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Abstract
Satisfaction of the strict saddle property has become a stan-
dard assumption in non-convex optimization, and it ensures
that many first-order optimization algorithms will almost al-
ways escape saddle points. However, functions exist in ma-
chine learning that do not satisfy this property, such as the
loss function of a neural network with at least two hidden
layers. First-order methods such as gradient descent may
converge to non-strict saddle points of such functions, and
there do not currently exist any first-order methods that reli-
ably escape non-strict saddle points. To address this need, we
demonstrate that regularizing a function with a linear term en-
forces the strict saddle property, and we provide justification
for only regularizing locally, i.e., when the norm of the gra-
dient falls below a certain threshold. We analyze bifurcations
that may result from this form of regularization, and then we
provide a selection rule for regularizers that depends only
on the gradient of an objective function. This rule is shown
to guarantee that gradient descent will escape the neighbor-
hoods around a broad class of non-strict saddle points, and
this behavior is demonstrated on numerical examples of non-
strict saddle points common in the optimization literature.

1 Introduction
Interest in non-convex optimization has grown in recent
years, driven by applications such as training deep neural
networks. Often, one seeks convergence to a local mini-
mizer in such problems because finding global minima is
known to be NP complete (Murty and Kabadi 1987). To en-
sure convergence to minimizers, one research direction in
non-convex optimization has been the identification of prob-
lem properties for which particular algorithms escape sad-
dle points. One such property, which has become common
in the non-convex optimization literature since its introduc-
tion in (Ge et al. 2015), is the strict saddle property (SSP),
which states that the Hessian of every saddle point of a func-
tion has at least one negative eigenvalue. It was later shown
that gradient descent and other first order methods almost
always escape saddle points of objective functions that sat-
isfy the SSP (and other mild assumptions) (Lee et al. 2016;
Panageas and Piliouras 2017; Lee et al. 2019).

Because of this behavior, a growing body of non-convex
optimization research has either focused on problems for

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which the SSP is known to hold, or simply assumed the SSP
holds for a generic problem and derived convergence guar-
antees that result from it. However, verification of the SSP
for a general, unstructured problem is difficult in practice,
and there exist problems in machine learning for which the
SSP does not hold, such as training a neural network with at
least two hidden layers (Kawaguchi 2016).

Motivated by these challenges, we develop a linear regu-
larization framework that will allow first-order methods to
escape saddle points that are not strict. Specifically, our ap-
proach is to enforce the SSP by regularizing problems when
in the vicinity of a non-strict saddle point, rather than sim-
ply assuming that the SSP holds. We show that this can
be done with a linear regularizer, motivated by John Mil-
nor’s proof that almost all choices of such a term will render
a function Morse (and therefore enforce the SSP) (Milnor
1965). We are also motivated by the success of regulariza-
tion techniques in convex optimization, where quadratic per-
turbations are used to provide strong convexity to objective
functions (Facchinei and Pang 2007), and we believe that the
linear regularizers we present are their natural counterparts
in the non-convex setting.

1.1 Related Work
A large body of work exists on the convergence properties
of gradient descent and other first-order methods on prob-
lems with the SSP, including algorithms that consider de-
terministic gradient descent (Dixit, Gürbüzbalaban, and Ba-
jwa 2023; Schaeffer and McCalla 2020), and those that in-
corporate noise into their updates (Xu, Jin, and Yang 2018;
Daneshmand et al. 2018; Yang, Hu, and Li 2017; Ge et al.
2015). These methods are shown to escape strict saddles, but
have not been shown to escape non-strict saddles, and there-
fore rely on the SSP.

While these methods are shown to escape strict saddles in
the limit, they can get stuck near strict saddles for exponen-
tial time, which can cause numerical slowdowns (Du et al.
2017). Attempts have been made to accelerate the escape
near strict saddle points (Jin et al. 2017; Agarwal et al. 2017;
Jin, Netrapalli, and Jordan 2018). However, first-order meth-
ods may actually converge to non-strict saddles, and such
accelerated methods do not escape.

Current research into escaping non-strict saddle points
uses higher-order information and/or algorithms. Perhaps
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the best known is (Anandkumar and Ge 2016), which guar-
antees convergence to a third-order optimal critical point.
That paper replaces the SSP, which is a property of the Hes-
sian, with a condition on the third-order derivative of the
objective function. Work in (Zhu, Han, and Jiang 2022) ex-
pands on these results and includes simulations for a func-
tion that does not satisfy the SSP. Later work in (Chen and
Toint 2021) provides a method to converge to pth-order crit-
ical points using pth-order information, while also demon-
strating that doing so is NP-hard for p ≥ 4. Recent work
in (Truong 2021) examines the behavior of a second-order
method on common examples of non-strict saddle points,
and (Nguyen and Hein 2017) develop a weaker form of the
SSP that guarantees escape from saddle points when train-
ing a particular neural network. In contrast, we require only
first-order information and provably escape from non-strict
saddles using linear regularizers under weak assumptions.

