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Abstract

Multi-label classification (MLC), which assigns multiple la-
bels to each instance, is crucial to domains from computer vi-
sion to text mining. Conventional methods for MLC require
huge amounts of labeled data to capture complex dependen-
cies between labels. However, such labeled datasets are ex-
pensive, or even impossible, to acquire. Worse yet, these pre-
trained MLC models can only be used for the particular label
set covered in the training data. Despite this severe limitation,
few methods exist for expanding the set of labels predicted by
pre-trained models. Instead, we acquire vast amounts of new
labeled data and retrain a new model from scratch. Here, we
propose combining the knowledge from multiple pre-trained
models (teachers) to train a new student model that covers
the union of the labels predicted by this set of teachers. This
student supports a broader label set than any one of its teach-
ers without using labeled data. We call this new problem
knowledge amalgamation for multi-label classification. Our
new method, Adaptive KNowledge Transfer (ANT), trains a
student by learning from each teacher’s partial knowledge of
label dependencies to infer the global dependencies between
all labels across the teachers. We show that ANT succeeds in
unifying label dependencies among teachers, outperforming
five state-of-the-art methods on eight real-world datasets.

Introduction
Multi-label classification (MLC) is crucial for real-world ap-
plications where instances are associated with multiple la-
bels simultaneously. Examples of these applications include
computer vision (Chen et al. 2019), text mining (Yang et al.
2018), and bioinformatics (Vens et al. 2008). The MLC task
requires sophisticated solutions, as any approach must over-
come the hurdle caused by many possible label subsets—
which are exponential in the number of labels—that could
be applied to any instance (Dembszynski et al. 2010).

State-of-the-Art. Modern multi-label classifiers perform
remarkably well on this challenging task by exploiting de-
pendencies between labels (Wang et al. 2016; Nam et al.
2017; Chen et al. 2018). To achieve this, recent methods
build on Classifier Chains (Dembszynski et al. 2010; Read
et al. 2011), which predict labels sequentially, conditioning
the prediction of each label on all previously predicted la-
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Figure 1: Knowledge amalgamation for multi-label classifi-
cation. Given pre-trained multi-label models (teachers) and
unlabeled data, the task is to train a student that accurately
classifies labels in the union of teachers’ specialized labels.

bels. These approaches (Chen et al. 2018; Nam et al. 2019)
use large RNNs to share parameters across label predictions.

However, these works (Zhang and Zhang 2010; Tsai and
Lee 2020) have only been developed for standard supervised
learning, requiring a massive amount of labeled data to suffi-
ciently learn label dependencies. Despite the expensive cost
to gather such labeled data, the usability of the resulting
model is limited to only the specific label set that it was
pre-trained for and cannot adapt for use with broader label
sets. Instead, the model would need to be retrained on a new
labeled dataset, requiring practitioners to re-annotate all in-
stances to consider also new labels or to acquire many more
labeled instances to cover the new possible label sets.

To alleviate these costs, Knowledge Amalgamation (KA)
(Ye et al. 2019) is a learning paradigm that, using only unla-
beled data, combines the knowledge of multiple pre-trained
models (teachers) into one student. The student then handles
a broader task set than that of any of its teachers by covering
the union of their labels. Ideally, KA could be used to com-
bine the knowledge of multi-label classifiers to extend their
knowledge-base without the expense of collecting more la-
beled data. This setting is depicted in Figure 1 where two
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(a) Single-label learning trains a model to classify one label
per instance, usually using labeled training data.

(b) Multi-label learning trains a model to assign multiple labels
per instance, using their dependencies (Read et al. 2011).

Teacher 2

Unlabeled 
Data

Teacher 1

Pre-Trained Single-Label Models

Student

label 1

label 5

label 5label 1 label 2 label 3 label 4 label 5

label 1 label 2 label 3

label 2 label 4 label 5
Teacher 2

Unlabeled 
Data

Teacher 1

Pre-Trained Multi-Label Models

Student
label 4

label 1 
label 2

label 5

label 1 
label 2
label 4
label 5

label 5label 3
label 1 label 2

label 5
label 2

label 4

label 3
label 1 label 2

(c) Single-label KA trains a student by learning from pre-
trained teacher models to assign one label per instance (Luo
et al. 2019; Ye et al. 2019; Thadajarassiri et al. 2021).

(d) Ours: Multi-label KA trains a student by learning from
pre-trained multi-label teacher models to capture label depen-
dencies used for assigning multiple labels per instance.
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Figure 2: Comparison of related problems.

teachers are pre-trained to capture the dependencies among
labels in their different specialized sets—{tree, garage, car}
by Teacher 1 and {car, street, building} by Teacher 2. The
student aims to handle all labels {tree, garage, car, street,
building} by combining knowledge from both teachers.

