cluster. It is noteworthy that in Algorithm 1, β stands
for the Euclidean distance between two clusters and is a
parameter in HC.

Desirable properties of PACFL. Unlike prior work on
clustered federated learning (Ghosh et al. 2020; Sattler,
Müller, and Samek 2021), PACFL has much greater flexibility
in the following sense. First, from a practical perspective,
one of the desirable properties of PACFL is that it can handle
partial participation of clients. In addition, PACFL does
not require to know in advance whether certain clients are
available for participation in the federation. Clients can join
and leave the network abruptly. In our proposed approach, the
new clients that join the federation just need to send their data

Algorithm 2: Proximity Matrix Extension (PME)

1: Input: Aold % M ×M proximity matrix formed by M
number of seen clients %

2: Input: Uold = [U1
p , ..., U

M
p ] % Set of first p significant

singular vectors of the M seen clients %
3: Input: Unew = [U1

p , ..., U
B
p ] % The set of first p

significant singular vectors of the B new clients %
4: Output: Aextended % The extended (M+B)×(M+B)

proximity matrix %
5: Output: Uextended

6: function PME(Aold, Uold, Unew)
7: Aextended ← [0](M+B)×(M+B)

8: Uextended ← [Uold,Unew]
9: Aextended[1 : M, 1 : M ] = Aold[:, :]

10: Aextended[M : M + B,M : M + B] % can be
calculated based on Eq. 2 or Eq. 3 %

11: Return Aextended, Uextended

12: end function

signature to the server and the server can easily determine the
cluster IDs of the new clients by constituting a new proximity
matrix without altering the cluster IDs of the other clients. In
PACFL, the prior information about the availability of certain
clients is not required.

Second, PACFL can form the best fitting number of
clusters, if a fixed number of clusters is not specified.
However, in IFCA (Ghosh et al. 2020), the number of
clusters has to be known apriori. Third, one-shot client
clustering can be placed by PACFL for the available clients
before the federation and the prior information about the
availability and the number of certain clients is not required.
In contrast, IFCA constructs the clusters iteratively by
alternating between cluster identification estimation and loss
function minimization which is costly in communication.

Fourth, PACFL does not add significant additional
computational overhead to the FedAvg baseline algorithm
as it only requires running one-shot HC clustering before
training. With that in mind, the computational complexity
of the PACFL algorithm is the same as that of FedAvg plus
the computational complexity of HC in one-shot ((O(N2))
where N is the total number of clients).

Fifth, in case of either a certain and a fixed number of
clients are not available at the initial stage or clients join and
leave the network abruptly, clustering by PACFL can easily
be applied in a few stages as outlined in Algorithm 2. Each
new clients that become available for the federation, sends the
signature of its data to the server and the server aggregates the
signature of existing clients and the new ones as in Uextended

(Algorithm 2). Next, the server obtains the proximity matrix
A as in Eq. 3 or Eq. 4 where all the new clients included. By
keeping the same distance threshold as before, the cluster
ID of the new clients are determined without changing the
cluster ID of the old clients.

Sixth, we should note that we tried some other clustering
methods including graph clustering methods (Hallac,
Leskovec, and Boyd 2015; Sarcheshmehpour, Leinonen, and
Jung 2021) for PACFL and we noticed that the clustering

10046



Figure 2: Test accuracy performance of PACFL versus the clustering threshold β (when the proximity matrix obtained as in
Eq. 2), and the number of fitting clusters for Non-IID label skew (20%) on CIFAR-10/100, FMNIST, and SVHN datasets. Each
point in the plots are obtained by 200 communication rounds with local epoch of 10, local batch size of 10 and SGD local
optimizer.

algorithm does not play a crucial role in PACFL. As long as
the clustering algorithm itself does not require the number of
clusters to be known in advance, it can be applied in PACFL.

Seventh, the server cannot make use of the well known
distribution similarity measures such as BD, MMD (Gretton
et al. 2012), and KL (Hershey and Olsen 2007) to group
the clients into clusters due to the privacy constraints as
they require accessing the data or important moments of the
data distributions. As shown in Fig. 1, and Table 1 and also
as will be shown in the Experiments Section, the proposed
approach presents a simple and alternative solution to the
above-mentioned measures in FL setups.

We also provide a convergence analysis of the method
in the supplementary material. The framework we use is
from (Haddadpour and Mahdavi 2019), which considers
nonconvex learning with Non-IID data. Indeed unlike other
works we can obtain guarantees for nonconvex objectives,
as appropriate for deep learning, because the clustering is
performed on the data and not the parameters, thus no longer
suffering from associated issues of multi-modality (multiple
separate local minima). We shall see that it recovers the
state-of-the-art (SOTA) convergence rate and performance
guarantees for Non-IID data.

