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Abstract

Accurate estimation of output quantiles is crucial in many use
cases, where it is desired to model the range of possibility.
Modeling target distribution at arbitrary quantile levels and at
arbitrary input attribute levels are important to offer a compre-
hensive picture of the data, and requires the quantile function
to be expressive enough. The quantile function describing the
target distribution using quantile levels is critical for quantile
regression. Although various parametric forms for the distri-
butions (that the quantile function specifies) can be adopted,
an everlasting problem is selecting the most appropriate one
that can properly approximate the data distributions. In this
paper, we propose a non-parametric and data-driven approach,
Neural Spline Search (NSS), to represent the observed data
distribution without parametric assumptions. NSS is flexible
and expressive for modeling data distributions by transform-
ing the inputs with a series of monotonic spline regressions
guided by symbolic operators. We demonstrate that NSS out-
performs previous methods on synthetic, real-world regression
and time-series forecasting tasks.

Introduction
For many machine learning applications, modeling the pre-
diction intervals (e.g. estimating the ranges all individual
predictions observation fall), beyond point estimates, is cru-
cial (Salinas et al. 2020; Wen et al. 2017; Tagasovska and
Lopez-Paz 2019; Gasthaus et al. 2019; Pearce et al. 2018).
The prediction intervals can help with decision making for
retail sales optimization (Simchi-Levi et al. 2008), medi-
cal diagnoses (Begoli, Bhattacharya, and Kusnezov 2019;
Mhaskar, Pereverzyev, and van der Walt 2017; Jiang et al.
2012), information safety (Smith, Dinev, and Xu 2011), fi-
nancial investment management (Engle 1982), robotics and
control (Buckman et al. 2018), autonomous transformation
(Xu et al. 2014) and many others.
To estimate prediction intervals, we would need to estimate
different levels of quantiles for the target distribution using
quantile regression (Koenker and Regression 2005; Wald-
mann 2018). A real-world challenge is to select the paramet-
ric forms of target distributions, which is specified by the
quantile function (also known as the inverse CDF function),
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Figure 1: Modeling multiple quantiles at different condition-
levels with a universal quantile function. The goal is to model
target data distribution y at any arbitrary quantile level and
attribute level X, using one versatile quantile function. Gray
dots are observed data points, while green and blue lines
indicate 25% and 75% quantile levels. The data distribution
y varies at different levels of X, say variance of y increases
when X is away from zero. Red dots are data points at X =
X0, p(Y |X0)).

to properly align with observed data distribution. Different
choices for the target distribution (Gaussian, Poisson, Neg-
ative Binomial, Student-t etc.) may yield different quantile
predictions, and misalignment of the assumption with the real
distribution may hinder the performance of the model. There-
fore, such heuristic or empirical hand-picking based paramet-
ric assumptions for the distribution can be sub-optimal. An
approach based on learning from the data in an automated
way, would be highly desirable, from both foundational and
practical perspectives.
For learnable parametric modeling, one challenge is how to
model all quantiles for all input attributes level in a com-
putationally efficient way. First, modeling an any arbitrary
quantile, as opposed to a couple of pre-defined quantile levels,
offers a more comprehensive view on the target distribution,
and provides convenience to use the quantile model (e.g. no
need to re-train the model when quantiles at testing are dif-
ferent from the ones at training). Second, real-world data can
have complex distributions beyond what simple assumptions
can model. Fig. 1 shows different input attribute X levels
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Figure 2: An example target distribution with a complex
shape, in PDF and CDF space. Black lines are observed target
distributions, in the form of mixture of the other three distri-
butions shown with color. Fitting the black line accurately
would be extremely difficult for most of the commonly-used
single parametric splines, motivating for the use of learnable
spline family composed of multiple splines.

