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Abstract

Text-guided image editing models have shown remarkable
results. However, there remain two problems. First, they
employ fixed manipulation modules for various editing re-
quirements (e.g., color changing, texture changing, content
adding and removing), which results in over-editing or in-
sufficient editing. Second, they do not clearly distinguish
between text-required and text-irrelevant parts, which leads
to inaccurate editing. To solve these limitations, we pro-
pose: (i) a Dynamic Editing Block (DEBlock) that com-
poses different editing modules dynamically for various edit-
ing requirements. (ii) a Composition Predictor (Comp-Pred),
which predicts the composition weights for DEBlock ac-
cording to the inference on target texts and source images.
(iii) a Dynamic text-adaptive Convolution Block (DCBlock)
that queries source image features to distinguish text-required
parts and text-irrelevant parts. Extensive experiments demon-
strate that our DE-Net achieves excellent performance and
manipulates source images more correctly and accurately.

Introduction
The last few years have witnessed the great success of Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.
2014) for a variety of applications (Tang et al. 2019; Zhang
et al. 2019; Karras, Laine, and Aila 2019; Karras et al. 2020;
Tang et al. 2020). Among them, image editing is one of the
important applications of GANs. Recently, some works tried
to bridge the gap between natural language and image edit-
ing (Dong et al. 2017; Liu et al. 2020b,a; Jiang et al. 2021;
Li et al. 2020a,b; Nam, Kim, and Kim 2018; Xu et al. 2022).
Different from other image editing tasks, text-guided image
editing aims to translate source images to target images ac-
cording to given text descriptions. Due to the advantages of
natural language, the text guidance makes the image edit-
ing process more controllable and direct. Moreover, owing
to its promising applications, this task has attracted many
researchers and achieved many significant progresses (Dong
et al. 2017; Nam, Kim, and Kim 2018; Li et al. 2020a,b).

However, current text-guided image editing models have
two problems. First, they tackle various editing require-
ments equally with fixed manipulation modules. Different
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Figure 1: Benefiting from dynamic editing design, our DE-
Net can deal with various editing tasks (e.g., color changing,
and content editing). Furthermore, the text-adaptive convo-
lution in DCBlock enables more accurate manipulations.

from other image-to-image tasks (e.g., image colorization,
style transfer, and image inpainting), which design effective
models for specific tasks, text-guided image editing is an
open-target task. It contains various editing tasks (e.g., color
changing, texture changing, content adding, and removing)
prompted by various text guidance. But current models ig-
nore the difference between varying editing requirements
and employ fixed manipulation modules for all editing tasks.
It leads the whole network tends to make a trade-off for dif-
ferent editing tasks. These compromises limit the manipula-
tion ability and result in over-editing or insufficient editing.
As the result shown in Figure 1, previous models (Li et al.
2020a,b) fail to deal with different editing requirements.

Second, the editing preciseness is deficient, as current ma-
nipulation modules cannot clearly distinguish between text-
required and text-irrelevant parts. Text-visual feature con-
catenations (Dong et al. 2017; Nam, Kim, and Kim 2018)
and ACM module (Li et al. 2020a,b) are widely used to ma-
nipulate image features. However, naive concatenation treats
text-required and text-irrelevant parts equally, resulting in
text information overwriting the source image features. And
the ACM module predicts editing parameters from the en-
coded source images directly without introducing text in-
formation, which makes it unable to accurately edit text-
required parts and preserve text-irrelevant parts. As the re-
sult shown in Figure 1, the previous model (Li et al. 2020a,b)
diffuses the text information to the whole image.
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To address these problems, we propose a novel Dynamic
text-guided image Editing adversarial Network (i.e., DE-
Net). Different from previous works (Dong et al. 2017;
Nam, Kim, and Kim 2018; Li et al. 2020a,b), which employ
fixed editing blocks, our DE-Net employs a Dynamic Edit-
ing Block (DEBlock). The DEBlock combines spatial- and
channel-wise manipulations dynamically for different edit-
ing requirements. Furthermore, we propose the Composition
Predictor (Comp-Pred) to predict the composition weights of
DEBlock. The DEBlock and Comp-Pred enable our network
can deal with various editing tasks through suitable combi-
nations of spatial- and channel-wise manipulations. In addi-
tion, to improve the editing preciseness of the manipulation
module, we propose a novel Dynamic text-adaptive Convo-
lution Block (DCBlock). The DCBlock employs a dynamic
text-adaptive convolutional layer that can automatically ad-
just the kernel weights according to the given text guidance.
This enables our model to distinguish text-required and text-
irrelevant image features by querying the visual features ac-
cording to text guidance. Moreover, we add a lightweight
semantic decoder that provides global-local visual features
for DCBlock to obtain a more accurate prediction of editing
parameters. Overall, our contributions can be summarized as
follows:
• We propose a novel Dynamic text-guided Editing Block