Experiments
Datasets and Models. We use image classification task and
4 popular datasets, i.e., FMNIST (Xiao, Rasul, and Vollgraf
2017), SVHN (Netzer et al. 2011), CIFAR-10 (Krizhevsky,
Hinton et al. 2009), CIFAR-100 (Krizhevsky, Hinton et al.
2009), to evaluate our method. For all experiments, we
consider LeNet-5 (LeCun et al. 1989) architecture for
FMNIST, SVHN, and CIFAR-10 datasets and ResNet-9 (He
et al. 2016) architecture for CIFAR-100 dataset.

Baselines and Implementation. To assess the
performance of the proposed method against the SOTA,
we compare PACFL against the following set of baselines.
For baselines that train a single global model across
all clients, we compare with FedAvg (McMahan et al.
2017), FedProx (Li et al. 2020) FedNova (Wang et al.
2020), and SCAFFOLD (Karimireddy et al. 2020). For
SOTA personalized FL methods, the baselines include LG-
FedAvg (Liang et al. 2020b), Per-FedAvg (Fallah, Mokhtari,

and Ozdaglar 2020), Clustered-FL (CFL) (Sattler, Müller,
and Samek 2021), and IFCA (Ghosh et al. 2020). In
all experiments, we assume 100 clients are available
and 10% of them are sampled randomly at each round.
Unless stated otherwise, throughout the experiments, the
number of communication rounds is 200 and each client
performs 10 locals epochs with batch size of 10 and local
optimizer is SGD. We let p in Up be 3-5. Please refer
to the supplementary material for more details about the
experimental setup.

Overall Performance
We compare PACFL with all the mentioned SOTA baselines
for two different widely used Non-IID settings, i.e. Non-IID
label skew, and Non-IID Dirichlet label skew (Li et al.
2021a). We present the results of Non-IID label skew in the
main paper and that of the Non-IID Dirichlet label skew in
the supplementary material. We report the mean and standard
deviation for the average of final local test accuracy across
all clients over 3 runs.

Non-IID Label Skew. In this setting, we first randomly
assign ϱ% of the total available labels of a dataset to
each client and then randomly distribute the samples of
each label amongst clients own those labels as in (Li
et al. 2021b). In our experiments we use Non-IID label
skew 20%, and 30%, i.e. ϱ = {20, 30}% respectively.
Table 2 shows the results for Non-IID label skew 20%.
We report the results of Non-IID label skew 30% in the
supplementary material. As can be seen, global FL baselines,
i.e. FedAvg, FedProx, FedNova, and SCAFFOLD perform
very poorly. That’s due to weight divergence and model
drift issues under heterogeneous setting (Zhao et al. 2018).
We can observe from Table 2 that PACFL consistently
outperforms all SOTA on all datasets. In particular, focusing
on CIFAR-100, PACFL outperforms all SOTA methods
(by +19%,+18%,+19%,+18% for FedAvg, FedProx,
FedNova, SCAFFOLD) as well as all the personalized
competitors (by +27%,+13%,+1.5%,+33% for LG,
PerFedAvg, IFCA, CFL ). We tuned the hyperparameters
in each baseline to obtain the best results. IFCA achieved the
best performance with 2 clusters which is consistent with the
results in (Ghosh et al. 2020).
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Algorithm FMNIST CIFAR-10 CIFAR-100 SVHN

SOLO 95.92±0.57 79.22±1.67 32.28±0.23 79.72±1.37
FedAvg 77.3± 4.9 49.8± 3.3 53.73±0.50 80.2± 0.8
FedProx 74.9± 2.6 50.7± 1.7 54.35±0.84 79.3± 0.9
FedNova 70.4± 5.1 46.5± 3.5 53.61±0.42 75.4± 4.8
Scafold 42.8± 28.7 49.1± 1.7 54.15±0.42 62.7± 11.6
LG 96.80±0.51 86.31±0.82 45.98±0.34 92.61±0.45
PerFedAvg 95.95±1.15 85.46±0.56 60.19±0.15 93.32±2.05
IFCA 97.15±0.01 87.99±0.15 71.84±0.23 95.42±0.06
CFL 77.93±2.19 51.11±1.01 40.29±2.23 73.62±1.76
PACFL 97.54± 0.08 89.30± 0.41 73.10± 0.21 95.77± 0.18

Table 2: Test accuracy comparison across different datasets
for Non-IID label skew (20%). For each baseline, the average
of final local test accuracy over all clients is reported. We run
each baseline 3 times for 200 communication rounds with
local epoch of 10.

