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Abstract

Normalized gradient descent has shown substantial success
in speeding up the convergence of exponentially-tailed loss
functions (which includes exponential and logistic losses) on
linear classifiers with separable data. In this paper, we go
beyond linear models by studying normalized GD on two-
layer neural nets. We prove for exponentially-tailed losses that
using normalized GD leads to linear rate of convergence of
the training loss to the global optimum. This is made possible
by showing certain gradient self-boundedness conditions and
a log-Lipschitzness property. We also study generalization
of normalized GD for convex objectives via an algorithmic-
stability analysis. In particular, we show that normalized GD
does not overfit during training by establishing finite-time
generalization bounds.

Introduction
Motivation
A wide variety of machine learning algorithms for classifi-
cation tasks rely on learning a model using monotonically
decreasing loss functions such as logistic loss or exponential
loss. In modern practice these tasks are often accomplished
using over-parameterized models such as large neural net-
works where the model can interpolate the training data, i.e.,
it can achieve perfect classification accuracy on the samples.
In particular, it is often the case that the training of the model
is continued until achieving approximately zero training loss
(Zhang et al. 2021).

Over the last decade there has been remarkable progress
in understanding or improving the convergence and general-
ization properties of over-parameterized models trained by
various choices of loss functions including logistic loss and
quadratic loss. For the quadratic loss it has been shown that
over-parameterization can result in significant improvements
in the training convergence rate of (stochastic)gradient de-
scent on empirical risk minimization algorithms. Notably,
quadratic loss on two-layer ReLU neural networks is shown
to satisfy the Polyak-Łojasiewicz(PL) condition (Charles and
Papailiopoulos 2018; Bassily, Belkin, and Ma 2018; Liu, Zhu,
and Belkin 2022). In fact, the PL property is a consequence
of the observation that the tangent kernel associated with

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the model is a non-singular matrix. Moreover, in this case
the PL parameter, which specifies the rate of convergence,
is the smallest eigenvalue of the tangent kernel(Liu, Zhu,
and Belkin 2022). The fact that over-parameterized neural
networks trained by quadratic loss satisfy the PL condition,
guarantees that the loss convergences exponentially fast to a
global optimum. The global optimum in this case is a model
which “perfectly” interpolates the data, where we recall that
perfect interpolation requires that the model output for every
training input is precisely equal to the corresponding label.

On the other hand, gradient descent using un-regularized
logistic regression with linear models and separable data
is biased toward the max-margin solution. In particular, in
this case the parameter converges in direction with the rate
O(1/log(t)) to the solution of hard margin SVM problem,
while the training loss converges to zero at the rate Õ(1/t)
(Soudry et al. 2018; Ji and Telgarsky 2018). More recently,
normalized gradient descent has been proposed as a promis-
ing approach for fast convergence of exponentially tailed
losses (Nacson et al. 2019). In this method, at any iteration
the step-size is chosen proportionally to the inverse of value
of training loss function i.e., ηt ∝ 1/F (wt). This results in
choosing unboundedly increasing step-sizes for the iterates
of gradient descent as F (wt) decays to zero. This choice of
step-size leads to significantly faster rates for the parameter’s
directional convergence. In particular, for linear models with
separable data, it is shown that normalized GD with decaying
step-size enjoys a rate of O(1/

√
t) in directional parame-

ter convergence to the max-margin separator (Nacson et al.
2019). This has been improved to O(1/t) with normalized
GD using fixed step-size (Ji and Telgarsky 2021).