Unfortunately, to-date no such multi-label KA methods
exist. As shown in Figure 2c, existing KA works (Ye et al.
2019; Thadajarassiri et al. 2021) focus only on the simpler
single-label classification, which disregards the crucial label
dependency knowledge for the multi-label classification.

Problem Definition. We are the first to study the problem
of knowledge amalgamation for multi-label classification
(KA-MLC). As shown in Figure 1, our goal is to train a stu-
dent model given only unlabeled data and a set of pre-trained
multi-label models (teachers). These teachers may have dif-
ferent classifier chains-based architectures, the predominant
methods to learn dependencies between labels (Chen et al.
2019). The student’s aim is to accurately classify the labels
in the union of all teachers’ label sets by unifying the teach-
ers’ respective knowledge of label dependencies.

Challenges. Three main challenges arise for KA-MLC:
● No labeled data. Traditional methods for MLC require

access to a huge amount of training data with ground truth
labels. With only unlabeled data, conventional supervised
methods are not applicable, thus necessitating the develop-
ment of a novel solution not relying on human annotations.
● Teacher disagreement. Individual teachers may learn

different knowledge as they are trained on their own private
data. In some cases, teachers may disagree about a label,
e.g., it may be unclear whether there is a car in Figure 1.
So Teacher 1 may predict positive while Teacher 2 predicts
negative. A good solution must determine how to combine
such contradictory predictions into one prediction.
● Partially overlapping label sets. Each teacher is pre-

trained on a different subset of the labels to be learned by the

student. This leads to incomplete dependency knowledge for
some labels with respect to the student’s task, e.g., garage
and street in Figure 1. Each is observed by only one teacher
and their dependency knowledge has never been learned.
However, an ideal student should still learn effectively the
dependency between these disjoint labels across teachers.

Proposed Method. We propose Adaptive KNowledge
Transfer (ANT), the first method to solve the challenging
KA-MLC problem. Our key idea is to train a student model
from teachers that exchange their label dependency knowl-
edge adaptively in order to model the global dependencies
between all labels in the union of their label sets.

ANT unifies knowledge from teachers adaptively to each
instance, overcoming the contradictory predictions between
the teachers that may apply to some instances with unclear
signals, i.e., labels predicted positive by one teacher and
negative by another. Since multi-label models are known
to be used for rejecting instances with ambiguous signals
(Hendrickx et al. 2021), the teachers commonly provide low
probability to these labels. Regarding this principle, ANT
is trained to trust the teacher that predicts positive as this
teacher shows strong competence in utilizing its other la-
bels to infer this positive prediction. Moreover, ANT facil-
itates the competent teacher (Transferor) to transfer its pre-
diction to the other teachers (Transferees). These transferees
are encouraged to revise their predictions by conditioning on
the prediction of the more knowledgeable teacher. This way,
ANT succeeds in utilizing label dependencies jointly among
teachers to learn the global dependency knowledge for la-
bels existing across teachers.

Contributions. Our contributions include the following:
● We define the open problem of knowledge amalgama-

tion for multi-label classification (KA-MLC). The aim is to
train a student that can handle all labels specialized across
multiple multi-label teachers, using only unlabeled data.
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● We propose Adaptive KNowledge Transfer (ANT), the
first solution to this open problem. ANT trains a student by
unifying predictions extracted from teachers, in part by fa-
cilitating the latter to exchange their knowledge.
●We demonstrate that ANT outperforms five state-of-the-

art KA methods on eight datasets by achieving on average
the best performance on four standard multi-label metrics.

Related Work
Knowledge Amalgamation (KA). KA (Shen et al. 2019a)
builds on the student-teacher learning paradigm of Knowl-
edge Distillation (Hinton, Vinyals, and Dean 2015), where
a student model is trained to mimic one teacher model’s
predictions. KA advances beyond distillation by combining
multiple teachers, each with different specialized tasks, into
a student that is an expert on all the teachers’ tasks.

As shown in Figure 2, existing KA works (Shen et al.
2019a; Luo et al. 2019; Ye et al. 2019; Shen et al. 2019b;
Vongkulbhisal, Vinayavekhin, and Visentini-Scarzanella
2019; Thadajarassiri et al. 2021) study KA for single-label
classification. Most approaches (Shen et al. 2019a; Luo
et al. 2019; Vongkulbhisal, Vinayavekhin, and Visentini-
Scarzanella 2019; Thadajarassiri et al. 2021) train a student
to predict one class per instance from the union of all the
teachers’ classes. They do not consider informative depen-
dencies between labels, which is essential in MLC. More
importantly, these works cannot support the problem of KA-
MLC that needs to identify multiple labels simultaneously.