have different dependency dynamics with target y level (i.e.
the variance of y increases when X apart from 0). Fig. 2
shows that the observed distribution cannot trivially fit well
with one single distribution. Therefore, in order to model all
quantiles at all X , we need a quantile function with a com-
plexity that does not increase significantly with number of
input attributes and the number of quantiles. This necessitates
a versatile and highly-expressive quantile function.
There has been many efforts on improving various aspects
of quantile regression. Gasthaus et al. (2019) proposes linear
spline interpolation between knots in the inverse CDF space
to model the target distribution in time-series forecasting
setup. This is proposed to avoid the assumption on paramet-
ric form of the target distribution. Park et al. (2022) and Moon
et al. (2021) focus on learning a valid quantile function with-
out quantile crossing (e.g. quantiles violate monotonically
increasing property), via special design of the neural network
architecture or first-order inequality constraint optimization.
Despite being distribution agnostic, these approaches for de-
scribing the target distribution (specified by quantile function)
are restricted to one function family (e.g. linear spline), which
may limit the expressiveness to represent the target distribu-
tion. In this paper, with the goal of designing an expressive
quantile function for various quantiles and input levels, we
propose a data-driven approach Neural Spline Search (NSS),
which transforms the inputs with a series of monotonic spline
regressions guided by symbolic operators. The contributions
of our paper can be summarized as:

1. We propose an efficient search space and mechanism to
find an expressive quantile function to model the data
distribution, avoiding specifying a parametric form of the
observed distribution as prior.

2. We propose a novel approach to generate an expressive
quantile function using a combination of different distri-
butions and operators guided by symbolic operators.

3. The proposed method can be incorporated into other tasks
(including but not limited to time series forecasting) as
their quantile function.

4. We demonstrate significant accuracy improvements across
numerous regression or time series forecasting tasks. For

example, on UCI benchmarks, we show 3.5%-7.0% im-
provement compared to next best methods.

Related Work
Quantile Regression is used to estimate the target distri-
bution at different quantile levels. The α-quantile estima-
tor is the solution when minimizing quantile loss at level α
(Koenker and Bassett Jr 1978). Another quantile regression
related loss is continuous ranked probability score (CRPS)
(Gneiting and Raftery 2007), which is the averaging over all
quantile levels, instead of one single quantile.
Neural Network Quantile Forecasting. To model sequen-
tial dependency of time series, several forecasting models
propose a hidden state-emission framework ((Salinas et al.
2020; Wen et al. 2017; Gasthaus et al. 2019; de Bézenac
et al. 2020; Wang et al. 2019)), where the dynamics of hid-
den states are modeled by auto-regressive recurrent neural
works (e.g. LSTM), which takes previous hidden states and
current observations as input and outputs current observation.
Different from modeling the likelihood with parametric distri-
butions (e.g. Gaussian (Salinas et al. 2020)), emission models
for quantile estimation is to learn the parameters of quantile
function. The overall framework is optimized by employing
a quantile (Wen et al. 2017) or CRPS (Gasthaus et al. 2019)
loss.
Symbolic Regression has shown great success in many
fields, including program synthesis (Parisotto et al. 2016),
mathematical expressions extraction (Cranmer et al. 2020),
physics-based learning (Li et al. 2019; Petersen et al. 2019).
As the search space is enormous and scaled exponentially
with the length of operators, symbolic regression rule opera-
tors are usually set to be a small number and are learned by
Monte Carlo Tree Search guided evolutionary strategies (Li
et al. 2019) or reinforcement learning (Petersen et al. 2019).

Methods
Learning Quantile Function in Quantile Regression
Let the input data attributes X and the target variable y are
jointly distributed as p(X, y). The conditional cumulative
distribution function (CDF) is F (Y = y|X) = P (Y ≤
y|X). The quantile function, which is also called the inverse
CDF function, takes quantile level as inputs and returns a
threshold value Y below which random draws from the given
CDF would fall quantile percent of the time. Specifically, the
α-th quantile function of y|X = x is denoted as:

q(α, x) = F−1y|X=x(α) = inf{y : F (y|X = x) ≥ α} (1)

Here we can think the quantile function is to perform a
transformation on a uniform-distributed random variable
α ∼ U(0, 1) to the target distribution p(y|X). Quantile
function is able to fully specify a distribution. So specifying
the quantile function is describing the target distribution
p(y|X).