Previous research has shown that regularizing with
quadratic or sums of squares (SOS) terms will make a func-
tion Morse, which is sufficient to ensure the SSP is satis-
fied (Lerario 2011; Nicolaescu 2011). However, no conver-
gence or bifurcation analysis was performed on the regular-
ized function, and indeed these results originate outside the
non-convex optimization literature. We show in Example 2.6
that quadratic and SOS regularizers can actually convert a
non-strict saddle point into a local minimum, and thus we
do not use them.

1.2 Contributions
The contributions of this paper are the following:
• We identify certain properties that any linear regulariza-

tion scheme must have, namely that regularizers cannot
be chosen randomly, must be chosen locally, and must
have their norms obey an upper bound dependent on f .

• We present a regularization scheme that has the above
properties, and analyze the bifurcations it induces.

• We prove that, under a condition much weaker than the
SSP, the presented regularization scheme escapes all sad-
dle points (strict and non-strict) of f .

• We bound the regularization error seen at minima that is
induced by linear regularizers.

The remainder of the paper is organized as follows. Sec-
tion 2 establishes the theoretical motivation behind a linear
regularization scheme. In Section 3, we analyze the bifurca-
tions that may occur when regularizing, identify the prop-
erties a linear regularization scheme for SSP enforcement
must have, and present a particular choice of regularizer that
has these properties. In Section 4, we prove this regulariza-
tion method escapes saddle points that satisfy a condition
weaker than the SSP and demonstrate this escape on exam-
ples of non-strict saddle points taken from the literature. In
Section 5, we analyze a hyperparameter that regulates the
size of regularization and its effect on speed and accuracy,
and in Section 6 we provide concluding remarks.

2 Linear Regularization
Throughout this paper, f : Rn → R denotes a function in
C2, the space of twice-continuously differentiable functions,

with L-Lipschitz gradient ∇f . The symbol g : Rn → Rn

denotes a first-order map, with iterates generated by the se-
quence xk = g(xk−1) = gk(x0). For clarity, in this pa-
per we take g to represent a gradient descent mapping, i.e.,
g(x) = x−γ∇f(x), with γ ∈ (0, 1/L), though we note the
results of this paper hold for any choice of g that avoids strict
saddle points, see (Lee et al. 2019). The following definition
regards the critical points of f :

Definition 2.1. 1. A point x∗ is a critical point of f if
∇f(x∗) = 0 or, equivalently, g(x∗) = x∗.

2. A critical point x∗ is isolated if there exists a neighbor-
hood U around x∗ with x∗ as the only critical point in U .
Otherwise it is called non-isolated.

3. A critical point of f is a local minimum if there exists a
neighborhood U around x∗ such that f(x∗) ≤ f(x) for
all x ∈ U , and a local maximum if f(x∗) ≥ f(x).

4. A critical point of f is a saddle point if for all neigh-
borhoods U around x∗, there exist y, z ∈ U such that
f(y) ≤ f(x∗) ≤ f(z).

5. A critical point of f is a strict saddle if
λmin(∇2f(x∗)) < 0.

6. The local stable set W s
g (x

∗) defined on some neighbor-
hood U of a critical point x∗ is the set of initial con-
ditions of the first-order map g in U that converge to
x∗, i.e., W s

g (x
∗) = {x ∈ U : limk→∞ gk(x) = x∗}.

The local unstable set is defined as Wu
g (x

∗) = {x ∈
U : limk→∞ gk(x) ̸= x∗}. If U = Rn, then W s

g (x
∗)

(Wu
g (x

∗)) is the global stable (unstable) set.

Here λmin(·) denotes the minimum eigenvalue of a
square matrix. Lemma 2.2 states that, for almost all initial
conditions, gk(x) does not converge to a strict saddle:

Lemma 2.2. (Panageas and Piliouras 2017) Let f : Rn →
R be a C2 function with L-Lipschitz gradient. The set of
initial conditions x ∈ Rn such that gk(x) converges to a
strict saddle point of f is of (Lebesgue) measure zero.

Proof: See Theorem 2 in (Panageas and Piliouras 2017).
□

The underlying principle is that, for a saddle x∗, a single
negative eigenvalue of ∇2f(x∗) renders W s

g (x
∗) measure

zero. This is the motivating principle behind the study of the
strict saddle property:

Definition 2.3. A function f satisfies the strict saddle prop-
erty (SSP) if every saddle point of f is strict.

From Lemma 2.2, gradient descent will almost always
avoid every strict saddle point of an objective function f .
Therefore, if f satisfies the SSP, then gradient descent will
almost always avoid all saddle points of f . Provided gradient
descent converges (i.e., limk→∞ gk(x) exists), it must then
almost always converge to a local minimum. We note that
gk(x) is guaranteed to converge in a variety of settings, in-
cluding when f is analytic or coercive, and we will proceed
with the assumption that f satisfies one of these properties.