Globalization and Personalization Trade-off
To cope with the statistical heterogeneity, previous works
incorporated a proximal term in local optimization or
modified the model aggregation scheme at the server side to
take the advantage of a certain level of personalization (Li
et al. 2020; Vahidian, Morafah, and Lin 2021; Deng, Kamani,
and Mahdavi 2020). Though effective, they lack the flexibility
to trade off between personalization and globalization.
Our proposed PACFL approach can naturally provide this
globalization and personalization trade-off. Fig. 2 visualizes
the accuracy performance behavior of PACFL versus different
values of β which is the L2 (Euclidean) distance between two
clusters when the proximity matrix obtained as in Eq. 2, or
Eq. 3. In other words, β is a threshold controlling the number
of clusters as well as the similarity of the data distribution
of clients within a cluster under Non-IID label skew. The
blue curve and the red bars demonstrate the accuracy, and
the number of clusters respectively for each β. Varying β in
a range which depends upon the dataset, PACFL can sweep
from training a fully global model (with only 1 cluster) to
training fully personalized models for each client.

As is evident from Fig. 2, the behaviour of PACFL on
each dataset is similar. In particular, increasing β, decreases
the number of clusters (by grouping more number of clients
within each cluster and sharing more training) which realizes
more globalization. When β is big enough, PACFL will
group all clients into 1 cluster and the scenario reduces to
the FedAvg baseline (pure globalization). On the contrary,
decreasing β, increases the number of clusters, which leads
to more personalization. When β is small enough, individual
clusters would be formed for each client and the scenario
degenerates to the SOLO baseline (pure personalization). As
demonstrated, on all datasets, all clients benefit from some
level of globalization. This is the reason why decreasing the
number of clusters can improve the accuracy performance in
comparison to SOLO. In general, finding the optimal trade-
off between globalization and personalization depends on
the level of heterogeneity of tasks, the intra-class distance
of the dataset, as well as the data partitioning across the
clients. This is precisely what PACFL is designed to do, to

find this optimal trade-off before initiating the federation via
the proximity matrix at the server. IFCA lacks this trade-
off capability as it must define a fixed number of clusters
(C > 1) or with C = 1 it would degenerate to FedAvg.

Mixture of 4 Datasets
Existing studies have been evaluated on simple partitioning
strategies, i.e., Non-IID label skew (20%) and (30%) (Li
et al. 2021b). While these partitioning strategies synthetically
simulate Non-IID data distributions in FL by partitioning a
dataset into multiple smaller Non-IID subsets, they cannot
design real and challenging Non-IID data distributions.
According to the prior sections, due to the small intra-class
distance (similarity between distribution of the classes) in the
used benchmark datasets, all baselines benefited highly from
globalization. This is the reason that PACFL and IFCA could
achieve a high performance with only 2 clusters.

In order to better assess the potential of the SOTA baselines
under a real-world and challenging Non-IID task where the
local data of clients have strong statistical heterogeneity,
we design the following experiment naming it as MIX-4.
We assume that each client owns data samples from one
of the four datasets, i.e., USPS (Hull 1994), CIFAR-10,
SVHN, and FMNIST. In particular, we distribute CIFAR-
10, SVHN, FMNIST, USPS among 31, 25, 27, 14 clients
respectively (100 total clients) where each client receives
500 samples from all classes of only one of these dataset.
This is a hard Non-IID task. We compare our approach
with the SOTA baselines in the classification of these four
different datasets, and we present the average of the clients’
final local test accuracy in Table 3. As can be seen, IFCA
is unable to effectively handle this difficult scenario with
tremendous data heterogeneity with just two clusters, as
suggested in (Ghosh et al. 2020) as the best fitting number of
clusters. IFCA (2) with 2 clusters performs almost as poorly
as the global baselines while PACFL can find the optimal
number of clusters in this task (four clusters) and outperforms
all SOTA by a large margin. The results of IFCA (4) with 4
clusters is 76.79± 0.43. As observed, PACFL surpasses all
the global competitors (by +14%,+15%,+16%,+8% for
FedAvg, FedProx, FedNova, SCAFFOLD) as well as all the
personalized competitors (by +19%,+35%,+7%,+16%
for LG, PerFedAvg, IFCA, CFL, respectively). Further, the
visualization in Fig. 3c and 3d also show how PACFL
determines the optimal number of clusters on MIX-4.