Despite remarkable progress in understanding the behavior
of normalized GD with separable data, these results are only
applicable to the implicit bias behavior of “linear models”. In
this paper, we aim to discover for the first time, the dynam-
ics of learning a two-layer neural network with normalized
GD trained on separable data. For the training loss, we show
that using normalized GD on an exponentially-tailed loss
with a two layered neural network leads to exponentially fast
convergence of the loss to the global optimum. This is sig-
nificantly faster than the convergence rate of Õ(1/t) for GD
with constant step-size under the same settings. Compared
to the convergence analysis of standard GD which is usually
carried out using smoothness of the loss function, here for
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normalized GD we use the Taylor’s expansion of the loss and
use the fact the operator norm of the Hessian is bounded by
the loss. Next, we apply a lemma in our proof which shows
that exponentially-tailed losses on a two-layered neural net-
work satisfy a log-Lipschitzness condition throughout the
iterates of normalized GD. Moreover, crucial to our analysis
is showing that the `2 norm of the gradient at every point
is upper-bounded and lower-bounded by constant factors of
the loss under given assumptions on the activation function
and the training data. Subsequently, the log-Lipschitzness
property together with the bounds on the norm of Gradient
and Hessian of the loss function ensures that normalized
GD is a descent algorithm where the loss value decreases by
a constant factor after each step of normalized GD, which
leads to the promised geometric rate of decay for the loss.
Our another goal is to characterize the iterate-wise test error
performance of normalized GD for convex objectives. No-
tably, we show that despite the fast grow of weights norm, the
generalization error remains bounded. Particularly, through
an algorithmic-stability analysis, we derive optimal test-error
rates for normalized GD with logistic loss. We summarize
our contributions below.

Contributions
We introduce conditions –namely log-Lipschitz and self-
boundedness assumptions on the gradient and the Hessian–
under which the training loss of the normalized GD algorithm
converges exponentially fast to the global optimum. More
importantly, in Section we prove that the aforementioned
conditions are indeed satisfied by two-layer neural networks
trained with an exponentially-tailed loss function. This yields
the first theoretical guarantee on the convergence of normal-
ized GD for non-linear models. We also study a stochastic
variant of normalized GD and investigate its training loss
convergence.

We study, for the first time, the finite-time test loss and
test error performance of normalized GD for convex losses.
In particular, we derive bounds of order O(1/n) on the ex-
pected generalization error of normalized GD, where n is the
training-set size.

Prior Works
The theoretical study of the optimization landscape of over-
parameterized models trained by GD or SGD has been the
subject of several recent works. The majority of these works
study over-parameterized models with specific choices of
loss functions, mainly quadratic or logistic loss functions.
For quadratic loss, the exponential convergence rate of over-
parameterized neural networks is proved in several recent
works e.g., (Charles and Papailiopoulos 2018; Bassily, Belkin,
and Ma 2018; Du et al. 2019; Allen-Zhu, Li, and Song 2019;
Arora et al. 2019; Oymak and Soltanolkotabi 2019, 2020;
Safran, Yehudai, and Shamir 2021; Liu, Zhu, and Belkin
2022). These results naturally relate to the Neural Tangent
Kernel(NTK) regime of infinitely wide or sufficiently large
initialized neural networks (Jacot, Gabriel, and Hongler 2018)
in which the iterates of gradient descent stay close to the
initialization. The NTK approach can not be applied to our

setting as the parameters’ norm in our setting is growing as
Θ(t) with the NGD updates.

The majority of the prior results apply to the quadratic loss.
However, the state-of-the-art architectures for classification
tasks use unregularized ERM with logistic/exponential loss
functions. Notably, for these losses over-parameterization
leads to infinite norm optimizers. As a result, the objective in
this case does not satisfy strong convexity or the PL condition
even for linear models. The analysis of loss and parameter
convergence of logistic regression on separable data has at-
tracted significant attention in the last five years. Notably, a
line of influential works have shown that gradient descent
provably converges in direction to the max-margin solution
for linear models and two-layer homogenous neural networks.
In particular, the study of training loss and implicit bias be-
havior of GD on logistic/exponential loss was first initiated
in the settings of linear classifiers (Rosset, Zhu, and Hastie
2003; Telgarsky 2013; Soudry et al. 2018; Ji and Telgar-
sky 2018; Nacson et al. 2019). The implicit bias behavior
of GD with logistic loss in two-layer neural networks was
later studied by (Lyu and Li 2019; Chizat and Bach 2020;
Ji and Telgarsky 2020). The loss landscape of logistic loss
for over-parameterized neural networks and structured data
is analyzed in (Zou et al. 2020; Chatterji, Long, and Bartlett
2021), where it is proved that GD converges to a global op-
tima at the rate O(1/t). The majority of these results hold for
standard GD while we focus on normalized GD.