Some works (Ye et al. 2019; Shen et al. 2019b) study
multi-task classification that allows multiple labels to be as-
signed for each instance. However, these works treat each
label as an independent single-label classification task. They
overlook the label dependencies needed to solve the MLC,
which is the key challenge of KA-MLC in integrating label
dependency knowledge captured differently across teachers.

Moreover, their methods require the student and all teach-
ers to have an identical number of layers in their architec-
tures, which often does not hold in practice. Ye et al. (2019)
trains a student by replacing each layer of each teacher with
the student’s corresponding layer and ensuring the teacher
still makes the same prediction, even with the new layer.
Similarly, Shen et al. (2019b) aligns the corresponding lay-
ers of the student and the teachers into a transfer bridge and
maximizes their similarity.

Multi-Label Classification (MLC). MLC is the classifi-
cation setting where multiple labels can correspond to the
same instance simultaneously. Traditional approaches trans-
form this problem into multiple binary classification tasks,
one for each label. These methods (Tsoumakas and Katakis
2007; Godbole and Sarawagi 2004) fail to model dependen-
cies between labels, a key requirement for successful MLC.

The best-known method for capturing label dependen-
cies, Classifier Chain (CC) (Dembszynski et al. 2010; Dem-
bczynski, Cheng, and Hüllermeier 2010; Read et al. 2011),
has a long track record of successful use for challenging
MLC tasks. CCs predict labels sequentially, conditioning
each label prediction on previously predicted labels. Classic

CCs require a predefined order of labels for their training,
which is rarely available in practice.

Several recent works thus propose CCs that can be trained
without a predefined label order, making them order free
(Nam et al. 2017; Chen et al. 2018; Nam et al. 2019; Tsai
and Lee 2020). These methods typically use Recurrent Neu-
ral Networks (RNNs) to predict labels one by one while
modeling the transition between the predicted labels. This is
achieved by feeding predicted labels back into the network
at each step. Order-free CCs are currently the state-of-the-
art solution to MLC, achieving strong performance in many
impactful applications (Chen et al. 2019; You et al. 2020).

Many other works study MLC in various aspects such as
handling new labels (Wang, Liu, and Tao 2020), detecting
out-of-distribution instances (Wang et al. 2021), or learn-
ing from partially-labeled instances (Xie and Huang 2018).
However, these works require clean labeled data while the
KA-MLC assumes no labeled data are available.

Problem Formulation
In this paper, we study the new problem of knowledge amal-
gamation for multi-label classification (KA-MLC). In this
setting, we are given unlabeled data, denoted asX = {xi}ni=1
where xi ∈ Rd represents an instance with d features, and a
set of m powerful pre-trained classifier chain based models
(teachers), T = {Tt}mt=1. Each teacher specializes in solv-
ing a particular multi-label task for a set of ℓt distinct labels,
denoted by the label set Yt. Thus, the predicted outputs for
each instance xi from each teacher Tt are Ŷt,i = {ŷt,ij }yj∈Y

t

where ŷt,ij = 1 (positive) if Tt predicts that the label yj as-
sociates with instance xi or 0 (negative) otherwise.

Our goal is to train a student model that accurately classi-
fies xi to its associated labels in the union of specialized
labels of all teachers, Y = {yj}ℓj=1 where ℓ is the num-
ber of distinct labels. We note that Y = ⋃m

t=1Y
t. The stu-

dent’s outputs for the given xi are thus Ŷi = {ŷij}
ℓ
j=1 where

ŷij ∈ {0,1}. We describe the rest of the paper in terms of one
instance xi and drop the superscript i hereafter.

State-of-the-art for MLC tend to model the joint depen-
dencies between labels (Nam et al. 2019) by iteratively pre-
dicting each label using information from the previously
predicted label, referred to as Order-Free Classifier Chains
(OFCC) (Chen et al. 2018). Thus, we describe our approach
in terms of OFCC-based teachers; however, with only slight
modifications our method could be applied to other multi-
label approaches that likewise model label dependencies.

Proposed Method: ANT
We propose Adaptive KNowledge Transfer (ANT) to solve
the KA-MLC. ANT consists of three major components: (1)
When teachers disagree on a label, the Transfer Indicator
(TI) decides which teacher should transfer its prediction to
which teacher; (2) the Knowledge Transfer Module revises
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Figure 3: Overview of our proposed method, ANT. In this figure, one student is shown being trained to amalgamate the knowl-
edge of two pre-trained teacher models. Input features are passed to each model during training.

a teacher’s prediction, conditioned on the prediction of the
more-competent teacher indicated by TI; (3) the Prediction
Integrator combines all teachers’ final predictions into one
integrated prediction that is used to train the student.