Quantile regression estimates different conditional quantile
levels of the target variable given a certain level of input
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Figure 3: Overview of Neural Spline Search (NSS). Modeling the target data distribution can be done by learning the quantile
function (e.g. inverse CDF), which maps a [0, 1]-variable (quantile) to a target value y. Unlike parametric methods which specify
a distribution family and learn the parameters, NSS can generate the target distribution through a set of transformations on the
inverse CDF space (quantile space), where the transformation is guided by a series of operators. Here, the bottom gray box shows
possible operators (denoted as circles), including but not limited to summation (“+”), scale (“S”), and chaining (“C”). The basis
splines are shown with color-shaded squares. The initial distribution is a uniform distribution, as shown in the leftmost panel
(blue shaded), and the target distribution is the rightmost distribution (purple shaded). There is no obvious parametric distribution
to achieve this transformation. Therefore, NSS is used to search for the suitable transformation through simple operators. In
the first row of the middle panel, we show operators for NSS-sum, where the initial uniform distribution is transformed by
the red- and the yellow-shaded splines (e.g. c-spline) through sum (“+”) and scale (“S”) operators. The second row shows the
chaining transformation of the initial distribution, where the orange and cyan splines are used to transform the initial spline. The
parameters of the splines are learned by a neural network. In general, the operators and transformations in NSS are not limited to
two splines (we represent them as the gray splines next to the yellow and cyan shaded splines).

attributes, as opposed to regression, which estimates the con-
ditional mean of the target variable. In quantile regression,
a particular quantile level α of the conditional distribution
of y given X = x, q(α, x) is estimated by minimizing the
pinball loss ρ (or quantile loss), as the the quantile function
q is shown to be the minimizer of the expected pinball loss
(Koenker and Bassett Jr 1978):

ρα(y, q) = (y − q)(α− 1(y < q)), (2)

q(α, x) = argmin
q

Ey[ρα(y, q)]. (3)

where 1 is the indicator function. One shortcoming of pinball
loss is only measuring the loss at a single quantile level,
which hinders the estimated q for a global picture of the
distribution (i.e. other α levels). On contrast, the continuous
ranked probability score (CRPS) considers all quantile levels
by integrating the pinball loss over α = [0, 1] (Matheson and
Winkler 1976; Gneiting and Raftery 2007).

CRPS(y, q) =
∫ 1

0

2ρα(y, q)dα (4)

As a proper scoring rule (Gneiting and Raftery 2007), CRPS
is minimized when the quantile function is q = F . That is,

F−1y = argmin
q

Ey[CRPS(y, q)]. (5)

Please refer (Koenker and Regression 2005) for detailed
proof.

Improving the Expressiveness of Quantile Function

Fig. 2 demonstrate the need of an expressive quantile func-
tion for modeling target distribution. Inspired from neural
architecture search (NAS) (Elsken, Metzen, and Hutter 2019),
we propose an approach to search for the suitable combina-
tion of distributions. The search is over different operations
and basis distributions. We first introduce parametrization of
quantile function, and the two non-parametric spline-based
distributions.

Parameterizing Quantile Functions We propose to pa-
rameterize the quantile function qθ(α, x) using a deep neural
network with parameters θ. The quantile function is aimed
to be accurate for any quantile levels α and input attributes
level X = x. X is high dimensional in real data, not as the
one dimensional in the toy examples in Fig. 1 and Fig. 2.

C-spline Distribution The c-spline (yα = qcsplieθ (α, x))
describes the CDF (Fig. 2, Right Panel) of a probability
distribution Fy|X by setting K anchor points (denoted as
knots) on the CDF curve and performing linear interpolation
to fill in the gap between the knots. Specifically, the knots
split CDF curve into bins and c-spline learns the width wi
and height hi of bins by neural networks NN that depend on
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the input attributes level X = x.