The generalization properties of GD/SGD with binary and
multi-class logistic regression in the interpolation regime is
studied in (Shamir 2021; Schliserman and Koren 2022) for
linear models and in (Li and Liang 2018; Cao and Gu 2019,
2020) for neural networks. Recently, (Taheri and Thram-
poulidis 2023) studied the generalization error of decentral-
ized logistic regression through a stability analysis. For our
generalization analysis we use an algorithmic stability analy-
sis (Bousquet and Elisseeff 2002; Hardt, Recht, and Singer
2016; Lei and Ying 2020). However, unlike these prior works
which focus on GD with constant step-size, we consider nor-
malized GD and derive the first generalization analysis for
this algorithm.

The benefits of normalized GD for speeding up the direc-
tional convergence of GD for linear models was suggested by
(Nacson et al. 2019; Ji and Telgarsky 2021). Our paper con-
tributes to this line of work. Compared to these prior works
which are focused on implicit-bias behavior of linear models,
we study non-linear models and derive training loss conver-
gence rates. We also study, the generalization performance
of normalized GD for convex objectives.

Notation
We use ‖·‖ to denote the operator norm of a matrix and also
to denote the `2-norm of a vector. The Frobenius norm of a
matrix W is shown by ‖W‖F . The Gradient and the Hessian
of a function F : Rd → R are denoted by ∇F and ∇2F .
Similarly, for a function F : Rd × Rd′ → R that takes two
input variables, the Gradient and the Hessian with respect
to the ith variable (where i = 1, 2) are denoted by ∇iF and
∇2
iF , respectively. For functions F,G : R → R, we write

F (t) = O(G(t)) when |F (t)|≤ mG(t) after t ≥ t0 for
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positive constants m, t0. We write F (t) = Õ(G(t)) when
F (t) = O(G(t)H(t)) for a polylogarithmic function H . Fi-
nally, we denote F (t) = Θ(G(t)) if |F (t)|≤ m1G(t) and
|F (t)|≥ m2G(t) for all t ≥ t0 for some positive constants
m1,m2, t0.

Problem Setup
We consider unconstrained and unregularized empirical risk
minimization (ERM) on n samples,

min
w∈Rd̃

F (w) :=
1

n

n∑
i=1

f (yiΦ(w, xi)) . (1)

The ith sample zi := (xi, yi) consists of a data point xi ∈ Rd

and its associated label yi ∈ {±1}. The function Φ : Rd̃ ×
Rd → R represents the model taking the weights vector w
and data point x to approximate the label. In this section,
we take Φ as a neural network with one hidden layer and m
neurons,

Φ(w, x) :=
m∑
j=1

ajσ(〈wj , x〉).

Here σ : R → R is the activation function and wj ∈ Rd
denotes the input weight vector of the jth hidden neuron.
w ∈ Rd̃ represents the concatenation of these weights i.e.,
w = [w1;w2; . . . ;wm]. In our setting the total number of
parameters and hence the dimension of w is d̃ = md. We
assume that only the first layer weightswj are updated during
training and the second layer weights aj ∈ R are initialized
randomly and are maintained fixed during training. The func-
tion f : R→ R is non-negative and monotonically decreases
such that limt→+∞ f(t) = 0. In this section, we focus on
the exponential loss f(t) = exp(−t), but we expect that our
results apply to a broader class of loss functions that behave
similarly to the exponential loss for large t, such as logistic
loss f(t) = log(1 + exp(−t)).

We consider activation functions with bounded absolute
value for the first and second derivatives.
Assumption 1 (Activation function). The activation function
σ : R→ R is smooth and for all t ∈ R

|σ′′(t)|≤ L.

Moreover, there are positive constants α, ` such that σ satis-
fies for all t ∈ R,

α ≤ σ′(t) ≤ `.

An example satisfying the above condition is the acti-
vation function known as smoothed-leaky-ReLU which is
a smoothed variant of the leaky-ReLU activation σ(t) =
`t I(t ≥ 0) + αt I(t ≤ 0), where I(·) denotes the 0–1 indica-
tor function.

Throughout the paper we let R and a denote the maximum
norm of data points and second layer weights, respectively,
i.e.,

R := max
i∈[n]

‖xi‖ , a := max
j∈[m]

|aj | .