However, verifying that a general, unstructured function
satisfies the SSP is difficult in practice, and functions of in-
terest exist that are known not to satisfy the SSP, such as the
loss function of a neural network with at least two hidden
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layers (Kawaguchi 2016). These functions may have non-
strict saddles:
Definition 2.4. A saddle point x∗ of f is a non-strict saddle
if λmin(∇2f(x∗)) = 0.

We make a brief point on terminology here. The definition
of a degenerate saddle varies between the dynamical systems
and computer science literature, so to avoid confusion in
this paper a degenerate saddle is any saddle point x∗ whose
Hessian has at least one zero eigenvalue (i.e., ∇2f(x∗) is
singular), while a non-strict saddle is a saddle with a Hes-
sian whose minimum eigenvalue is zero (i.e., ∇2f(x∗) is
singular and positive semi-definite). Using this terminology,
any non-strict saddle is necessarily degenerate. We note that
the SSP is not a non-degeneracy condition, as the Hessians
of strict saddles may be degenerate, as long as they have
at least one negative eigenvalue. Example 2.5 illustrates the
key problem with non-strict saddle points, which is that their
stable sets are not necessarily measure zero.
Example 2.5. Consider the function f(x, y) = 1

3x
3 + 1

2y
2,

with negative gradient field plotted in Figure 1. Here, (0, 0)
is a non-strict saddle of f , with∇2f(0, 0) having 1 and 0 as
eigenvalues. We see that W s

g (0, 0) = {(x, y) : x > 0}, de-
picted by the red region. That is, the set of initial conditions
for which gk(x, y) converges to (0, 0) is not measure zero
and is in fact a closed halfspace of R2.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

Figure 1: The negative gradient field of f(x, y) = 1
3x

3 +
1
2y

2. The blue dot at (0, 0) denotes the non-strict sad-
dle point, Wu

g (0, 0) is denoted by the green region, and
W s

g (0, 0) by red.

Instead of modifying gradient descent to somehow ac-
commodate non-strict saddles, we instead wish to modify
the problem itself in such a way that the modified func-
tion satisfies the SSP, either by making non-strict saddles
strict or eliminating them altogether. That is, we wish to
find a regularization scheme that enforces satisfaction of
the SSP and thus ensures the escape of non-strict saddles.
While quadratic and sums of squares regularizers are used
in convex optimization, they can be harmful in non-convex
problems because they can change the positive semi-definite
Hessian of a non-strict saddle into a positive definite one,
turning such a saddle into a local minimum:
Example 2.6. Consider again the function f(x, y) = 1

3x
3+

1
2y

2, which has a non-strict saddle at (0, 0) with eigen-
values 1 and 0. If a sum of squares regularization term

1
2αxx

2 + 1
2αyy

2 is added to f , then (0, 0) remains a crit-
ical point of the regularized function, but the eigenvalues of
the regularized Hessian become αx and 1 + αy , rendering
(0, 0) a local minimum for all αx, αy > 0.

Instead, the following lemma provides motivation for us-
ing a linear regularization term.
Lemma 2.7. (Milnor 1965) If f : Rn → R is a C2 function,
then for almost all l ∈ Rn, the critical points of the function
fl(x) = f(x) + lTx have only non-singular Hessians.

Proof: See Lemma A in (Milnor 1965). □
This lemma states that for almost any choice of l (any ex-

cept a set of Lebesgue measure zero) the regularized func-
tion fl will have only non-degenerate critical points. The fact
that non-degenerate saddles are strict immediately gives us
the following corollary:
Corollary 2.8. If f : Rn → R is C2, then for almost all
l ∈ Rn, the function fl(x) = f(x) + lTx satisfies the SSP.

This regularization method does not affect the Hessian
(i.e., ∇2f(x) = ∇2fl(x)), avoiding the problems caused
by sums of squares and quadratic regularizers. Corollary 2.8
now motivates the following question, which will be the fo-
cus of the remainder of this paper:
Question 2.9. Can a linear regularization scheme be used
to enforce the SSP on functions that do not satisfy it? If so,
what properties must such a scheme have?

Though Corollary 2.8 states that almost every choice of l
will enforce the SSP, it is important to understand how the
SSP is enforced. As we will see in the following section,
this regularization method enforces satisfaction of the SSP
by creating bifurcations of degenerate critical points of f ,
and we must carefully analyze these bifurcations to ensure
that we attain the desired convergence properties.

3 Bifurcations
Regularization of a function perturbs non-degenerate critical
points, which can be limited by a judicious choice of regu-
larizer. However, the same is not true of degenerate critical
points, as can be seen in the following example.
Example 3.1. Consider again the function f(x, y) = 1

3x
3+

1
2y

2 and consider two regularizations that add terms of the
form lxx + lyy. The first sets lx = 1 and ly = 0 and the
second sets lx = −1 and ly = 0, and we plot the trajectory
behavior of gradient descent for each in Figure 2.