{wi, hi}K = NNθ(x)

yα = r({wi, hi}K , α) ∀α ∈ [0 : 1]

where hi and wi are non-negative delta values imposed by
non-negative activation (i.e. Relu or Sigmoid), and the loca-
tion of each bin (e.g. Y|X) is Li =

∑i
k=0 wk and quantile

level αi =
∑i
k=0 hk. The accumulation sum design is to en-

sure that quantile function is monotically increasing and there
is no quantile crossing. r is a function to convert knots to
output of quantile function: for quantile level αi that is on the
knots, we can directly read from li , for quantile levels that
are off the knots, quantile values can be computed through
linear algebra operations on the two nearby knots r(α) ={
li +

(α−αi)(lj−li)
αj−αi

, if αi ≤ α ≤ αj 0 ≤ i, j ≤ K
lk, if hk = α

P-spline Distribution The difference between p-spline
from c-spline is having anchor knots in PDF space, instead
of CDF space. Similarly with C-spline, P-spline also per-
form linear interpolation over knots, and the quantile level is
achieved by integration over pdf via polynomial operations.

Neural Spline Search (NSS)
We describe our proposed method, Neural Spline Search
(NSS), which is overviewed in Fig. 3. Similar to symbolic
regression (Parisotto et al. 2016; Li et al. 2019), NSS effec-
tively searches in the space of discrete symbolic operators
and distribution space for a candidate that can better fit the
target data distribution. Specifically, let T (O,S, k) denote the
space of all transformations, via operators O on all distribu-
tion S with a maximum sequence length k. NSS aims to find
the function f(x) selecting operators and distributions in the
space T such that {f(x) ∈ T (O,S, k) : `(f(x), xtrain) ≤ δ
}, where ` denotes loss function CRPS, xtrain is training
data and δ is the acceptance threshold. Given the large search
space composed of combinations of numerous splines and
operators, we restrict to use spline-based distribution as the
basis distribution, and limit the operator search space to sum-
mation and chaining operations upon the transformation basis
spline regressions. Note that this work can be easily extend
to other operations and distributions, which we leave to fu-
ture work. We describe the following NSS transformations as
they are observed to work well consistently across different
datasets: NSS with summation (NSS-sum) and NSS with
chaining (NSS-chain). Algorithm 1 and Fig. 4(b)

NSS-sum

NSS-sum performs transformations using the scale and sum-
mation operators. We represent this scenario with two splines:
Spline 1: c-spline and Spline 2: p-spline, and two operators:
scale O1 : O(a) = λa and summation O2 : O(a, b) : a+ b;
therefore, the overall transformation is (Spline 1-Operator 1) -
(Spline 2-Operator 2), which yields: f = c-spline + λ p-spline.

Algorithm 1: Neural Spline Search
Operators = {+, ×, Scale, Chain, ...}
Splines = {c-spline, p-spline, Gaussian, Cauchy ...}
Data: Quantile level α ∈ [0, 1], N data points

{X ∈ Rd, y ∈ R1}N , d ≥ 1, with chain
depth k. Transform indicates the
transformation using the input spline Sθ and
operator O.

Result: p(y|X) and F−1y|X(α)

k ← 1;
while k ≤ K do

Select O = {Oi}no ∈ Operators ;
Select S = {Sj}ns ∈ Splines ;
θ ←MLP(X) ;
ypred ← Transform(Sθ, O, α);
if α NSS-chain then

Normalize ypred to [0, 1] as y′pred ;
α← y′pred;

else
X ← Y . if X-NSS-chain ;

end
k ← k + 1;

end

Essentially, NSS-sum performs weighted sum of dif-
ferent splines. The motivation behind is that c-spline
with fewer parameters can be more robust against over-
fitting, whereas p-spline increases the expressiveness of
the splines.