Transfer Indicator (TI). TI first extracts the set of
teacher relations R, containing teacher-pairs and the shared
label: R = {ro}ro=1. Each ro consists of two teachers and
the label yc that they specialize in common without regard
for the teachers’ order. For example, as shown in Figure 3,
R = {(T1,T2, y2)} since both T1 and T2 specialize on y2.

Considering each instance x and ro = (T
m,Tn, yc), each

teacher outputs the soft predictions or logits (L) for its spe-
cialized labels that are passed through the sigmoid function
(σ) to acquire their predicted probabilities (P) as follows:

L
m
= Tm

(x) and Pm
= σ(Lm

) (1)
L
n
= Tn

(x) and Pn
= σ(Ln

) (2)

where Pt = {ptj}yj∈Y
t and ptj = P (yj ∣x) which is the pre-

dicted probability of yj provided by Tt. The hard prediction
is obtained by binarizing ptj with a threshold of 0.5.

In some cases, the input features x alone do not contain
enough information to yield an agreed prediction between
the teachers on the common label yc, i.e., one predicts pos-
itive while the other predicts negative. Fundamentally, the
multi-label teachers commonly predict low probabilities for
this label since multi-label models are known as a standard
method for rejecting instances when observing a novel class
(Hendrickx et al. 2021). Regarding this principle, the teacher
that provides positive prediction evidently shows stronger
knowledge achieved by utilizing the dependencies between
yc and the other labels it specializes on. Thus, to integrate the
knowledge between teachers adaptively for any instance, TI
indicates the more-competent teacher (transferor) to transfer
its positive prediction of yc toward the other teacher (trans-
feree). For example, as depicted in Figure 3, p12 yields pos-
itive prediction while p22 yields negative prediction. Thus,
TI indicates the transfer pattern to be T1 → T2. This in-

formation is passed to the Knowledge Transfer Module to
encourage the transferee teacher to revise its predictions.

Knowledge Transfer Module. For a given ro =

(Tm,Tn, yc), assume TI indicates that Tm is the transferor
and Tn is the transferee. The transferee Tn revises its pre-
dictions by conditioning on the prediction of the shared label
yc informed by the transferor Tm. We show below that the
prediction of the other labels specialized by Tn can benefit
additional information provided by Tm.

Analysis of Information Gain: Let Ym and Yn be the
specialized label sets of the transferor Tm and the transferee
Tn, respectively. Assume that yc is their shared label and y∗c
is its ground truth while ŷmc and ŷnc denote its predictions
given by Tm and Tn, respectively. I(X;Y ) represents the
mutual information between any random variables X and Y .

As we assume that transferor has made a more accurate
prediction for yc, the mutual information shared between ŷmc
and y∗c is higher than the mutual information shared between
ŷnc and y∗c , which is formalized in Assumption 1 as follows:

Assumption 1 (A1): I(y∗c ; ŷmc ) > I(y∗c ; ŷnc )
i.e., ∃λ ∈ (0,1), λI(y∗c ; ŷ

m
c ) = I(y

∗

c ; ŷ
n
c )

Additionally, we assume that ŷmc and ŷnc are not biased
with respect to y∗j , the ground truth for the label yj that is
another label that Tn specializes in. Thus, if the transferee
contains λ (less) of the information between itself and yc
than the transferor does, then it likewise contains λ (less)
information between itself and the information content of yj
that is independent from yc, stated formally as follows:

Assumption 2 (A2): Let y∗j be the ground truth for the label
yj that is specialized particularly by Tn.
λI(y∗c ; ŷ

m
c ) = I(y

∗

c ; ŷ
n
c )⇒ λI(y∗c ; ŷ

m
c ∣y

∗

j ) = I(y
∗

c ; ŷ
n
c ∣y
∗

j )

Theorem 1: Let A1, A2 hold. Then, I(ŷmc ; y∗j ) > I(ŷ
n
c ; y

∗

j ).