How Many Clusters Are Needed?
As we emphasized in prior sections, one of the significant
contributions of PACFL is that the server can easily determine
the best fitting number of clusters just by analyzing the
proximity matrix without running the whole federation. For
instance, for IID scenarios, we expect the best fitting number
of clusters to be one. The reason behind is that under IID
setting, since all clients have similar distributions, they can
share in the training of the averaged global model to benefit
all. On the other hand, in the case of MIX-4, we expect the
best fitting number of clusters to be four. More generally, we
expect the best fitting number of clusters to be dependent
on the similarities/dissimilarities in distributions among the
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(a) (b) (c) (d)

Figure 3: The main message of this visualization is to understand the cluster structure of different datasets as well as the
distribution similarity of different heterogeneous tasks/datasets. (a) depicts the UMAP visualization of CIFAR-10 classes. As
can be seen, CIFAR-10 naturally has two super clusters, namely animals (cat, dog, bird, deer, horse, frog) and vehicles (car,
plane, ship, truck), which are shown in the purple and green regions, respectively. This means that within each super cluster, the
distance between the distribution of the classes is small. While the distance between the distributions of the two super clusters
are quite huge. Since the union of clients data is CIFAR-10, two cluster is enough to handle the Non-IIDness across clients. This
is the reason that the best accuracy performance on CIFAR-10 is obtained when the number of clusters is 2. (b) We obtained the
proximity matrix A as in Eq. 2 and sketched it. The entries of A are the smallest principle angle between all pairs of classes of
CIFAR-10. This concurs with (a) showing the cluster structure of CIFAR-10. (c) The data of MIX-4 is naturally clustered into
four clusters. The structure of the 4 clusters is also accurately suggested by PACFL for this task. (d) We did the same thing as in
(b) for MIX-4 as well and sketched the matrix.

Algorithm MIX-4 Algorithm MIX-4

SOLO 55.08± 0.29 LG 58.49± 0.46
FedAvg 63.68± 1.64 PerFedAvg 42.60± 0.60
FedProx 61.86± 3.73 IFCA (2) 70.32± 3.57
FedNova 60.92± 3.60 CFL 61.18± 2.63
Scaffold 69.26± 0.84 PACFL 77.83± 0.33

Table 3: The benefits of PACFL are particularly pronounced
when the tasks are extremely Non-IID. This table evaluates
different FL approaches in the challenging scenario of MIX-
4 in terms of the top-1 test accuracy performance. While
all competing approaches have substantial difficulties in
handling this scenario with tremendous data heterogeneity,
the results clearly show that PACFL is very robust even under
such difficult data heterogeneity scenarios.

clients. We empirically show in Fig. 2 that the best accuracy
results on CIFAR-100, CIFAR-10, SVHN, and FMNIST for
Non-IID label skew (20%) are obtained when the number of
clusters are 2, 2, 2, and 4, respectively.

The UMAP (McInnes, Healy, and Melville 2018)
visualization in Fig. 3a also confirms that two clusters is
the best case for training the local models on partitions of
CIFAR-10 dataset. Broadly speaking, CIFAR-10 has 2 big
classes, i.e., class of animals (cat, dog, deer, frog, horse,
bird) and class of vehicles (airplane, automobile, ship and
truck). Fig. 3b also depicts the proximity matrix of CIFAR-10
dataset, whose entries are the principal angle between the
subspace of every pairs of 10 classes (labels). This further
confirms that our proposed method perfectly captures the
level of heterogeneity, thereby finding the best fitting number
of clusters in a privacy preserving manner. In particular, our
experiments demonstrate that the clients that have the sub-
classes of these two big classes have common features and

can improve the performance of other clients that own sub-
classes of the same big class if they are assigned to the same
cluster. A similar observation can be seen for other datasets.

In PACFL, the server only requires to receive the signature
of the clients data in one-shot and thereby initiating the
federation with the best fitting number of clusters. This
translates to several orders of magnitude in communication
savings for PACFL. However, as mentioned in (Ghosh
et al. 2020), IFCA treats the number of clusters as a
hyperparameter which is optimized after running the whole
federation with different number of clusters which increases
the communication cost by several orders of magnitude.