Observe that when lx = −1, the original non-strict saddle
splits into a strict saddle at (−1, 0) and a local minimum
at (1, 0). Both of these points are non-degenerate, satisfying
the SSP as ensured by Corollary 2.8. However, we can see
that W s

g (now defined for both of the resulting critical points,
shown in red) has actually expanded. We have observed a
local bifurcation of the non-strict saddle point at x∗.
Definition 3.2. Let h : Rn × Rk → R be a C2 function.
Let (x∗, µ∗) be a point for which ∇xh(x

∗, µ∗) = 0 and
∇2

xh(x
∗, µ∗) is singular. A local bifurcation of this gradient

system occurs at x∗ when a smooth change in the parameter
µ away from µ∗ induces a sudden change in the stability
properties of the negative gradient vector field at x∗.
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Figure 2: With lx = −1 we create a local minimum and a
strict saddle, and the escape region shifts (left). With lx = 1,
the critical point is destroyed and gradient descent escapes
the saddle from every initial condition (right).

A “sudden change in stability properties” can mean a
number of things, see (Guckenheimer and Holmes 2013),
but in the situation presented in this paper (a codimension-
one linear perturbation of a gradient system) it refers almost
exclusively to saddle-node bifurcations. Example 3.1, for
which h(x, y, µ) = 1

3x
3+ 1

2y
2+µx, illustrates a saddle-node

bifurcation, where a degenerate critical point at x∗ splits into
two or more critical points, or the critical point at x∗ is elim-
inated. This bifurcation occurs when µ crosses from zero to
being positive or negative, and it results in W s

g (x
∗) chang-

ing size or dimension. Note that the saddle-node bifurcation
in Example 3.1 has created a false minimum at (1, 0):

Definition 3.3. A false minimum is a local minimum of fl
that resulted from a bifurcation of a degenerate saddle point
of f that was caused by the linear regularizer lTx.

In Example 3.1, one can see that for any lx < 0, a saddle-
node bifurcation occurs. We also observe that when lx = 1
(and in fact whenever lx > 0) the critical point at (0, 0) is
destroyed and all trajectories of gradient descent escape the
neighborhood of (0, 0) (i.e., Wu

g = R2, shown in green).
This gives us the following remark regarding Question 2.9:

Remark 3.4. Any linear regularization scheme that chooses
l randomly has a positive probability of creating a false min-
imum near a non-strict saddle point of f .

Intuitively then, l should have some dependence on f , and
∇f specifically is the only information available to a first-
order algorithm. We note that because l cannot be chosen
randomly, we cannot rely solely on Corollary 2.8 to guaran-
tee that a particular choice of l enforces the SSP.

We present the following example to illustrate another
property a linear regularization scheme must have.

Example 3.5. The function f(x) = (x − 1)3(x + 1)3 has
non-strict saddles at x = −1 and x = 1. For any arbitrarily
small choice of l > 0, the non-strict saddle at x = −1 un-
dergoes a saddle-node bifurcation and the non-strict saddle
at x = 1 is destroyed. For any arbitrarily small choice of
l < 0, the non-strict saddle at x = 1 experiences a saddle-
node bifurcation and the non-strict saddle at x = −1 is de-
stroyed.

Figure 3: Plots of the function (x−1)3(x+1)3+lx for l = 0,
l > 0, and l < 0. Regardless of the sign of l, one of the
original degenerate critical points is bifurcated into a false
minimum and a local maximum, and the other is eliminated
for every regularizer l ̸= 0.

A natural consequence of Example 3.5 is the following
remark regarding Question 2.9:

Remark 3.6. There exist C2 functions for which any con-
stant, global choice of l ̸= 0 creates a false minimum.

Therefore, a linear regularization scheme should choose l
“locally”, changing l when in the neighborhood of different
critical points. In order to do so practically we take inspi-
ration from (Jin et al. 2017) and define a “small gradient re-
gion”, outside of which l = 0 and inside of which l is chosen
according to some selection rule that we devise below:

Definition 3.7. Fix θ > 0 and let Lθ = {x ∈ Rn :
∥∇f(x)∥2 ≤ θ}. That is, the small-gradient region Lθ is
the subset of Rn for which the norm of the gradient of f
is less than or equal to θ. For a particular x ∈ Lθ, let the
small-gradient neighborhood Θ(x) be the largest connected
subset of Lθ that contains x.

As long as θ is chosen small enough, a point in Lθ must
be “near” a critical point of f . Local linear regularization
means that if an algorithm enters Lθ at some point x0, then
the algorithm will choose a regularizer l and use it until it
exits Θ(x0) (after which l is reset to zero). Recall from Ex-
ample 3.5 that a choice of l that destroys one degenerate crit-
ical point may induce a saddle-node bifurcation at another.
Therefore, to avoid a saddle node bifurcation within Θ(x0),
we must ensure Θ(x0) contains at most one critical point or
connected manifold of critical points. We formalize this idea
with the following definition and assumption:

Definition 3.8. Let X∗ = {x∗ ∈ Rn : ∇f(x∗) = 0}. That
is, X∗ is the set of all isolated or non-isolated critical points
of f . For a particular x∗ ∈ X∗, let Φ(x∗) be the largest
connected subset of X∗ such that x∗ ∈ Φ(x∗).