NSS-chain
Another proposed NSS design is NSS-chain. We focus
on the chaining operator due to its expressiveness. This
design is inspired by the success of normalizing flow
(Rezende and Mohamed 2015), where a sequence of bijec-
tor transforms is utilized to transform distributions. Differ-
ent from normalizing flow which has practical applicabil-
ity challenges, NSS-chain only requires the forward pass
of the transformation, not the inverse as normalizing flow
does. This significantly reduces the computational com-
plexity and broadens the feasibility of transformations. As
mentioned, quantile function takes input attributes level
(X) to predict the target value (y) at quantile level (α).

y = qθ(X,α), (6)

where X ∈ Rm and α ∈ [0, 1]. We present two designs to
chain different transformations (see Fig. 4 (a)). We note
that chaining of transformation is not limited to the two
designs.

• α-chaining
The α-chaining is when we consider the condition level
(X) unchanged during the chain of transformation, and
the output of each transformation is a scaled version of
quantile level for the next transformation. In particular,
after each transformation, we normalize the output y to
be in the range [0, 1], and then the normalized output is
re-input as the new α to the next transformation. This is
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Figure 4: (a) Illustration of NSS-chain methods. The diagram
demonstrates chaining for NSS-chain. Left: α-chaining. The
output y of the spline, after re-scaling to [0, 1], is re-inputted
to the quantile spline at quantile level α. Right: X-chaining.
The output y is instead re-inputted to the quantile spline as
X . Both rely on input attributes X .

repeated until the maximum depth is reached. This design
is more similar with normalizing flow methods.

y = qθK (X, ...fn(qθ2(X, fn(qθ1(X,α))))) (7)

θk for k=1,2,..K are parameters for different splines in
K-length chain. fn is the normalization function.
• X-chaining
X-chaining is when we consider quantile level α level is
unchanged during chaining, as each transformation learns
a suitable condition level (or feature) for next iteration.
Similarly with α-chaining in the iterative manner, except
that the output y of each transformation is projected to
generate X for the next iteration of Eq. 6.

y = qθK (...qθ2(qθ1(X,α), α), α) (8)

The advantage of this approach, compared tp α-chaining,
is that we keep quantile levels α unchanged, and re-
normalizing output is not needed.

Remarks on NSS: . (1) why a simple spline-based algo-
rithm, e.g. C-spline, is not enough? Although in theory
spline-based algorithms can represent any arbitrary distribu-
tions with sufficiently high number of knots K, in practice,
we find a large K often lead to unstable training, as also
studied in (Park et al. 2022). In contrast, we find the combina-
tion (combined or chained) over a relatively restricted splines
are more robust in capturing the overall of the target distribu-
tion (2) Include both spline-based distribution and classic
parametric distribution In addition to spline-based distribu-
tion, we also encourage incorporating parametric distribution
(e.g. Gaussian) as basis distribution for NSS, especially when
prior knowledge (say Gaussian noise) is available. Because, it
is challenging for spline based methods to reconstruct Gaus-
sian distribution even with infinite number of knots; and , the
benefits of combining the two are the parametric distribution
offers advantage of classic statistics and robust to noise, and
the non-parametric spline offers flexibility.

Training
Once we select the operators and splines, the
parameters of the splines are trained in an

end-to-end way by optimizing CRPS (Eq. 4).

Algorithm 2: Training with CRPS

Data: N data points {Xi ∈ Rd, yi ∈ R1}Ni=1, m
quantile levels, T transformation, which
takes selected splines Sselect and selected
operators Oselect from NSS. lr is learning
rate.