Generalization to Newcomers

PACFL provides an elegant approach to handle newcomers
arriving after the federation procedure, to learn their
personalized model. In general, for all other baselines it is
not clear how they can be extended to handle clients unseen
at training (federation). We show in Algorithm 3 how PACFL
can simply be generalized to handle clients arriving after
the end of federation, to learn their personalized model. The
unseen client will send the signature of its data to the server
and the server determines which cluster it belongs to. The
server then sends the corresponding model to the newcomer
and the newcomer fine tunes the received model. To evaluate
the quality of newcomers’ personalized models, we design
an experiment under Non-IID label skew (20%) where only
80 out of 100 clients are participating in a federation with
50 rounds. Then, the remaining 20 clients join the network
at the end of federation and receive the model from the
server and personalize it for only 5 epochs. The average
final local test accuracy of the unseen clients is reported in
Table 4. Focusing on CIFAR-100, as observed, some of the
personalized baselines including LG and PerFedAvg perform
as poor as global baselines and SOLO. PACFL consistently
outperforms other baselines by a large margin.
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Figure 4: Test accuracy versus number of communication rounds for Non-IID (20%). PACFL converges fast to the desired
accuracy and consistently outperforms strong competitors.

Algorithm 3: Generalization to newcomers after federation

1: Server: An existing A, U, {C1, ..., CZ}, clustering
threshold β

2: Require: a set of B newcomers and their corresponding
first p significant singular vectors, i.e. Unew =
[U1

p , ..., U
B
p ]

3: A, U = PME(A, U, Unew) % Alg. 2 %
4: {C1, ..., CZ} ← HC(A, β) % Updating the clusters and

determining the cluster ID of each new client k %
5: Each new client k receives the corresponding cluster

model θg,z from the server
6: FineTune(k; θg,z): by SGD training % this step is

optional %

Algorithm FMNIST CIFAR-10 CIFAR-100 SVHN

SOLO 95.13±0.42 82.30±1.00 27.26±0.98 91.5± 0.64
FedAvg 77.61±3.78 31.01±1.83 32.19±0.32 71.78±3.43
FedProx 74.30±4.70 27.56±3.24 32.41±1.17 74.30±4.70
FedNova 74.66±2.81 31.48±1.49 33.18±0.80 73.04±3.65
Scafold 73.97±1.68 37.22±1.34 23.90±2.61 64.96±4.74
LG 94.58±0.33 77.98±1.61 10.63±0.21 89.48±0.65
PerFedAvg 89.88±0.38 73.79±0.51 30.09±0.35 67.48±2.88
IFCA 96.29±0.04 84.98±0.41 55.66±0.20 94.83±0.14
PACFL 96.36± 0.20 87.14± 0.15 59.16± 0.42 95.25± 0.08

Table 4: Average local test accuracy across unseen clients on
different datasets for Non-IID label skew (20%).

Communication Cost
Learning with Limited Communication In this section
we consider circumstances that frequently arise in practice,
where a limited amount of communication round is
permissible for federation under a heterogeneous setup. To
this end, we compare the performance of the proposed
method with the rest of SOTA. Herein, we consider a limited
communication rounds budget of 80 for all personalized
baselines and present the average of final local test accuracy
over all clients versus number of communication rounds
for Non-IID label skew (20%) in Fig. 4. Our proposed
method requires only 30 communication rounds to converge
in CIFAR-10, SVHN, and FMNIST datasets. CFL yields
the worst performance on all benchmarks across all datasets,
except for CIFAR-100. Per-Fedavg seems to benefit more

from higher communication rounds. IFCA, is the closest line
to ours for CIFAR-10, SVHN and FMNIST, however, PACFL
consistently outperforms IFCA. This can be explaiend by the
fact that IFCA randomly initializes cluster models that are
inherently noisy, and many rounds of federation is required
until the formation of clusters is stabilized. Further, IFCA is
sensitive to initialization and a good initialization of cluster
model parameters is key for convergence (Rad, Abdizadeh,
and Szabó 2021). This issue can be further pronounced by the
results presented in Table 5 which demonstrate the number
of communication round required to achieve a designated
target accuracy. In this table, “−−” means that the baseline is
unable to reach the specified target accuracy. As can be seen,
PACFL beats IFCA and all SOTA methods.

Algorithm FMNIST CIFAR-10 CIFAR-100 SVHN

Target 75 80 50 75

FedAvg 200 −− 130 150
FedProx 200 −− 115 200
FedNova −− −− 120 150
Scafold −− −− −− −−

LG 13 33 −− 16
PerFedAvg 19 60 110 39

IFCA 14 25 40 17
CFL 47 −− −− −−

PACFL 12 24 37 15

Table 5: Comparing different FL approaches for Non-IID
(20%) in terms of the required number of communication
rounds to reach target top-1 average local test accuracy.

Conclusion

In this paper, we proposed a new framework for clustered
FL that directly aims to efficiently identify distribution
similarities among clients by analyzing the principal angles
between the client data subspaces spanned by their principal
vectors. This approach provides a simple, but yet effective
clustered FL framework that addresses a broad range of data
heterogeneity issues beyond simpler forms of Non-IIDness
like label skews.
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