Proof. By applying the chain rule of mutual information:
I(y∗c ; ŷ

m
c ) = I(y

∗

c ; ŷ
m
c ∣y

∗

j ) + I(y
∗

j ; ŷ
m
c )
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I(y∗c ; ŷ
n
c ) = I(y

∗

c ; ŷ
n
c ∣y
∗

j ) + I(y
∗

j ; ŷ
n
c )

I(y∗c ; ŷ
n
c ) = I(y

∗

c ; ŷ
n
c ∣y
∗

j ) + I(y
∗

j ; ŷ
n
c )

Applying A1 and A2, we have

λI(y∗c ; ŷ
m
c ∣y

∗

j ) + λI(y
∗

j ; ŷ
m
c ) = λI(y

∗

c ; ŷ
m
c ∣y

∗

j ) + I(y
∗

j ; ŷ
n
c )

λI(y∗j ; ŷ
m
c ) = I(y

∗

j ; ŷ
n
c )

Since λ ∈ (0,1), I(ŷmc ; y∗j ) > I(ŷ
n
c ; y

∗

j ).

Theorem 1 states that the information between the ground
truth for yj , which is a label that the transferee Tn partic-
ularly specializes in, and the prediction of the shared label
from the transferor (ŷmc ) is greater than it is between the
ground truth for yj and the transferee’s prediction for the
shared label (ŷnc ). Thus, we should use ŷmc to infer ŷnj and
set the initial predicted probability for yc for Tn by using its
predicted probability from Tm, i.e., Equation 2 is revised to:

L
n′
= Tn

(x) and Pn′
= σ(Ln′

) (3)

Prediction Integrator. We finally combine the probabil-
ities from all teachers—some of which may have been re-
vised according to Equations 1 and 3—to compute predic-
tions for all labels in Y . To obtain this final probability for
each label yj , ANT acquires the most confident prediction
from all teachers that specialize on yj . Let Bj denote a set
of teachers that specialize on yj and Cj denote a set of can-
didate probabilities of yj provided by these teachers:

Cj = {p
t
j}Tt

∈Bj
(4)

The final integrated probability for each label is obtained as:

P (yj ∣x) = {
min(Cj) if ∀ptj ∈ Cj , p

t
j <= 0.5

max(Cj) otherwise.
(5)

Training a Student Model. We use an RNN with LSTMs
to feed back the previously predicted labels into the model,
allowing to learn each label conditioned on the other labels.
The model is fed three input components at each time step
including the input features (x), and both the soft predictions
or logits (L) and the hard predictions (Ŷ) from the previous
time step. At the first time step, the initial hard predictions
Ŷ0 are all set as negative while the initial soft predictions
(L0) are set by passing the features x through a linear layer.
Therefore, the initial input vector (x0) is:

L0 =W ⋅ x + b and Ŷ0 = [0]ℓ (6)

x0 = [x,L0, Ŷ0] (7)

where W and b are learnable parameters.

For the time step k, Lk is updated using the three input
components together with the previous hidden state as:

xk = [x,Lk−1, Ŷk−1] and Lk = LSTMθ(xk, hk−1) (8)

where LSTM denotes the entire process of an LSTM
model, θ denotes all parameters for such the LSTM, and
hk−1 denotes its previous hidden state.

Dataset Domain # Instances Avg.
# Labels

# Unique
Labels

# Unique
Label Sets

EMOTIONS Media 593 1.87 6 27
SCENE Media 2,407 1.07 6 15

YELP Text 10,806 1.64 8 118
YEAST Biology 2,417 4.24 14 198

BIRD Media 645 1.01 19 133
TMC Text 28,596 2.16 22 1,341

GENBASE Biology 662 1.25 27 32
MEDICAL Text 978 1.25 45 94

Table 1: Details of 8 benchmark datasets used for evaluation

To obtain Ŷk, all positive labels in Ŷk−1 are removed from
the candidate labels for prediction at the current step. Then
the probabilities for all candidate labels are computed by
passing the logits in Equation 8 through the sigmoid func-
tion. The label with the highest probability is predicted to
be positive at this time step. Let zk denote such the label
that gets positive prediction at time step k. Thus, the joint
probability of all labels at the last time step is:

Q(Y ∣x) = P (z1∣x) ⋅
ℓ

∏
j=2

P (zj ∣x, z1, . . . , zj−1) (9)

The final logit for each label is obtained by carrying its
logit from the time step that its hard prediction is selected to
be positive. We denote the final logits for all labels in Y as
Ls = {v1, . . . , vℓ}, passed through the sigmoid function to
obtain the predicted probabilities for each label as:

P
s
= σ(Ls

) where Ps
= {psj}

ℓ
j=1 and psj = Q(yj ∣x) (10)

We note that Q(yj ∣x) denotes the predicted probability of
the label yj learned by the student.

Finally, the student is trained to update θ iteratively
by minimizing binary cross entropy between the predicted
probability Q(yj ∣x) in Equation 10 and the integrated prob-
ability P (yj ∣x) in Equation 5 as follows:

J(θ) = −
ℓ

∑
j=1

(P (yj ∣x)log(Q(yj ∣x))

+ (1 − P (yj ∣x))log(1 −Q(yj ∣x))).