If x∗ is an isolated critical point, then Φ(x∗) = {x∗}.
If x∗ is non-isolated, then Φ(x∗) is the connected critical
manifold that contains x∗.

Assumption 3.9. For f , there exists θ̄ > 0 such that if
θ < θ̄, then for every x∗ ∈ X∗, Θ(x∗) ∩X∗ = Φ(x∗).

Note that, trivially, X∗ ⊂ Lθ for any θ > 0. Assump-
tion 3.9 simply states that θ can be chosen small enough that
any critical point x∗ is isolated in Θ(x∗) from all other crit-
ical points it is not connected to.

Recall again from Example 3.5 that a choice of l that does
not induce a saddle-node bifurcation at x∗ may do so for
other degenerate critical points of f . We want to ensure that
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false minima, or indeed any critical points that result from a
bifurcation or perturbation of a critical point other than x∗,
do not end up in the set Θ(x∗). This is guaranteed by the
following theorem:
Theorem 3.10. Let x∗ be a critical point of f , and let
∥l∥2 < θ < θ̄. Let x∗

l be a critical point of the regularized
function fl that resulted as a bifurcation or a perturbation
of x∗. Then x∗

l ∈ Θ(x∗).
Proof: See Appendix A.1. □
Theorem 3.10 ensures that, even if a particular choice of

l induces a bifurcation at another degenerate critical point
y∗ ∈ X∗, the critical points that result from that bifurcation
are contained within Θ(y∗), which is disjoint from Θ(x∗),
provided l is sufficiently small. In fact, Theorem 3.10 im-
plies that the topology of Θ(x∗) after regularization depends
only on the topology of Θ(x∗) prior to regularization. Given
this fact, we now wish to choose l such that, if the critical
point x∗ is a degenerate saddle, regularization does not cre-
ate any false minima in Θ(x∗). We know from Remark 3.4
that the choice of l for Θ(x∗) must depend on the values of
∇f on Θ(x∗), and from Theorem 3.10 that we must have
∥l∥2 ≤ θ. Upon entering Θ(x∗) at a point x0, the only value
of ∇f over Θ(x∗) available is ∇f(x0). Therefore it is nat-
ural that the choice of l for Θ(x∗) should be some function
of ∇f(x0). Two immediate candidates are l = ∇f(x0), or
l = −∇f(x0). To understand the implications of either of
these potential choices, we look at the following theorem:
Theorem 3.11. (Guckenheimer and Holmes 2013) Consider
the function f(x)+µlTx with µ ∈ R and l, x ∈ Rn. Assume
that for µ = 0 there exists a critical point x∗ such that:
1. ∇2f(x∗) has n − 1 positive eigenvalues, and a simple

eigenvalue 0 with eigenvector v.
2. vT l ̸= 0.
3. vT∇3f(x∗)(v, v) ̸= 0.
Then there is a smooth critical curve in Rn × R passing
through (x∗, 0) tangent to the hyperplane Rn ×{0} with no
critical point on one side of the hyperplane and two critical
points on the other side for each µ. The two critical points
are hyperbolic and have stable manifolds of dimensions n−
1 and n respectively.

Proof: See Theorem 3.4.1 in (Guckenheimer and Holmes
2013). □

Theorem 3.11 considers a simple case: a non-strict sad-
dle point x∗ of f whose Hessian has a single zero eigen-
value and satisfies a mild third-order condition. It states that
if the choice l = u ∈ Rn induces a saddle-node bifurca-
tion at x∗, then the choice l = −u will instead eliminate the
critical point x∗. We now combine Theorem 3.11 with a con-
cept that appears trivial at first: for some point x0, the choice
l = −∇f(x0) will create a critical point of fl at x0. From
Theorem 3.10, this critical point at x0 can only be the result
of a bifurcation that occurred in Θ(x∗), which contains only
x∗ as a critical point. From Theorem 3.11, if the choice of
l = ∇f(x0) induces a bifurcation of x∗, then the choice of
l = −∇f(x0) instead destroys the non-strict critical point.

Theorem 3.11 and the above discussion imply that the
choice l = ∇f(x0) may be a good candidate for our regular-
ization selection rule. Under this rule, when gk(x) enters the

small-gradient region Lθ at some point x0, l is set to∇f(x0)
and the update law is switched to gl(x) = x−γ(∇f(x)+ l)
until gkl (x) leaves Lθ. Note that because linear regulariza-
tion does not affect the Hessian, and by extension the Lip-
schitz constant L, γ remains unchanged between g and gl.
While this method may bear some superficial similarity to
“momentum methods” such as in (Jin, Netrapalli, and Jor-
dan 2018), this method differs in that (i) l is not time-varying
while in Θ(x∗), and (ii) momentum methods rely on the SSP.