(DEBlock) to enable our model can deal with a variety
of editing tasks adaptively through the dynamic compo-
sition of different editing modules.

• We propose a novel Composition Predictor (Comp-Pred),
which predicts the composition weights for DEBlock ac-
cording to the inference on the text and visual features.

• We propose a novel Dynamic text-adaptive Convolution
Block (DCBlock), which can distinguish text-required
parts and text-irrelevant parts of source images.

• Compared with the current state-of-the-art methods, our
DE-Net achieves much better performance on commonly
used public datasets.

Related Work
Text-to-Image Synthesis bridges text information and im-
age generation. Based on Generative Adversarial Network
(GAN) (Goodfellow et al. 2014), some researchers tried to
bridge the text and image modality. (Reed et al. 2016) first
employed the conditional Generative Adversarial Network
(cGAN) to synthesize plausible images from given text de-
scriptions. (Zhang et al. 2017, 2018) proposed the stacked
architecture, which stacks multiple generators and discrimi-
nators to synthesize high-resolution images. (Xu et al. 2018)
introduced the attention mechanism to fuse the word infor-
mation and image features. This text-image attention mech-
anism has been widely applied in many text-related genera-
tive works (Zhu et al. 2019; Cheng et al. 2020). (Tao et al.
2022) proposed the DF-GAN with deep fusion block and
matching-aware gradient penalty, which enables one-stage
high-quality generation. Recently, some large transformer-
based text-to-image methods (Ramesh et al. 2021; Lin et al.
2021; Ding et al. 2021) show excellent performance on com-
plex image synthesis. They tokenize the images and take

the image tokens and word tokens to make auto-regressive
training by a unidirectional transformer (Radford et al. 2019;
Brown et al. 2020).
Text-Guided Image Editing aims to manipulate source
images according to given text descriptions. For example,
(Dong et al. 2017) first proposed SISGAN based on an
encoder-decoder architecture. It concatenates the encoded
representations with text semantics to manipulate source
images. The TAGAN (Nam, Kim, and Kim 2018) intro-
duced a word-level attention mechanism in a discriminator
to classify fine-grained attributes independently. However,
both SISGAN (Dong et al. 2017) and TAGAN (Nam, Kim,
and Kim 2018) only preserve coarse visual features from
source images. (Li et al. 2020a) proposed the ManiGAN,
which is a two-stage architecture with the ACM and DCM
modules. The ACM module synthesizes text-matching im-
ages while preserving a rough shape from source images.
And the DCM module rectifies mismatched image features
and completes missing details. Then, (Li et al. 2020b) pro-
posed a more efficient word-level discriminator to facili-
tate training a lightweight generator. Recently, the Mani-
Trans (Wang et al. 2022) employ the extra knowledge of
a pretrained autoregressive transformer for text-guided im-
age editing. These methods have shown significant progress
in text-guided image editing tasks. Recently, some text-
guided image editing works focus on face editing (Xia et al.
2021a,b; Patashnik et al. 2021). They employ a pretrained
StyleGAN (Karras, Laine, and Aila 2019) and manipulate
its latent according to face descriptions.