(11)

Experiments
Datasets. We conduct experiments on eight established
benchmark datasets for evaluating multi-label classifiers in-
cluding EMOTIONS (Trohidis et al. 2008), SCENE (Boutell
et al. 2004), YELP (Sajnani et al. 2012), YEAST (Elisseeff
and Weston 2001), BIRD (Briggs et al. 2013), TMC (Sri-
vastava and Zane-Ulman 2005), GENBASE (Diplaris et al.
2005), and MEDICAL (Pestian et al. 2007). The number of
instances, average labels per instance, unique labels and la-
bel sets per dataset are shown in Table 1.

Compared Methods. We compare ANT to five state-of-the-
art methods: (1) Baseline (BL) combines hard predictions
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EMO Dataset SCENE Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9500±.0273 .3726±.0359 .4351±.0621 .4539±.0492 3.8 .6615±.0273 .1953±.0359 .4592±.0621 .4490±.0492 3.0
AKA .9786±.0273 .4346±.0611 .3184±.0848 .2069±.1308 5.8 .8490±.0273 .2416±.0611 .4038±.0848 .4092±.1308 5.0
FKA .9714±.0404 .4417±.0840 .3812±.0757 .2662±.0951 5.3 1.000±.0404 .5680±.0840 .2784±.0757 .2339±.0951 6.0
CFL .9357±.0273 .3464±.0416 .4372±.0815 .4193±.1194 3.0 .6684±.0273 .1933±.0416 .4552±.0815 .4450±.1194 3.8
TC .9143±.0234 .3452±.0228 .4366±.0542 .4548±.0354 2.0 .6424±.0234 .1869±.0228 .4645±.0542 .4459±.0354 2.3

ANT (Ours) .9286±.0286 .3345±.0211 .4545±.0398 .4559±.0177 1.3 .6077±.0286 .1765±.0211 .4840±.0398 .4675±.0177 1.0

YELP Dataset YEAST Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9723±.0070 .3297±.0087 .4151±.0121 .3945±.0080 2.3 .9983±.0035 .4135±.1233 .4733±.0614 .3345±.0245 4.5
AKA .9796±.0064 .3698±.0198 .3925±.0186 .3725±.0165 4.3 .9966±.0040 .3409±.0347 .4749±.0167 .3630±.0106 2.3
FKA 1.000±.0000 .5807±.0722 .3540±.0430 .3031±.0793 6.0 1.000±.0000 .5390±.0640 .3884±.0361 .3047±.0429 5.8
CFL .9769±.0133 .3290±.0119 .3778±.0175 .3635±.0143 4.3 .9948±.0066 .3514±.0119 .4792±.0081 .3200±.0107 3.0
TC .9734±.0039 .3228±.0050 .3921±.0168 .3779±.0109 3.0 1.000±.0000 .3487±.0083 .4917±.0050 .3383±.0146 3.0

ANT (Ours) .9730±.0030 .3177±.0063 .4217±.0113 .4044±.0060 1.3 .9948±.0066 .3553±.0112 .5073±.0061 .3535±.0091 2.0

BIRD Dataset TMC Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .5855±.0543 .0630±.0129 .0000±.0000 .0000±.0000 4.5 .9997±.0003 .1877±.0097 .0910±.0225 .0733±.0055 3.3
AKA 1.000±.0000 .3850±.0621 .0928±.0576 .0682±.0276 3.5 1.000±.0000 .4075±.0166 .1967±.0023 .1874±.0069 3.3
FKA 1.000±.0000 .5613±.0339 .0937±.0295 .0779±.0159 3.3 1.000±.0000 .5477±.1077 .2045±.0068 .1459±.0077 3.5
CFL .5592±.0584 .0575±.0110 .0000±.0000 .0000±.0000 3.3 .9997±.0006 .1810±.0015 .0761±.0025 .0713±.0053 4.0
TC .5592±.0584 .0599±.0093 .0114±.0228 .0038±.0075 3.0 .9997±.0003 .1820±.0036 .0793±.0048 .0725±.0056 3.8

ANT (Ours) .5592±.0584 .0561±.0100 .0132±.0263 .0053±.0106 2.0 .9994±.0005 .1784±.0015 .0825±.0033 .0746±.0013 2.3