Result: Neural network weights θ
e← 1;
while e ≤ Nepoch do

f = Transform(Sselect, Oselect) `← 0 ;
for α in [0, 1

m , 2
m , ..1] do

ypredα = fθ(X , α) ;
`← ` + pinball_loss (ypredα , y, α)

end
CRPS = `/m ;
θ ← θ − lr · ∇θ CRPS ;
e← e+ 1;

end

Algorithm 2 overviews the training of NSS for spline parame-
ter selection. Because of the form of the transformations, the
analytical solution of CRPS integration is intractable. Thus,
we use a Monte Carlo estimation for the CRPS loss. In par-
ticular, we sample m number of α values from the range of
[0, 1] and average them for the corresponding pinball loss.
Specifically, during training, we fit parameters by optimizing
over with the empirical mean of CRPS over N data points:

θ∗ = argmin
θ

1/N
N∑
i=1

Ey[CRPS(y, qθ(Xi, α))]. (9)

Experiments
Comparison Methods
QD (Pearce et al. 2018) generates prediction intervals (PIs)
for estimating uncertainty for regression tasks with the as-
sumption that high-quality PIs should be as narrow as possi-
ble. Deep Quantile Aggregation (Kim et al. 2021) proposes
weighted ensembling strategies where aggregation weights
vary over both individual models and feature values plus
(pairs of) quantile levels. The monotonization layer in the
network is applied to avoid crossing of quantile estimates.
RQspline (Durkan et al. 2019) proposes a fully-differentiable
module based on monotonic rational-quadratic splines, which
enhances the flexibility of coupling and autoregressive trans-
forms while retaining analytic invertibility. Global-Coarse
(Ratcliff 1979) provides an analysis of distribution statis-
tics of group reaction time distributions. MLE (NB) and
Mix. MLE are Negative Binomial and mixture likelihood
based methods (Awasthi et al. 2021). C-spline is proposed in
(Gasthaus et al. 2019), where C-spline is used as the quantile
function in time-series forecasting.

Metrics
For point predictions, we focus on the following metrics:
Mean absolute error (MAE): 1

n

∑n
t=1 |Tt−Pt| where Tt and
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Methods Boston Concrete kin8nm Power Protein Wine
Gaussian 0.0754 0.0564 0.048 0.0449 0.2116 0.0978
QD 0.5003 0.4150 0.3945 0.3688 0.6689 0.4456
RQspline 0.0917 0.0622 0.0479 0.0485 0.2153 0.0912
p-sline 0.0778 0.0570 0.0444 0.0453 — 0.0966
c-spline 0.0806 0.0543 0.0430 0.0447 0.2002 0.0947
NSS-X-chain 0.0787 0.0588 0.0430 0.0448 0.2052 0.0962
NSS-α-chain 0.0846 0.0568 0.0417 0.0448 0.2067 0.0976
NSS-sum 0.0709 0.0512 0.0414 0.0442 0.1949 0.0957
Gain percentage 12.0% 17.7% 3.7% 1.1% 2.6% -

Table 1: Mean Absolute Error (MAE) on UCI benchmarks. Test performance of the proposed method (NSS) and existing
methods on UCI benchmarks. We use the 50th quantile estimator as our estimates. The dash indicates unavailability. The shaded
area is the proposed methods. Bold is the top one. Lower is better. Gaussian: Gaussian kernel; QD is quantity-driven methods
proposed in (Pearce et al. 2018); RQ spline proposed in (Durkan et al. 2019); c-spline proposed in (Gasthaus et al. 2019).
Boston, Concrete, Power is short for Boston Housing, Concrete Strength, Power Plant. Gain percentage is computed as (best nss
- best baseline)/best baseline.

Pt are true and predicted value; Mean Absolute Percentage
Error (MAPE): 1

n

∑n
t=1 |

Tt−Pt

Tt
|. Weighted Average Percent-

age Error (WAPE):
∑n

t=1 |Tt−Pt|∑n
t=1 |Tt| ; and Root Mean Square

Error (RMSE):
√∑N

t (Tt−Pt)2

n . For quantile predictions, we
use the Pinball Loss (Eq. 2), with 50%-th, Q50; 90%-th, Q90;
and 10%-th Q10 quantiles.