In this work, we focus on the main research direction of
the text-guided image editing task, which deals with open-
target image editing (Dong et al. 2017; Nam, Kim, and Kim
2018; Li et al. 2020a,b; Xu et al. 2022). Unlike previous
models, our DE-Net employs a Dynamic Editing Block (DE-
Block) with a Composition Predictor (Comp-Pred) to com-
bine the editing processes adaptively for various editing re-
quirements. Moreover, we equip our DE-Net with a Dy-
namic text-adaptive Convolution Block (DCBlock) which
can distinguish between text-required and text-irrelevant im-
age features. Compared with previous works, our model ed-
its the text-required image features more efficiently and pre-
serves text-irrelevant source image features more accurately.

The Proposed DE-Net
In this paper, we propose a novel GAN model for text-
guided image editing named Dynamic text-guided Image
Editing adversarial Networks (DE-Net) (see Figure 2). To
manipulate source images according to text guidance more
effectively and accurately, we propose: (i) a novel manip-
ulation module called Dynamic Editing Block (DEBlock),
which manipulates the image features adaptively through
the dynamic combination between spatial and channel-wise
editing. (ii) a novel Composition Predictor (Comp-Pred) that
can predict the combination weights according to the in-
ference on text and visual features. (iii) a novel Dynamic
text-adaptive Convolution Block (DCBlock) that improves
the editing preciseness through querying the visual features
according to text guidance. In the following of this section,

9972



Figure 2: The architecture of the proposed DE-Net. The DE-Net comprises a source image encoder, a target image decoder,
a semantic decoder, a Composition Predictor (Comp-Pred), and a pretrained text encoder (Xu et al. 2018). The DEBlock and
DCBlock are introduced in the target image decoder to enable effective and accurate manipulations, respectively.

we first present the overall structure of our DE-Net and then
introduce the Comp-Pred, DEBlock, and DCBlock in detail.

Dynamic Text-guided Image Editing Framework
Different from previous models (Dong et al. 2017; Nam,
Kim, and Kim 2018; Li et al. 2020a,b; Wang et al. 2022), our
DE-Net is based on a novel dynamic text-guided image edit-
ing framework. First, it can compose suitable editing pro-
cesses based on input images and texts dynamically. Second,
it can distinguish between text-required and text-irrelevant
image features through dynamic text-adaptive convolution.

As shown in Figure 2, the whole editing framework is
composed of a source image encoder, a target image de-
coder, a Composition Predictor (Comp-Pred), a semantic de-
coder, and a pre-trained text encoder (Li et al. 2020a,b). To
introduce multi-scale source visual features for manipula-
tion and preservation, we add full skip connections between
the source image encoder and two decoders. In DE-Net, the
source image is first encoded to 4×4 resolution by the source
image encoder. Then, the encoded source image feature is
fed into the semantic decoder and target image decoder, re-
spectively. The semantic decoder comprises several upsam-
pling and convolutional layers (UPBlock). It can capture
long-range visual information and decode the global-local
semantic features for the DCBlock through the growing size
of semantic features. The target image decoder is composed
of multiple DEBlocks and DCBlocks. The DEBlock manip-
ulates source image features both from spatial and channel
dimensions and dynamically combines these two manipula-
tions at different image scales. And the Comp-Pred predicts
the combination weights for DEBlock according to the infer-
ence on the text and visual features. The DCBlock adjusts
its candidate convolution kernels and applies text-adaptive
convolution on global-local semantic features provided by
the semantic decoder. It enables our DE-Net to distinguish
between text-required and text-irrelevant parts.