We note that Theorem 3.11 provides intuition behind this
choice of regularization, but does not provide general theo-
retical guarantees. To do so we next determine the general
cases for which locally linearly regularized gradient descent
avoids non-strict saddles.

4 Exit Condition of Θ(x∗)
By construction, a point x∗

l ∈ Θ(x∗) is a critical point of
fl if and only if ∇f(x∗

l ) = −l. Because a linear regularizer
does not affect the Hessian, ∇2fl(x

∗
l ) = ∇2f(x∗

l ). That is,
if x∗

l is a critical point of fl, its convergence behavior is de-
termined by the Hessian of f at x∗

l . In order to analyze this,
let us stratify Θ(x∗) based on the properties of its Hessian:
Definition 4.1. For a C2 function f : Rn → R:
• Λ+ = {x ∈ Rn : λmin∇2f(x) > 0}
• Λ0 = {x ∈ Rn : λmin∇2f(x) = 0}
• Λ− = {x ∈ Rn : λmin∇2f(x) < 0}.

Note that Rn = Λ+ ∪ Λ0 ∪ Λ−. If x∗
l ∈ Λ−, then it is a

strict saddle, and gk(x) will not converge to x∗
l , as shown by

the following lemma:
Lemma 4.2. Let x0 ∈ Θ(x∗) for some x∗ ∈ X∗ and let
l = ∇f(x0). Let Y ∗

l = Θ(x∗) ∩ Λ− ∩X∗
l , where X∗

l is the
critical set of fl. Let ϵ be drawn uniformly from the n-Ball
with radius θ−∥l∥2

L . Then

Pr

(
lim
k→∞

gkl (x0 + ϵ) ∈ Y ∗
l

)
= 0.

Proof: All elements of Y ∗
l are strict saddle points of the

function fl. The map gl(x) is equivalent to gradient descent
on fl. Using this information, Corollary 9 in (Lee et al. 2016)
provides the result. □

Note that the one-time perturbation of x0 is done to satisfy
a genericity condition necessary to use Corollary 9 in (Lee
et al. 2016), and this perturbation is only done when entering
Lθ, see (Jin et al. 2017). The restriction ∥ϵ∥2 ≤ θ−∥l∥2

L en-
sures x0 + ϵ ∈ Θ(x∗). Locally linearly regularized gradient
descent with this perturbation is presented in Algorithm 1.

If x∗
l /∈ Λ−, then it must lie in either Λ0 or Λ+. If

x∗
l ∈ Λ0, then fl does not satisfy the SSP. If x∗

l ∈ Λ+ and
x∗ is a saddle point, then x∗

l is a false minimum by Defi-
nition 3.3. Therefore, in order to guarantee Algorithm 1 es-
capes Θ(x∗) when x∗ is a saddle point, we wish to show
that the choice l = ∇f(x0) for x0 ∈ Θ(x∗) always results
in x∗

l ∈ Λ−, if x∗
l exists. We formalize this notion with the

following definition and assumption:
Definition 4.3. Let Ψ(Θ(x∗)) = {x ∈ Θ(x∗) : ∃y ∈
Θ(x∗) such that∇f(y) = −∇f(x) and y /∈ Λ−}.
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Algorithm 1: Locally Linearly Regularized Gradient De-
scent

Input: Stepsize γ > 0, Small gradient parameter θ > 0
for k = 0,1... do

if ∥∇f(xk)∥ > θ then
xk+1 ← xk − γ∇f(xk)

else if ∥∇f(xk)∥ ≤ θ & ∥∇f(xk−1)∥ > θ then
l← ∇f(xk)

xk ← xk + ϵ ϵ uniformly ∼ B0(
θ−∥l∥2

L )
xk+1 ← xk − γ(∇f(xk) + l)

else
xk+1 ← xk − γ(∇f(xk) + l)

end if
end for

Assumption 4.4. For the function f , for any saddle
point x∗, Ψ(Θ(x∗)) = ∅.

If Ψ(Θ(x∗)) is nonempty and x0 ∈ Ψ(Θ(x∗)), then the
choice l = ∇f(x0) creates a false minimum or degenerate
point in Θ(x∗). Assumption 4.4 therefore implies that for
any saddle point x∗ of f and for any point x0 ∈ Θ(x∗),
the choice l = ∇f(x0) will not create a false minimum or
degenerate point in Θ(x∗). This leads to the main theorem of
this work, which addresses the ability of linearly regularized
gradient descent to exit the small-gradient neighborhood of
non-strict saddle points in finite time:

Theorem 4.5. Let x∗ ∈ X∗ be a saddle point of f , and
let Assumptions 3.9 and 4.4 hold. Let l = ∇f(x0) for some
x0 ∈ Θ(x∗) with θ < θ̄. Then there almost always exists a
finite integer kp such that gkp

l (x0 + ϵ) /∈ Θ(x∗).

Proof: See Appendix A.2. □
Theorem 4.5 states that under Assumption 4.4, Algo-

rithm 1 exits Θ(x∗) for any saddle point x∗ in finite time.
Note Assumption 4.4 only applies to saddle points, as we do
not wish to escape Θ(x∗) if x∗ is a local minimum of f .