Throughout the paper we assume R = Θ(1) w.r.t. problem
parameters and a = 1

m .
We also denote the training loss of the model by F , de-
fined in (1) and define the train error as misclassification
error over the training data, or formally by F0−1(w) :=
1
n

∑n
i=1 I(SIGN(Φ(w, xi)) 6= yi).

Normalized GD. We consider the iterates of normalized
GD as follows,

wt+1 = wt − ηt∇F (wt). (2)
The step size is chosen inversely proportional to the loss
value i.e., ηt = η/F (wt), implying that the step-size is grow-
ing unboundedly as the algorithm approaches the optimum
solution. Since the gradient norm decays proportionally to
the loss, one can equivalently choose ηt = η/‖∇F (wt)‖.

Main Results
For convergence analysis in our case study, we introduce a
few definitions.
Definition 1 (log-Lipschitz Objective). The training loss
F : Rd̃ → R satisfies the log-Lipschitzness property if for all
w,w′ ∈ Rd̃,

max
v∈[w,w′]

F (v) ≤ F (w) · c̃w,w′ ,

where [w,w′] denotes the line between w and w′ and we
define c̃w,w′ := exp

(
c(‖w − w′‖+‖w − w′‖2)

)
where the

positive constant c is independent of w,w′.
As we will see in the following sections, log-Lipschitzness

is a property of neural networks trained with exponentially
tailed losses with c = Θ( 1√

m
). We also define the property

“log-Lipschitzness in the gradient path” if for all wt, wt−1 in
Eq. (2) there exists a constant C such that,

max
v∈[wt,wt+1]

F (v) ≤ C F (wt).

Definition 2 (Self lower-bounded gradient). The loss func-
tion F : Rd̃ → R satisfies the self-lower bounded Gradient
condition for a function, if these exists a constant µ such that
for all w,

‖∇F (w)‖≥ µF (w).

Definition 3 (Self-boundedness of the gradient). The loss
function F : Rd̃ → R satisfies the self-boundedness of the
gradient condition for a constant h, if for all w

‖∇F (w)‖≤ hF (w).

The above two conditions on the upper-bound and lower
bound of the gradient norm based on loss can be thought
as the equivalent properties of smoothness and the PL con-
dition but for our studied case of exponential loss. To see
this, note that smoothness and PL condition provide upper
and lower bounds for the square norm of gradient. In par-
ticular, by L-smoothness one can deduce that ‖∇F (w)‖2≤
2L(F (w)−F ?) (e.g., (Nesterov 2003)) and by the definition
of µ-PL condition ‖∇F (w)‖2≥ 2µ(F (w) − F ?) (Polyak
1963; Lojasiewicz 1963).

The next necessary condition is an upper-bound on the
operator norm of the Hessian of loss.
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Definition 4 (Self-boundedness of the Hessian). The loss
function F : Rd̃ → R satisfies the self-boundedness of the
Hessian property for a constant H , if for all w,

‖∇2F (w)‖≤ H F (w),

where ‖·‖ denotes the operator norm.

It is worthwhile to mention here that in the next sections
of the paper, we prove all the self lower and upper bound in
Definitions 3-4 are satisfied for a two-layer neural network
under some regularity conditions.

Convergence Analysis of Training Loss
The following theorem states that under the conditions above,
the training loss converges to zero at an exponentially fast
rate.

Theorem 1 (Convergence of Training Loss). Consider nor-
malized gradient descent update rule with loss F and step-
size ηt. Assume F and the normalized GD algorithm satisfy
log-Lipschitzness in the gradient path with parameter C, as
well as self-boundedness of the Gradient and the Hessian and
the self-lower bounded Gradient properties with parameters
h,H and µ, respectively. Let ηt = η

F (wt)
for all t ∈ [T ] and

for any positive constant η satisfying η ≤ µ2

HCh2 . Then for
the training loss at iteration T the following bound holds:

F (w
T

) ≤ (1− ηµ2

2
)TF (w0). (3)

Remark 1. The proof of Theorem 1 is provided in Appendix,
where we use a Taylor expansion of the loss and apply the
conditions of the theorem. It is worth noting that the rate
obtained for normalized GD in Theorem 1 is significantly
faster than the rate of Õ( 1

T ) for standard GD with logis-
tic or exponential loss in neural networks (e.g., (Zou et al.
2020, Theorem 4.4)). Additionally, for a continuous-time
perspective on the training convergence of normalized GD,
we refer to Proposition 10 in the appendix, which presents
a convergence analysis based on normalized Gradient Flow.
The advantage of this approach is that it does not require
the self-bounded Hessian property and can be used to show
exponential convergence of normalized Gradient Flow for
ReLU and leaky-ReLU activations.