To stabilize the training process of adversarial learning,
we further introduce the target-aware discriminator (Tao
et al. 2022) in DE-Net. Finally, our DE-Net can be formu-
lated as:

LD =− E[min(0,−1 +D(x, e))]

− (1/2)E[min(0,−1−D(G(x, ê), ê))]

− (1/2)E[min(0,−1−D(x, ê))]

+ kE[(∥∇xD(x, e)∥+ ∥∇eD(x, e)∥)p],
LG =− E[D(G(x, ê), ê)] + λ1E[∥G(x, ê)− x∥2]

− λ2E[S(G(x, ê), ê)],

(1)

where x denotes the source images; e denotes the source
sentence embeddings, ê denotes the target sentence em-
beddings, G denotes the generator network, D denotes the
discriminator network, k and p are two hyperparameters
of the discriminator to balance the effectiveness of gradi-
ent penalty. S represents the cosine similarity between the
encoded visual and text features predicted by pre-trained
DAMSM network (Xu et al. 2018; Li et al. 2020a,b). λ1 and
λ2 are two balancing coefficients of the generator.

Composition Predictor
To enable our DE-Net to compose suitable editing processes
based on current source images and text guidance, we pro-
pose the Composition Predictor (Comp-Pred). As shown in
Figure 2 and Figure 3, for visual information, it takes the en-
coded 4×4 image feature and maps it to the visual vector V
through two convolution layers. For text information, it takes
the sentence embedding provided by the text encoder and
maps it to a text vector T through one-hidden-layer MLP.
Then we concatenate the V and T and get the V ′ and T ′

through an MLP to close the gap between the visual and
text domain. The difference V ′ − T ′ and the element-wise
product V ′ ∗ T ′ are calculated and concatenated with the
original vectors V and T to enhance the distance between
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Figure 3: Illustration of the proposed Comp-Pred and DCBlock. (a) The Comp-Pred predicts the combination weights for
DEBlock. (b) The DEBlock composes suitable editing processes for each input pair according to the combined weights of
C-Affine and S-Affine.

text and visual information. Lastly, we adopt an MLP and a
Sigmoid function to predict the combination weights α of
spatial-wise and channel-wise editing for N DEBlocks in
the target image decoder. The αn is a vector, and its length
is the channel size of the visual feature after the convolution
layer in each DEBlock.

Dynamic Text-guided Image Editing Block
As mentioned before, the existing naive concatenation
(Dong et al. 2017; Nam, Kim, and Kim 2018) or ACM mod-
ule (Nam, Kim, and Kim 2018; Li et al. 2020b) cannot make
an efficient interaction between text guidance and source
image features. Moreover, these manipulation modules treat
various editing requirements equally, ignoring the different
model requirements. To address these problems, we first de-
compose the visual feature editing process into spatial and
channel-wise editing. Then, we propose a novel DEBlock
to re-compose suitable editing processes for each input pair
through the dynamic combination of a spatial and channel-
wise affine transformation.

As shown in Figure 3(a), the DEBlock is composed of
upsampling layer, convolution layer, and two kinds of affine
layers. One is the Channel-wise Affine layer (C-Affine), and
the other is the Spatial Affine layer (S-Affine). To fully
manipulate source image features, our DEBlock manipu-
lates both spatial and channel dimensions and combines
these two manipulations dynamically through combination
weights αn predicted by Comp-Pred. Specifically, in C-
Affine, the text sentence vector t is sent to two different one-
hidden-layer MLPs to predict the scaling parameters γc and
shifting parameters θc for each channel:

γc = MLP1(t), θc = MLP2(t). (2)

After obtaining γc and θc parameters from MLPs, the C-
Affine transformation can be formally expressed as follows:

C−Aff(xc,h,w|t) = γc · xc,h,w + θc, (3)

where x is the image feature; c, h, and w denote the channel
size, feature height, and feature width, respectively.