Assumption 4.4 gives a sufficient condition for which this
regularization method avoids saddles. It is weaker than the
SSP, allowing for a class of non-strict saddles. Identifying
functions that satisfy Assumption 4.4 is therefore no harder
than identifying those with the SSP, and in the following
corollaries we identify two properties non-strict saddles may
have that are sufficient to satisfy Assumption 4.4.

Corollary 4.6. Let ∇f(Θ(x∗)) denote the set of all gra-
dients that exist on Θ(x∗). If ∇f(Θ(x∗)) lies on an open
half-space of Rn, then Ψ(Θ(x∗)) = ∅.

Trivially, if x0 ∈ Θ(x∗), then ∇f(x0) ∈ ∇f(Θ(x∗)). If
f satisfies the condition in Corollary 4.6, then −∇f(x0) /∈
∇f(Θ(x∗)). That is, for l = ∇f(x0) no point x∗

l ∈ Θ(x∗)
exists such that ∇f(x∗

l ) = −l, which implies fl has no
critical points in Θ(x∗). Clearly, if fl has no critical points
in Θ(x∗), then Algorithm 1 exits Θ(x∗) by Theorem 4.5.
Heuristically, if a function can be approximated by an odd
polynomial along at least one direction in Θ(x∗), then by
Corollary 4.6 typically Ψ(Θ(x∗)) = ∅, as in Example 4.7.

Example 4.7. Consider the function f(x, y) = 1
3x

3 + xy2,
which has a non-strict saddle at (0, 0) that satisfies the condi-
tion in Corollary 4.6. This is because∇xf(x, y) = x2 + y2,
which is non-negative everywhere. W s

g (0, 0) is represented
by the red region in Figure 4, and for every x0 ∈ W s(0, 0),
we see that the regularzer l = ∇f(x0) results in no critical
points of fl in Θ(0, 0), and Algorithm 1 exits Θ(0, 0).
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Figure 4: The point x0 = (1.5, 0.5) lies in W s
g (0, 0) for

the function f(x, y) = 1
3x

3 + xy2, so gk(x0) converges to
(0, 0) (left). With l = ∇f(x0) the critical point at (0, 0)
is eliminated, and gkl (x0) escapes Θ(x0) for θ = 3 in 7
iterations, and enters Wu

g (0, 0) (right).

Corollary 4.8. If Λ− ∩Θ(p) = Θ(p) then Ψ(Θ(p)) = ∅.
From Theorem 4.5, if there are only strict saddles in

Θ(x∗) after regularization, then Algorithm 1 exits Θ(x∗).
Under Corollary 4.8, critical points of fl must be strict
saddles. Generally, this condition is satisfied by objectives
with non-isolated non-strict saddle points, such as in Exam-
ple 4.9.
Example 4.9. Consider the function f(x, y) = 1

3xy
3, which

has a non-strict critical subspace on the x-axis. For this
function −∇f(x, y) = ∇f(−x,−y), meaning choosing
l = ∇f(x0, y0) for any (x0, y0) will create a critical point
of fl at (−x0,−y0). However, λmin(∇2f(x, y)) < 0 ev-
erywhere with y ̸= 0, meaning (−x0,−y0) will be a strict
saddle, and Algorithm 1 exits Θ(0, 0), shown in Figure 5.

5 The Role of the Hyperparameter θ
The behavior of a locally linearly regularized algorithm is
highly dependent on the hyperparameter θ. Due to space
constraints, determining the upper bound θ̄ from Assump-
tion 3.9 for a particular function f is deferred to a future pub-
lication. However, we do wish to illustrate the performance
tradeoff between speed and accuracy governed by the choice
of θ. Intuitively, small values of θ should lead to small regu-
larization error. This is formalized in the following theorem.
Theorem 5.1. Assume θ is chosen small enough such that,
for every critical point x∗ of f that satisfies x∗ ∈ Λ+, we
also have Θ(x∗) ⊂ Λ+. If ∥l∥2 < θ, then fl will have ex-
actly one critical point x∗

l in Θ(x∗), and x∗
l will be a non-

degenerate minimum. Additionally, if f is α-strongly convex
on Θ(x∗), then the cost error between x∗

l and x∗ induced by
regularizing is bounded by f(x∗

l )− f(x∗) ≤ θ2

2α .
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Figure 5: The function f(x, y) = 1

3xy
3 has a critical sub-

set on the line y = 0. The point x0 = (1.5, 1) lies in W s
g

(where y = 0), so gk(x0) converges to y = 0 (left). With
l = ∇f(x0), the critical subset at y = 0 is eliminated and a
strict saddle point of fl is created at (−1.5,−1). Then Algo-
rithm 1 exits Θ(x0) for θ = 4.7 in 15 iterations, and enters
Wu

g (where y = 0) (right).