Two-Layer Neural Networks
In this section, we prove that the conditions that led to Theo-
rem 1 are in fact satisfied by a two-layer neural network. Con-
sequently, this implies that the training loss bound in Eq.(3) is
valid for this class of functions. We choose f(t) = exp(−t)
for simpler proofs, however an akin result holds for the
broader class of exponentially tailed loss functions.

First, we start with verifying the log-Lipschitzness condi-
tion (Definition 1). In particular, here we prove a variation
of this property for the iterates of normalized GD i.e., where
w,w′ are chosen as wt, wt+1. The proofs are included in
Appendix.

Lemma 2 (log-Lipschitzness in the gradient path). Let F be
as in (1) for the exponential loss f and let Φ be a two-layer

neural network with the activation function satisfying As-
sumption 1. Consider the iterates of normalized GD with the
step-size ηt = η

F (wt)
. Then for any λ ∈ [0, 1] the following

inequality holds:

F (wt + λ(wt+1 − wt)) ≤ exp(λc)F (wt), (4)

for a positive constant c independent of λ,wt and wt+1.
As a direct consequence, it follows that,

max
v∈[wt,wt+1]

F (v) ≤ C F (wt), (5)

for a numerical constant C.
The next two lemmas state sufficient conditions for F to

satisfy the self-lower boundedness for its gradient (Def. 2).
Lemma 3 (Self lower-boundedness of gradient). Let F be
as in (1) for the exponential loss f and let Φ be a two-layer
neural network with the activation function satisfying As-
sumption 1. Assume the training data is linearly separa-
ble with margin γ. Then F satisfies the self-lower bounded-
ness of gradient with the constant µ = αγ√

m
for all w, i.e.,

‖∇F (w)‖≥ µF (w).

Next, we aim to show that the condition ‖∇F (w)‖≥
µF (w), holds for training data separable by a two-layer neu-
ral network during gradient descent updates. In particular,
we assume the Leaky-ReLU activation function taking the
following form,

σ(t) =

{
` t t ≥ 0,

α t t < 0.
(6)

for arbitrary non-negative constants α, `. This includes the
widely-used ReLU activation as a special case. Next lemma
shows that when the weights are such that the neural net-
work separates the training data, the self-lower boundedness
condition holds.
Lemma 4. Let F be in (1) for the exponential loss f and let
Φ be a two-layer neural network with activation function in
Eq.(6). Assume the first layer weights w ∈ Rd̃ are such that
the neural network separates the training data with margin
γ. Then F satisfies the self- lower boundedness of gradient,
i.e, ‖∇F (w)‖≥ µF (w), where µ = γ.

A few remarks are in place. The result of Lemma 4 is rele-
vant for w that can separate the training data. Especially, this
implies the self lower-boundedness property after GD iterates
succeed in finding an interpolator. However, we should also
point out that the non-smoothness of leaky-ReLU activation
functions precludes the self-bounded Hessian property and
it remains an interesting future direction to prove the self
lower-boundedness property with general smooth activations.
On the other hand, the convergence of normalized ”Gradient-
flow” does not require the self-bounded Hessian property, as
demonstrated in Proposition 10. This suggests that Lemma
4 can be applied to prove the convergence of normalized
Gradient-flow with ReLU or leaky-ReLU activations.

Next lemma derives the self-boundedness of the gradient
and Hessian (c.f. Definitions 3-4) for our studied case. The
proof of Lemma 5 follows rather straight-forwardly from the
closed-form expressions of gradient and Hessian and using
properties of the activation function.
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Lemma 5 (Self-boundedness of the gradient and Hessian).
Let F be in (1) for the exponential loss f and let Φ be a two-
layer neural network with the activation function satisfying
Assumption 1. Then F satisfies the self-boundedness of gradi-
ent and Hessian with constants h = `R√

m
, H := LR2

m2 + `2R2

m

i.e.,

‖∇F (w)‖≤ hF (w), ‖∇2F (w)‖≤ HF (w).