Unlike the C-Affine, the S-Affine applies affine transfor-
mations on the spatial dimension of image features. The spa-
tial scaling parameters γh,w and shifting parameters θh,w
are predicted by the DCBlock and two convolution layers
for each pixel in the image feature. As shown in Figure 4,
the DCBlock employs the text-adaptive convolution layer to
get the text-attended visual features f . Then, the spatial scal-
ing and shifting parameters are predicted by two convolution
layers on the predicted text-attended visual features:

γh,w = Conv1(f), θh,w = Conv2(f). (4)

Thus, the S-Affine can be formally expressed as follows:

S−Aff(xc,h,w|t) = γh,w · xc,h,w + θh,w. (5)

To fully manipulate source image features, our model in-
tegrates the C-Affine and S-Affine in DEBlock. And the
nth DEBlock in the target image decoder combines these
two manipulations dynamically through the combination
weights αn predicted by Comp-Pred:

DEBLK(x|t) =C−Aff(x|t) ·αn

+ S−Aff(x|f) · (1−αn).
(6)

Compared with previous manipulation modules, our DE-
Block fully manipulates source image features both from
spatial and channel dimensions and considers different con-
tributions of these two dimensions at different image scales.
Moreover, our experiments and ablation studies also demon-
strate the effectiveness of the DEBlock.

Dynamic Text-adaptive Convolution Block
To improve the editing preciseness of the manipulation mod-
ule, we propose the DCBlock as an editing positioning mod-
ule. As shown in Figure 4, the weights of convolution ker-
nels in DCBlock are adjusted according to the given text
guidance. However, directly generating all parameters of the
convolution kernel not only requires a high computational
cost but also results in overfitting to train text descriptions.
To address this problem, we apply scaling and shifting oper-
ations for each candidate convolution kernel. First, we em-
ploy two MLPs to predict the scaling parameters φc in and
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Figure 4: Illustration of the DCBlock. The text-attended fea-
tures are predicted by the text-conditioned convolution layer.

shifting parameters ωc in for the convolution kernel. The
modulation on one convolution kernel can be formally ex-
pressed as follows:

Mod(k) = φc in · kc in,k h,k w + ωc in, (7)

where kc in,k h,k w is the convolution kernel; c in, k h, and
k w denotes the input channel size, kernel height, and kernel
width, respectively.

With this text-guided adjustment for candidate convolu-
tion kernels, the dynamic convolutional (Dy-Conv) opera-
tion acts as a querying process according to text descrip-
tions. However, as the semantic information in one convo-
lution kernel is limited, it is hard to incorporate the whole
text semantic information into one convolution kernel. In-
spired by the multi-head attention mechanism in Trans-
former (Vaswani et al. 2017), we employ multiple dynamic
convolution kernels as different attention heads. In our work,
we set 8 dynamic convolution kernels in DCBlock. It allows
our model to jointly attend to different image features from
different text representation subspaces. As shown in Fig-
ure 4, each dynamic convolution kernel predicts an attended
feature map according to partial text semantics. Then, we
stack these attention features along the channel direction as
a whole attended feature map for predicting the spatial affine
parameters for DEBlock.

However, directly applying Dy-Conv operations on im-
age features from the source image encoder is inefficient.
Each pixel of image features in the source image encoder
only contains the semantic information of its local neighbor-
hood through downsampling layers. It cannot capture long-
range contextual information, resulting in low accuracy and
efficiency of Dy-Conv. To cope with this problem, we em-
ploy a semantic decoder to decode global-local semantics,
as shown in Figure 2. The source image is first downsam-
pled through the image encoder and then upsampled by
the semantic decoder with full skip connections from the
source image encoder. Through this encoder-decoder struc-
ture with full skip connections, the semantic decoder can
capture long-range visual information, and each pixel of de-
coded semantic features contains global-local semantic in-
formation. We apply Dy-Conv operations on the global-local
semantic features to achieve more accurate queried results.
After that, we employ two convolutional layers to predict the
spatial scaling and shifting parameters for DEBlock.