GENBASE Dataset MEDICAL Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9295±.0385 .0833±.0077 .0734±.0261 .0370±.0000 2.5 .9957±.0086 .0519±.0029 .0067±.0134 .0078±.0156 3.5
AKA 1.000±.0000 .3991±.0642 .1748±.0299 .1853±.0307 3.0 1.000±.0000 .4013±.0300 .0655±.0037 .0832±.0098 2.5
FKA 1.000±.0000 .6769±.1180 .0808±.0136 .0600±.0047 3.8 1.000±.0000 .5403±.0166 .0574±.0046 .0373±.0063 3.3
CFL .9295±.0385 .0845±.0097 .0728±.0268 .0370±.0000 3.5 1.000±.0000 .0467±.0053 .0114±.0146 .0041±.0049 3.8
TC .9295±.0385 .0836±.0091 .0734±.0265 .0370±.0000 3.0 1.000±.0000 .0432±.0037 .0046±.0092 .0005±.0011 4.0

ANT (Ours) .9295±.0385 .0829±.0083 .0740±.0266 .0370±.0000 2.0 .9957±.0086 .0458±.0018 .0119±.0151 .0089±.0117 2.3

Table 2: Compared performance (mean±std) on eight benchmark datasets. Subset Loss and Hamming Loss are abbreviated as
S-Loss and H-Loss, respectively. Rank shows overall performance across all metrics. ↑/↓ indicates the larger/smaller the better.

from all teachers using majority voting, assuming positive
for even votes. (2) AKA (Shen et al. 2019b) trains an indi-
vidual student for each label, combined later into one final
student. Corresponding layers of the teachers and student
are trained to be similar. (3) FKA (Ye et al. 2019) replaces
the teacher’s layer with the corresponding layer of the stu-
dent and then minimizes the difference between the output
of the modified teacher and its original output. (4) CFL (Luo
et al. 2019) imitates the teachers’ logits and their final layers
mapped into a common space in which the student’s final
layer is trained to be similar. (5) TC (Thadajarassiri et al.
2021) imitates the weighted sum of teachers’ logits. We use
equal weights since our data are unlabeled.

Implementation Details. For each dataset, we randomly se-
lect 70% of the instances for the teachers and use the remain-
ing 30% for experiments with students. In main experiments,
we set the number of labels that overlap between teachers
such that teachers hold roughly an equal number of their own
specialized labels and roughly the other half of their labels
overlap with other teachers. The choice of labels is random.
We run four replications for each experiment with different
random seeds, using 75% of the 30% left-out data to train

the student models, and use the remaining 25% for testing.
All code, datasets, and experimental details are made pub-
licly available at https://github.com/jida-thada/ANT.

Experimental Results

We measure performance using four standard multi-label
metrics: Subset Loss, Hamming Loss, F1 Micro, and F1
Macro. The averaged rank across all metrics is reported to
compare their overall performance; ranked-1 indicates the
best performance.

Effectiveness of ANT across Benchmark Datasets.
First, we demonstrate that ANT outperforms the five alter-
native methods by successfully leveraging label dependency
knowledge captured differently between teachers. For this
experiment, we train a student from two teachers trained on
different data—from each original dataset—that cover dif-
ferent subsets of labels, i.e., each teacher is trained to capture
the dependency knowledge differently regarding its particu-
lar label set. For each dataset, teachers learn from an equal
number of labels with half of their labels overlapping.
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50% of labels shared between teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .780±.021 .263±.010 .292±.012 .305±.021 4.3
AKA .884±.062 .259±.055 .375±.042 .382±.059 2.8
FKA 1.000±.000 .544±.067 .246±.056 .191±.046 6.0
CFL .785±.020 .251±.008 .295±.015 .303±.024 3.8
TC .774±.023 .242±.009 .299±.010 .308±.014 2.3

ANT .766±.017 .253±.005 .305±.009 .309±.021 2.0

25% of labels shared between teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .661±.027 .195±.036 .459±.062 .449±.049 3.0
AKA .849±.027 .242±.061 .404±.085 .409±.131 5.0
FKA 1.000±.040 .568±.084 .278±.076 .234±.095 6.0
CFL .668±.027 .193±.042 .455±.082 .445±.119 3.8
TC .642±.023 .187±.023 .465±.054 .446±.035 2.3

ANT .608±.029 .177±.021 .484±.040 .468±.018 1.0

0% of labels shared between teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .498±.026 .122±.012 .654±.041 .660±.046 3.0
AKA .891±.055 .274±.024 .385±.038 .398±.057 5.0
FKA 1.000±.000 .532±.073 .301±.025 .298±.038 6.0
CFL .517±.037 .120±.010 .658±.028 .662±.032 2.8
TC .505±.041 .123±.013 .651±.033 .662±.042 3.3

ANT .439±.031 .106±.011 .685±.032 .690±.037 1.0

Table 3: Results from varying the number of labels shared
between teachers observed on the SCENE dataset.