We conclude this section by offering a few remarks re-
garding our training convergence results. We emphasize that
combining Theorem 1 and Lemmas 2-5 achieves the conver-
gence of training loss of normalized Gradient Descent for
two-layer networks. Moreover, we refer to Proposition 10
in Appendix which presents a continuous time convergence
analysis of normalized GD based on Gradient Flow. This
result is especially relevant in the context of ReLU/leaky-
ReLU activation, where Proposition 10 together with Lemma
4 shows exponential convergence of normalized Gradient
Flow.

Generalization Error
In this section, we study the generalization performance of
normalized GD algorithm. Formally, the test loss for the data
distribution D is defined as follows,

F̃ (w) := E(x,y)∼D

[
f(yΦ(w, x))

]
.

Depending on the choice of loss f , the test loss might not
always represent correctly the classification performance of
a model. For this, a more reliable standard is the test error
which is based on the 0− 1 loss,

F̃0−1(w) := E(x,y)∼D

[
I(y 6= SIGN(Φ(w, x)))

]
.

We also define the generalization loss as the gap between
training loss and test loss. Likewise, we define the general-
ization error based on the train and test errors.

With these definitions in place, we are ready to state our
results. In particular, in this section we prove that under the
normalized GD update rule, the generalization loss at step
T is bounded by O(Tn ) where recall that n is the training
sample size. While, the dependence of generalization loss on
T seems unappealing, we show that this is entirely due to the
fact that a convex-relaxation of the 0 − 1 loss, i.e. the loss
function f , is used for evaluating the generalization loss. In
particular, we can deduce that under appropriate conditions
on loss function and data (c.f. Corollary 7.1), the test error is
related to the test loss through,

F̃0−1(w
T

) = O(
F̃ (w

T
)

‖w
T
‖

).

As we will see in the proof of Corollary 7.1, for normalized
GD with exponentially tailed losses the weights norm ‖w

T
‖

grows linearly with T . Thus, this relation implies that the test
error satisfies F̃0−1(w

T
) = O( 1

n ). Essentially, this bound
on the misclassification error signifies the fast convergence
of normalized GD on test error and moreover, it shows that
normalized GD never overfits during its iterations.

It is worthwhile to mention that our generalization analysis
is valid for any model Φ such that f(yΦ(·, x)) is convex for
any (x, y) ∼ D. This includes linear models i.e., Φ(w, x) =
〈w, x〉 or the Random Features model (Rahimi and Recht
2007), i.e., Φ(w, x) = 〈w, σ(Ax)〉 where σ(·) is applied
element-wise on its entries and the matrix A ∈ Rm×d is
initialized randomly and kept fixed during train and test time.
Our results also apply to kernel methods and in particular
neural networks in the NTK regime due to the convex-like
behavior of optimization landscape in the infinite-width limit.

We study the generalization performance of normalized
GD, through a stability analysis (Bousquet and Elisseeff
2002). The existing analyses in the literature for algorithmic
stability of L̃−smooth losses, rely on the step-size satisfying
ηt = O(1/L̃). This implies that such analyses can not be
employed for studying increasingly large step-sizes as in our
case ηt is unboundedly growing. In particular, the common
approach in the stability analysis (Hardt, Recht, and Singer
2016; Lei and Ying 2020) uses the “non-expansiveness” prop-
erty of standard GD with smooth and convex losses, by show-
ing that for η ≤ 2/L̃ and for any two points w, v ∈ Rd̃,
it holds that ‖w − η∇F (w) − (v − η∇F (v))‖≤ ‖w − v‖.
Central to our stability analysis is showing that under the as-
sumptions of self-boundedness of Gradient and Hessian, the
normalized GD update rule satisfies the non-expansiveness
condition with any step-size satisfying both η . 1

F (w) and
η . 1

F (v) .