The proposed DCBlock enables our DE-Net to distinguish
between text-required and text-irrelevant parts. Furthermore,

the semantic decoder provides the global-local semantic fea-
tures, and the multi-head dynamic convolutional operations
query the global-local semantic features from different text
representation subspaces. Armed with the DCBlock, the tar-
get image decoder can manipulate source image features
more accurately.

Experiments
In this section, we introduce the datasets, training details,
and evaluation metrics used in our experiments. Then we
compare the text-guided image editing performance with
previous models quantitatively and qualitatively.
Datasets. We conduct experiments on two challenging
datasets: CUB bird (Wah et al. 2011) and COCO (Lin et al.
2014). For the CUB bird dataset, there are 11,788 images
belonging to 200 bird species, with each image correspond-
ing to ten language descriptions. The COCO dataset contains
80k images for training and 40k images for testing. Each im-
age corresponds to 5 language descriptions.
Training and Evaluation Details. We employ the Adam
optimizer (Kingma and Ba 2015) with β1=0.0 and β2=0.9
to train our model. According to the Two Timescale Update
Rule (TTUR) (Heusel et al. 2017), the learning rate is set
to 0.0001 for the generator and 0.0004 for the discriminator.
The hyper-parameters of the discriminator k and p are set
to 2 and 6 as (Tao et al. 2022). The hyper-parameters of the
generator λ1 and λ2 are set to 40 and 4 for all the datasets.

Following previous works (Wang et al. 2022; Li et al.
2020a), we employ the Inception Score (IS) (Salimans
et al. 2016), CLIP-sim, L2-error, and Manipulation Preci-
sion (MP) to evaluate the performance. Higher IS means
higher fidelity of the edited images. CLIP-sim is the text-
image cosine similarity calculated by a pretrained CLIP net-
work (Xu et al. 2018) to measure the quality of text-guided
manipulation. L2-error is the L2 pixel difference between
edited images and source images to measure the quality of
source feature preservation. Lastly, MP simultaneously mea-
sures the quality of text-guided manipulation and source fea-
ture preservation. It can be formulated as:

MP = (1− L2 error)× (CLIP sim). (8)

It must be pointed out that the Fréchet Inception Distance
(FID) (Heusel et al. 2017) widely adopted in text-to-image
synthesis is not suitable for text-guided image editing. The
FID calculates the Fréchet distance between synthetic im-
ages and ground truth in the feature space of a pre-trained
Inception v3 network. But there is no ground truth (human-
edited images) in this task, and calculating with source im-
ages makes the FID prefer lazy models which do not edit
input images. So we adopt the IS to evaluate the image fi-
delity as previous works (Wang et al. 2022; Li et al. 2020a).

Quantitative Comparisons
We compare the proposed method with several state-of-the-
art text-guided image editing models, including TAGAN
(Nam, Kim, and Kim 2018), ManiGAN (Li et al. 2020a),
ManiTrans (Wang et al. 2022). We also modify the state-of-
the-art text-to-image model DF-GAN (Tao et al. 2022) and
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Figure 5: Qualitative comparison between different methods on the test set of CUB and COCO.

Model CUB COCO
IS ↑ CLIP-sim ↑ L2-error ↓ MP ↑ IS ↑ CLIP-sim ↑ L2-error ↓ MP ↑

TAGAN 3.72 0.202 0.185 0.164 9.33 0.125 0.102 0.112
ManiGAN 4.19 0.213 0.051 0.202 22.60 0.119 0.031 0.114
DF-GAN 4.54 0.221 0.046 0.210 20.10 0.129 0.027 0.125
Lightweight-GAN 4.66 0.188 0.132 0.163 24.80 0.136 0.025 0.132
ManiTrans 5.02 0.235 0.013 0.231 21.45 0.131 0.017 0.128
DE-Net (Ours) 5.08 0.240 0.010 0.237 25.81 0.192 0.015 0.189