Training
For simplicity, the proposed NSS methods use depth-
2 splines, which contain {(c-spline, p-spline), (c-
spline, p-spline), (c-spline, c-spline), (p-spline, p-
spline)}. NSS-sum is tuned with λ in the range of
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. NSS-chain nor-
malizing of y in α chaining can be achieved by applying
sigmoid layer or scaling by max value. As splines are
monotonically-increasing functions, the spline value y with
α = 0 is the minimum value of y and α = 1 yields the
maximum value of y. Scale is yscale = y−ymin

ymax−ymin
. We use

a batch size=128 and a learning rate of 0.005 for 100 epochs.

Results
To demonstrate the effectiveness of proposed methods, we
conduct experiments on synthetic, real-world tabular regres-
sion, and time series forecasting datasets.

Synthetic Data
Dataset. We generate 2000 data points (X ∈ R1 and
y ∈ R1), where X is in the range of [−2, 2] and y has Gaus-
sian distribution y ∼ N (0.3 sin(3x), 0.2x2), where sin is the
sinusodial function. We construct the validation and test sets
to come from the same distribution. Unlike real-world data,
the synthetic data would have known quantile levels, that can
be used for evaluating the accuracy of quantile estimates. We
make the task more challenging by setting a data-dependent
variance for the Gaussian noise to evaluate the ability of learn-
ing condition-specific quantile values. Fig. 5 shows that the
proposed NSS-chain and NSS-sum can capture the true under-
lying quantiles, whereas QD (Pearce et al. 2018) struggles on
the varying variance locations (e.g. around x = 0). The upper
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Figure 5: NSS on Synthetic data. We compare the per-
formance of proposed NSS against existing methods QD
(Pearce et al. 2018). The red dots are observed data points,
shaded red area is the ground truth 2.5% and 97.5% quantile
levels, and the dark black lines are the predicted 2.5% and
97.5% quantile levels.

and lower black lines are the predicted 2.5%-th and 97.5%-th
quantiles for the observed data (e.g. red dots), shown along
with the ground truth quantiles (e.g. shaded red area). The
results indicate that more expressive NSS transformations
are superior in more challenging scenarios, where true data
points are distributed differently (e.g., distributions depend
on the value of the inputs"). Fig. 6 shows the calibration plot
of the predicted vs. true distributions at different quantile
levels. Here, we show the true percentile p as the fraction of
data in the dataset such that the p percentile of the predictive
distribution is larger than the ground truth data. The perfect
prediction would be the diagonal line. Fig. 6 indicates that
the proposed methods NSS-sum and NSS-chain can capture
the proposed true distribution at various levels by close to the
red line, whereas QD does not fit as well.

Real-world Tabular Regression
We use UCI benchmarks (Dua and Graff 2017)
We evaluate the accuracy for both point predictions and quan-
tiles. As the point predictions, we use the 50th quantile es-
timator as our estimates. Table 1 shows that the proposed
NSS methods outperform the other existing methods on most
datasets in mean absolute error (MAE). We observe that
the NSS-sum performs better than NSS-chain. For quantile

9932



Methods Boston Concrete kin8nm Power Protein Wine
Gaussian 0.0276 0.0203 0.0171 0.0158 0.0725 0.0357
Global-Coarse∗ 0.0745 0.0596 0.0681 0.0473 0.1321 —
Deep Quantile Aggregation∗ 0.0754 0.0541 0.0684 0.0441 0.1253 —
QD 0.1212 0.1076 0.1004 0.0972 0.1547 0.1164
RQspline 0.0458 0.0418 0.0203 0.0189 0.0863 0.0424
p-sline 0.0308 0.0211 0.016 0.0160 — 0.0358
c-spline 0.0312 0.0198 0.0157 0.0159 0.0688 0.0351
NSS-X-chain 0.0311 0.0216 0.0165 0.0162 0.0707 0.0358
NSS-α-chain 0.0322 0.0208 0.0151 0.0159 0.0726 0.0363
NSS-sum 0.0265 0.0191 0.0152 0.0157 0.0674 0.0357
Gain percentage 4.0% 3.5% 3.8% 0.6% 7.0% -