Proof: See Appendix A.3. □
The assumption that f is α-strongly convex in the neigh-

borhood of local minima is standard in the SSP literature,
see Assumption A3.a in (Jin et al. 2017). To examine the
tradeoff between this error and runtime, we examine the In-
verted Wine Bottle, the two-dimensional version of the func-
tion in Example 3.5. This function has a global minimum at
(0, 0) surrounded by a ring of non-strict saddles on the unit
circle. Unregularized gradient descent initialized outside the
unit circle will become stuck and fail to reach the minimum,
but locally linearly regularized gradient descent will bypass
the ring and reach the origin within some regularization er-
ror. We initialize Algorithm 1 at (1, 1) with γ = 1

54 and run
using values of θ varying from 0.01 to 1.7 (θ̄ ≈ 1.717 for
this function). Each run of the algorithm terminates when
∥∇f(x) + l∥ ≤ 10−7. The runtime and final cost error due
to regularization are plotted in Figure 6.

Figure 6: Left: Unregularized gradient descent (blue line)
converges to the non-strict saddle ring of the inverted wine
bottle. Algorithm 1 with θ = 0.7 (orange dashed line) con-
verges with minor error. Right: Runtime (blue) and final cost
error (orange) as θ is varied. Unregularized gradient descent
had a final cost error of 1 and a runtime of 10, 979.

Figure 6 shows that final cost error increases with θ, as
expected from Theorem 5.1, but the relationship between
θ and the runtime is more complex. Initially, as θ is var-

ied away from 0, the runtime decreases. This is intuitive, as
smaller choices of θ limit the use of regularizers to smaller
regions of the space of iterates. However, as θ approaches θ̄,
the runtime increases. This is due to the large perturbation
of the minimum resulting from the large value of l. That is,
for small values of θ the algorithm takes a long time to es-
cape saddle points, and for large values of θ it takes a long
time to converge to the minimum. A full analysis of how to
tune θ and its effects on the performance of a locally linearly
regularized algorithm is the subject of future work.

6 Concluding Remarks
We have answered Question 2.9 by demonstrating that linear
regularizers can be used to enforce the SSP for non-convex
objective functions, and that any such regularization scheme
must both do so locally and must choose l based on first-
order information. We have presented a local linear regular-
ization scheme with these properties that enforces satisfac-
tion of the SSP. This scheme is proven to escape a broad
class of isolated and non-isolated non-strict saddle points.
Future work will address tuning the hyperparameter θ.

A Appendix
A.1 Proof of Theorem 3.10
Consider the function h(x, µ) = ∇f(x)+µl with ∥l∥2 < θ.
h maps Rn × R → Rn, and (x∗, 0) represents a critical
point of the non-regularized function f . Consider a point
(x∗

l , 1) ∈ Rn × [0, 1] where ∇f(x∗
l ) + l = 0, which

corresponds to a critical point of the regularized function
f(x) + lTx. If the critical point of fl at x∗

l resulted as a bi-
furcation originating at x∗, then the Implicit Function The-
orem (Theorem 2.3 in (Matsumoto 2002)) states that there
exists an open neighborhood U ⊂ R containing µ = 1 such
that there exists a smooth function ζ : U → Rn such that
ζ(1) = x∗

l and ∇f(ζ(µ)) + µl = 0 for all µ ∈ U . That
is, starting at µ = 1 and moving in the negative direction,
(ζ(µ), µ) is a smooth curve in Rn × [0, 1] that describes the
location of a critical point for different values of µ. Because
∥∇f(ζ(µ))∥2 = µ∥l∥2 < θ for all µ ∈ [0, 1], this curve
must lie in the connected subset of Lθ × [0, 1] that contains
(x∗, 0), which is Θ(x∗)× [0, 1]. Therefore x∗

l ∈ Θ(x∗). □

A.2 Proof of Theorem 4.5
The map gl(x) is equivalent to gradient descent on the func-
tion fl(x) = f(x)+lTx. Under Assumption 4.4, any critical
points in Θ(x∗) must lie in Λ−, which implies they are strict
saddles. Lemma 4.2 states limk→∞ gkl (x0) is almost never a
strict saddle. Therefore limk→∞ gkl (x0) will almost always
lie outside Θ(x∗), implying it exits Θ(x∗) in finite time. □

A.3 Proof of Theorem 5.1
From Theorem 3.10, a perturbation of x∗ remains in Θ(x∗).
Because Λ0 ∩Θ(x∗) = ∅, no point x ∈ Θ(x∗) has ∇2f(x)
singular, therefore there exists exactly one point x∗

l ∈ Θ(x∗)
for which ∇f(x∗

l ) + l = 0, and x∗
l ∈ Λ+. α-strong con-

vexity on Θ(x∗) implies that, for every point x ∈ Θ(x∗),
1
2∥∇f(x)∥2 ≥ α(f(x) − f(x∗)) holds. Since x∗

l ∈ Θ(x∗),
then ∥∇f(x∗

l )∥2 ≤ θ. The result follows by substitution. □
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