Table 1: Quantitative comparison between different methods on the test set of CUB and COCO.

compare our model with it. As shown in Table 1, our pro-
posed DE-Net achieves the highest IS, CLIP-sim, MP, and
the lowest L2-error on the CUB and COCO test dataset. The
highest IS shows that our method can produce more realis-
tic manipulated results. And the highest CLIP-sim, MP, and
lowest L2-error prove that our method can manipulate text-
required image parts and preserve text-irrelevant parts more
correctly and accurately. The extensive quantitative evalu-
ation results on CUB and COCO demonstrate the superi-
ority and effectiveness of our proposed DE-Net. Further-
more, the advantages of our model are more obvious in the
complex COCO images. It demonstrates the significant im-
provements of our DE-Net when dealing with various edit-
ing requirements, e.g., textual changing, background chang-
ing, object adding and removing.

Qualitative Comparisons
In this subsection, we compare the images synthesized by
ManiGAN (Li et al. 2020a), Lightweight GAN (Li et al.
2020b), and our DE-Net. We evaluate the quality of the
edited images from two aspects, text-related source feature
manipulation and text-irrelevant source feature preservation.
First, we compare the quality of the edited images on the

CUB dataset, then compare the results on the more chal-
lenging COCO dataset.

As the results shown in 1st, 2nd, and 4th columns, both
ManiGAN (Li et al. 2020a) and Lightweight GAN (Li
et al. 2020b) cannot accurately synthesize the “black wings”,
“yellow throat”, and “white belly”, respectively. Moreover,
they tend to change the color of twigs and backgrounds (see
1st, 3rd, 4th, and 5th columns). While our DE-Net can ma-
nipulate these features successfully and preserve the text-
irrelevant image features like twigs and backgrounds more
accurately. The superiority is more obvious in the challeng-
ing COCO dataset, which contains various editing tasks. As
the results are shown in the 6th, 7th, and 10th columns, both
ManiGAN (Li et al. 2020a) and Lightweight GAN (Li et al.
2020b) cannot synthesize the “a herd of sheep”, “grassy
field”, and “some pictures”, respectively. These results show
that they only tend to edit the colors of source images (see
8th, 9th, and 10th columns). However, our DE-Net can both
edit the color (see 6th, and 7th columns), texture (see 7nd
and 8th columns) of source images, and synthesize new con-
tents in target images (see 6th and 10th columns). Moreover,
both ManiGAN (Li et al. 2020a) and Lightweight GAN (Li
et al. 2020b) tend to edit the text-irrelevant regions. For ex-
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Method IS ↑ CLIP-sim ↑ L2 ↓ MP ↑
Baseline (B) 11.08 0.115 0.057 0.108
B w/ CAFF 12.16 0.124 0.051 0.117
B w/ SAFF 13.33 0.131 0.047 0.124
B w/ DE w/ CP 17.21 0.155 0.031 0.150
B w/ DE w/o CP 15.36 0.141 0.040 0.135
B w/ DE w/ CP* 14.13 0.145 0.039 0.139
B w/ DE w/ CP w/OC 18.47 0.160 0.030 0.155
B w/ DE w/ CP w/DC1 20.21 0.171 0.025 0.166
B w/ DE w/ CP w/DC4 22.18 0.176 0.021 0.172
B w/ DE w/ CP w/DC16 21.01 0.179 0.021 0.175
B w/ DE w/ CP w/DC 23.11 0.180 0.018 0.176
B w/ DE w/ CP w/DC w/SD 25.81 0.192 0.015 0.189

Table 2: Ablation Study of DE-Net on the test set of COCO.

ample, the color of the sky is also painted with the color
of “grassy field” (see 7th column). While our DE-Net can
preserve these text-irrelevant features or manipulate them to
adapt to the text description (see 6th, and 7th columns).