The results on eight datasets are shown in Table 2. ANT
consistently achieves the highest rank averaged across all
metrics across the board while the second-best methods al-
ternate between BL, AKA, and TC depending on different
datasets. We notice that BL performs quite good comparing
to the other methods. This is because we apply the same
core rationale in the proposed ANT to trust more on the
teacher that predicts positive when there are contradictory
predictions between the teachers. As expected, ANT is the
strongest method particularly for the Hamming Loss and the
Subset Loss, which are core metrics for multi-label learning.
It achieves the best performance for six out of eight datasets
for both metrics. This demonstrates ANT’s accuracy for both
the individual labels and the entire label sets.

ANT Resolves Teacher Disagreement. To investigate the
case where teachers learn vastly different knowledge from
each other, we follow other recent work (Thadajarassiri et al.
2021) by varying the number of shared labels between teach-
ers. Using the SCENE dataset, where most methods perform
their best across all metrics, we vary the proportion of labels
shared between two teachers from 50% (half) to 0% (none).

The result in Table 3 show that as teachers share fewer
labels, the resulting students become more effective. With
fewer shared labels, the teachers have less opportunity to
provide contradictory feedback to the student. All in all,
ANT achieves the top average rank across the board on av-
erage. This shows that ANT extracts predictions from het-
erogeneous sources more reliably than the state-of-the-art.
ANT shows especially impressive on the Subset Loss which
is the only metric that measures label-set performance.

3 Teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .930±.013 .299±.013 .479±.011 .375±.011 3.5
AKA .980±.006 .370±.020 .395±.015 .382±.006 4.3
FKA .998±.003 .495±.062 .349±.014 .308±.011 6.0
CFL .921±.011 .283±.003 .473±.007 .365±.010 3.5
TC .920±.006 .280±.003 .481±.004 .372±.008 2.3

ANT .918±.005 .286±.004 .488±.010 .382±.010 1.5

4 Teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .971±.007 .364±.005 .373±.007 .279±.011 3.8
AKA .980±.006 .379±.016 .385±.011 .371±.013 3.0
FKA .998±.003 .506±.039 .341±.041 .306±.043 5.0
CFL .968±.009 .349±.007 .358±.008 .265±.004 3.8
TC .962±.006 .341±.003 .361±.005 .264±.004 3.0

ANT .967±.005 .355±.005 .373±.003 .281±.004 2.5

5 Teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .977±.005 .374±.003 .373±.009 .281±.010 3.8
AKA .990±.004 .390±.010 .397±.011 .384±.008 3.0
FKA .997±.003 .462±.028 .340±.035 .284±.014 5.3
CFL .964±.010 .338±.014 .349±.008 .255±.015 3.5
TC .956±.011 .342±.006 .358±.004 .267±.009 3.0

ANT .970±.005 .365±.005 .382±.002 .289±.008 2.5

Table 4: Results of amalgamating knowledge across many
teachers observed on the YELP dataset.

Bridging Label Dependencies across Multiple Teachers.
Finally, we explore the more challenging case of amalgamat-
ing many teachers which naturally creates several potential
unobserved dependencies between labels that each label ex-
ists across teachers. We conduct experiments using 3, 4, and
5 teachers on the YELP dataset that contains many instances
allowing us to train more independent teachers.

As shown in Table 4, once again, ANT achieves the
highest rank for all settings. This indicates that ANT not
only learns the dependency knowledge from each particular
teacher but also effectively infers unobserved dependencies
between labels that exist across teachers. This is achieved by
allowing the transferee teacher to revise its predictions based
on the predictions of more-competent teachers.

Conclusion
We propose Adaptive KNowledge Transfer (ANT), the first
solution for knowledge amalgamation for multi-label clas-
sification (KA-MLC). The goal is to train a student model
that can capture the dependencies among all labels across
all teachers. To achieve this, ANT encourages each teacher
to revise their prediction based on the knowledge from the
more competent teachers. This way, ANT succeeds in uti-
lizing label dependencies jointly across teachers so as to
infer the overall global dependencies between labels in the
union of the teachers’ label sets. Our comprehensive experi-
mental study on eight real-world datasets demonstrates that
ANT significantly outperforms state-of-the-art alternatives
by achieving the best averaged rank across numerous stan-
dard multi-label metrics for all datasets.
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Bayes optimal multilabel classification via probabilistic
classifier chains. In Proceedings of ICML, 279–286.
Dembszynski, K.; Waegeman, W.; Cheng, W.; and
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