Table 2: Average pinball loss on UCI benchmarks. The test pinball loss (the lower, the better) is over 99 quantile levels,
α = {0.01, 0.02, ...0.99}. The compared methods are Global-Coarse proposed in (Ratcliff 1979); QD (Pearce et al. 2018); Deep
Quantile Aggregation (DQA) (Kim et al. 2021); RQspline (Durkan et al. 2019); ∗ indicates entries are from (Kim et al. 2021)
(under the same experiment setup).

Methods MAPE WAPE RMSE Q50 Q90 Q10
MLE (NB) 0.44434 0.27240 7.70958 0.27240 0.10907 0.15275
Mix MLE 0.44839 0.26838 7.22556 0.26838 0.10293 0.14508
c-spline 0.44672 0.26635 7.06332 0.26635 0.10238 0.14241
p-spline 0.44912 0.26834 7.14643 0.26834 0.10343 0.14333
NSS-sum 0.44501 0.26545 6.96697 0.26545 0.10238 0.14266
NSS-chain 0.44883 0.26420 6.91726 0.26420 0.10243 0.14149

Table 3: Performance comparisons for time series forecasting on M5. Different evaluation metrics are included in this table for
M5. Detailed descriptions of the metrics are in Sec . Qk indicates the pinball loss of k-th quantile. e.g. Q50 is the pinball loss of
50th quantile. Lower is better.
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Figure 6: Calibration plots. Predicted vs. ground truth per-
centiles at condition levels: X=0.5, 1.0 and 1.5. The perfect
calibration would correspond to the diagonal (red dotted)
line.

metrics, we use the pinball loss (Eq. 2) over 100 quantile
levels α = {0.01, 0.02, ...0.99} in Table 2. The results in-
dicate that NSS consistently outperforms other alternatives
across different UCI benchmarks. In pinball loss, NSS-sum
performs better than NSS-chain. We attribute the superiority
of NSS-sum for regression to make balance between different
transformation, which is helpful in explaining the variance in
the data.

Retail Demand Forecasting
For time series forecasting, we focus on the M5 dataset,
which contains time-varying sales data for retail goods, along
with other relevant covariates like price, promotions, day
of the week, special events etc. It represents an important
real-world scenario, where the accurate estimation of the
output distribution is crucial, as retailers use them to optimize
prices or promotions.

The time series forecasting experiments are conducted by
performing one-step ahead prediction, yielding predictions
in an autoregressive way. Table 3 shows the results of
our method compared to other alternatives. We observe
consistent outperformance of NSS in various forecasting
evaluation metrics. Different from regression tasks, we
observe that NSS-chain is better than NSS-sum, indicating
its benefit in capturing time-dependent relationship.

Remarks on NSS-sum vs NSS-chain. The results show that
NSS-sum is superior on regression, while NSS-chain has
advantages on time series forecasting. The observations may
indicate NSS-sum is suitable for more constrained tasks (e.g.
regression, one time step time series-forecasting), where be-
ing moderately expressive would suffice. NSS-sum is also
more robust and easier to train. On the other hand, NSS-chain
may be more expressive, which is beneficial to fit tasks re-
quires more complex distributions at different time steps of
the time series, but for individual step NSS-chain is not as
accurate as NSS-sum in fitting the distribution.

Conclusion
We propose a novel approach for modeling uncertainty. The
proposed Neural Spline Search (NSS) method employs a se-
ries of monotonic spline regression transformations, guided
by symbolic operators. We demonstrate the effectiveness of
NSS for superior modeling of output distributions, on both
synthetic and real-world datasets. We leave the extensions to
different operators and splines, including parametric distribu-
tion transformations to future work.
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