The qualitative comparison of both CUB and COCO
datasets shows that our DE-Net can manipulate the source
images according to the text guidance while preserving text-
irrelevant image features more effectively and accurately.

Ablation Study
To verify the effectiveness of different components in DE-
Net, we conduct ablation studies on the COCO test dataset.
The components include Dynamic Text-guided Image Edit-
ing Block (DE), Composition Predictor (CP), Dynamic
Text-adaptive Convolution Block (DC), and Semantic De-
coder (SD). The results are provided in Table 2.
Baseline. Our baseline is based on an encoder-decoder ar-
chitecture that employs the target-way discriminator (Tao
et al. 2022). The baseline concatenates the text features with
the encoded image features.
Effect of DEBlock (DE). The experimental results show
that the DEBlock achieves better performances than only
employing channel-wise (B w/CAFF) or spatial-wise affine
transformation (B w/SAFF). The results demonstrate that
our Dynamic Editing strategy, which composes suitable
editing processes dynamically based on input text-image
pairs, is more effective than fixed editing modules.
Effect of Comp-Pred (CP). Removing the Comp-Pred (B
w/ DE w/o CP) reduces the editing performance. To further
evaluate the effectiveness of the difference and element-wise
product in Comp-Pred, we remove them from CP and name
the new module CP*. Compared with CP*, the Comp-Pred
(B w/ DE w/ CP) achieves better performances. The com-
parison results prove the effectiveness of Comp-Pred.
Effect of DCBlock (DC). To verify the effectiveness of
DCBlock, we replace it with an Ordinary Convolution layer
(OC). The results show that the DCBlock enables our model
to manipulate more accurately (lower DIFF, higher MP). We
further evaluate the multi-head mechanism of DCBlock by
changing the number of text-adaptive convolution kernels to
1, 4, 16 (DC1, DC4, DC16). The results show that more con-
volution kernels do not mean better performance. The rea-
son may be that more convolution kernels reduce the con-

Figure 6: Visualization of the queried results by different
text-adaptive convolution kernels.

vergence efficiency of the DE-Net. Therefore, we set 8 text-
adaptive convolution kernels in DCBlock.
Effect of Semantic Decoder (SD). Without the Semantic
Decoder (B w/ DE w/ CP w/DC), the model predicts the
spatial editing parameters from the feature provided by the
source image encoder. Armed with the Semantic Decoder,
the model (B w/ DE w/ CP w/DC w/SD ) improves the IS,
SIM, MP, and decreases the DIFF. The results prove that the
semantic decoder can promote the DCBlock to make more
effective and accurate manipulations.

Visualisation Results of DCBlock

To further demonstrate the effectiveness of DCBlock, we
visualize the text-conditioned queried results at the last
DCBlock in the target image decoder. As shown in Figure 6,
the kernel attends to different semantics in source image fea-
tures. In addition, we find that the convolution kernel can be
divided into two types, one focusing on text-related image
parts and the other focusing on text-irrelevant image parts.
For the CUB example, kernel 8 segments the whole back-
ground, which is text-irrelevant image parts. The other ker-
nel attends to text-related image parts, e.g., “wings”, “head”,
“belly”. For the COCO example, kernel 8 segments the sky,
which is a text-irrelevant image part. The other kernel at-
tends to text-related image parts, e.g., ground, human, and
mountain, which need to be edited. It demonstrates that our
DCBlock can attend to different semantic parts and distin-
guish between text-related and text-irrelevant parts.

Conclusion
In this paper, we propose a novel DE-Net for the text-guided
image editing task. Via DE-Net, we propose a DEBlock to
enable our model can deal with a variety of editing tasks
adaptively through the dynamic composition of different
editing modules. We also propose a novel Comp-Pred that
compares the source image features and given text guidance
and predict the combination weights for DEBlock. Further-
more, we propose a new DCBlock with a semantic decoder
to help the target image decoder distinguish between text-
required and text-irrelevant parts.
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