Lemma 6 (Non-expansiveness of normalized GD). Assume
the loss F to satisfy convexity and self-boundedness for the
gradient and the Hessian with parameter h ≤ 1 (Definitions
3-4). Let v, w ∈ Rd. If η ≤ 1

h·max(F (v),F (w)) , then

‖w − η∇F (w)− (v − η∇F (v))‖≤ ‖w − v‖.

The next theorem characterizes the test loss for both Lips-
chitz and smooth objectives. Before stating the theorem, we
need to define δ. For the leave-one-out parameter w¬it and
loss F¬i(·) defined as

w¬it+1 = w¬it − ηt∇F¬i(w¬it ),

and

F¬i(w) :=
1

n

n∑
j=1
j 6=i

f(w, zj),

we define δ ≥ 1 to be any constant which satisfies for all
t ∈ [T ], i ∈ [n], the following

F¬i(w¬it ) ≤ δ F¬i(wt).

While this condition seems rather restrictive, we prove
in Lemma 9 in Appendix that the condition on δ is sat-
isfied by two-layer neural networks with sufficient over-
parameterization. With these definitions in place, we are
ready to state the main theorem of this section.
Theorem 7 (Test loss). Consider normalized GD update
rule with ηt = η

F (wt)
where η ≤ 1

hδ . Assume the loss F
to be convex and to satisfy the self-bounded gradient and

9948



Hessian property with a parameter h (Definitions 3-4). Then
the following statements hold for the test loss:

(i) if the loss F is G-Lipschitz, then the generalization loss at
step T satisfies

E[F̃ (w
T

)− F (w
T

)] ≤ 2GT

n
.

(ii) if the loss F is L̃-smooth, then the test loss at step T
satisfies,

E[F̃ (w
T

)] ≤ 4E[F (w
T

)] +
3L̃2T

n
,

where all expectations are over training sets.

As discussed earlier in this section, the test loss depen-
dence on T is due to the rapid growth of the `2 norm of
wt. As a corollary, we show that the generalization error is
bounded by O( 1

n ). For this, we assume the next condition.
Assumption 2 (Distribution Absolute-Margin). There exists
a constant γ̃ such that after sufficient iterations the model
satisfies |Φ(wt, x)|≥ γ̃‖wt‖ almost surely over the data dis-
tribution (x, y) ∼ D.

Assumption 2 implies that the absolute value of the margin
is γ̃ i.e., |Φ(wt,x)|

‖wt‖ ≥ γ̃ for almost every x after sufficient
iterations. This assumption is rather mild, as intuitively it
requires that data distribution is not concentrating around the
decision boundaries.

For the loss function, we consider the special case of logis-
tic loss f(t) = log(1+exp(−t)) for simplicity of exposition
and more importantly due to its Lipschitz property. The use
of Lipschitz property is essential in view of Theorem 7.
Corollary 7.1 (Test error). Suppose the assumptions of The-
orem 7 hold. Consider the neural network setup under As-
sumptions 1 and 2 and let the loss function f be the logistic
loss. Then the test error at step T of normalized GD satisfies
the following:

E[F̃0−1(w
T

)] = O(
1

T
E[F (w

T
)] +

1

n
)

In the proof, we use that ‖wt‖ grows linearly with t as well

as Assumption 2 to deduce F̃0−1(w
T

) = O(
F̃ (w

T
)

T ). Hence,
the statement of the corollary follows from Theorem 7 (i).
Finally, we remark the expected test error is decreasing with
the rate 1/n, which is known to be optimal in the realizable
setting we consider in this paper.

Stochastic Normalized GD
In this section we consider a stochastic variant of normalized
GD algorithm and show that the benefits of normalized gra-
dient methods extend to stochastic settings. Assume zt to be
the batch selected randomly from the dataset at iteration t.
The stochastic normalized GD takes the form,

wt+1 = wt − ηt∇Fzt(wt), (7)

where ∇Fzt(wt) is the gradient of loss at wt by using the
batch of training points zt at iteration t. We assume ηt to be
proportional to 1/F (wt). Our result in this section states that
under the following strong growth condition (Schmidt and
Roux 2013; Vaswani, Bach, and Schmidt 2019), the training
loss converges at an exponential rate to the global optimum.
Assumption 3 (Strong Growth Condition). The training loss
F : Rd̃ → R satisfies the strong growth condition with a
parameter ρ,

Ez[‖∇Fz(w)‖2] ≤ ρ‖∇F (w)‖2.

Notably, we show in Appendix that the strong growth
condition holds for our studied case under the self-bounded
and self-lower bounded gradient property.

The next theorem characterizes the rate of decay for the
training loss. The proof and numerical experiments are de-
ferred to Appendix.
Theorem 8 (Convergence of Training Loss). Consider
stochastic normalized GD update rule in Eq.(7). Assume F
satisfies Assumption 3 as well as the log-Lipschitzness in the
GD path, self-boundedness of the Gradient and the Hessian
and the self-lower bounded Gradient properties (Definitions
1-4). Let ηt = η/F (wt) for all t ∈ [T ] and for any positive
constant η satisfying η ≤ µ2

HCρh2 . Then for the training loss
at iteration T the following bound holds:

F (w
T

) ≤ (1− ηµ2

2
)TF (w0).

Numerical Experiments
In this section, we demonstrate the empirical performance of
normalized GD. Figure 1 illustrates the training loss (Left),
the test error % (middle), and the weight norm (Right) of GD
with normalized GD. The experiments are conducted on a
two-layer neural network with m = 50 hidden neurons with
leaky-ReLU activation function in (6) where α = 0.2 and
` = 1. The second layer weights are chosen randomly from
aj ∈ {± 1

m} and kept fixed during training and test time.
The first layer weights are initialized from standard Gaussian
distribution and then normalized to unit norm. We consider
binary classification with exponential loss using digits “0”
and “1” from the MNIST dataset (d = 784) and we set
the sample size to n = 1000. The step-size are fine-tuned to
η = 30 and 5 for GD and normalized GD, respectively so that
each line represents the best of each algorithm. We highlight
the significant speed-up in the convergence of normalized GD
compared to standard GD. For the training loss, normalized
GD decays exponentially fast to zero while GD converges
at a remarkably slower rate. We also highlight that ‖wt‖ for
normalized GD grows at a rate Θ(t) while it remains almost
constant for GD. In fact this was predicted by Corollary 7.1
where in the proof we showed that the weight norm grows
linearly with the iteration number. In Figure 2, we generate
two synthetic dataset according to a realization of a zero-
mean Gaussian-mixture model with n− 40 and d = 2 where
the two classes have different covariance matrices (top) and
a zero-mean Gaussian-mixture model with n = 40, d = 5
(only the first two entires are depicted in the figure) where
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Figure 1: Comparison of the training loss, test error (in percentage), and weight norm (i.e., ‖wt‖) between gradient descent and
normalized gradient descent algorithms. The experiments were conducted on two classes of the MNIST dataset using exponential
loss and a two-layer neural network with m = 50 hidden neurons. The results demonstrate the performance advantages of
normalized gradient descent over traditional gradient descent in terms of both the training loss and test error.
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Figure 2: The left plot depicts two synthetic datasets, each consisting of n = 40 data points. On the right, we present the training
loss results of gradient descent and normalized gradient descent algorithms applied to a two-layer neural network with m = 50
(top) and 100 (bottom) hidden neurons.

Σ1 = I,Σ2 = 1
4I (Bottom). Note that none of the datasets is

linearly separable. We consider the same settings as in Figure
1 and compared the performance of GD and normalized GD
in the right plots. The step-sizes are fine-tuned to η = 80, 350
and 30, 20 for GD and normalized GD, respectively. Here
again the normalized GD algorithm demonstrates a superior
rate in convergence to the final solution.

Conclusions
We presented the first theoretical evidence for the conver-
gence of normalized GD in non-linear models. While pre-
vious results on standard GD for two-layer neural networks
trained with logistic/exponential loss proved a rate of Õ(1/t)
for the training loss, we showed that normalized GD enjoys
an exponential rate. We also studied for the first time, the
stability of normalized GD and derived bounds on its general-
ization performance for convex objectives including infinitely

wide two-layer neural networks. We also briefly discussed the
stochastic normalized GD algorithm, As a future direction,
we believe extensions of our results to deep neural networks
is interesting. Notably, we expect several of our results to be
still true for deep neural networks. Extending the self lower-
boundedness property in Lemma 4 for smooth activation
functions is another important direction.
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