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Abstract
In this work, we propose Fair-CDA, a fine-grained data aug-
mentation strategy for imposing fairness constraints. We use a
feature disentanglement method to extract the features highly
related to the sensitive attributes. Then we show that group
fairness can be achieved by regularizing the models on transi-
tion paths of sensitive features between groups. By adjusting
the perturbation strength in the direction of the paths, our pro-
posed augmentation is controllable and auditable. To alleviate
the accuracy degradation caused by fairness constraints, we
further introduce a calibrated model to impute labels for the
augmented data. Our proposed method does not assume any
data generative model and ensures good generalization for
both accuracy and fairness. Experimental results show that
Fair-CDA consistently outperforms state-of-the-art methods
on widely-used benchmarks, e.g., Adult, CelebA and Movie-
Lens. Especially, Fair-CDA obtains an 86.3% relative im-
provement for fairness while maintaining the accuracy on the
Adult dataset. Moreover, we evaluate Fair-CDA in an online
recommendation system to demonstrate the effectiveness of
our method in terms of accuracy and fairness.

Introduction
Many machine learning systems have achieved empirically
success in practical problems but may sometimes raise is-
sues of discrimination and unfairness. In job candidate
search, different protected groups (e.g., gender and ethnic
groups) may be treated unfairly in terms of their members
appearing in recommended candidate lists (Ekstrand et al.
2021). In the context of information retrieval, unfairness
may happen among multiple parties. For example, unfair ex-
posure allocation may favour monopolies and drive small
content providers out of the market (Morik et al. 2020). This
reduces diversity and impairs the whole ecosystem.

There have been various studies to impose fairness con-
straints during training procedure (Zemel et al. 2013; Hardt,
Price, and Srebro 2016; Zafar et al. 2017; Chuang and
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Mroueh 2021), ensuring that different groups shall be treated
similarly. However, these constraints are data-dependent,
the learnt fair classifiers might not generalize at evaluation
time. Agarwal et al. (2018) and Cotter et al. (2019) con-
sider two-player games to formulate the constrained opti-
mization problem and analyze the solutions and generaliza-
tion guarantees. Chuang and Mroueh (2021) proposes Fair
Mixup to generate a path of distributions that connects sen-
sitive groups and regularize the smoothness of transitions
among the path to improve the generalization of group fair-
ness metrics. They show that their strategy ensures a better
generalization for both accuracy and fairness in a wide range
of benchmarks.

Motivated by Fair Mixup, we propose Fair-CDA, a con-
tinuous and directional augmentation method, to seek a fine-
grained balance between fairness and accuracy. An overview
of our method is illustrated in Figure 1.
Accuracy. The Mixup (Zhang et al. 2018) generates aug-
mented samples via convex combinations of pairs of data
points. However, the between-group augmentation performs
Mixup on both sensitive attributes and non-sensitive at-
tributes. This may change the correlation between non-
sensitive attributes and the targets and further lead to the fall
of prediction accuracy. What’s more, Verma et al. (2019)
shows that interpolations in deeper hidden layers, which
capture higher-level information (Zeiler and Fergus 2014),
can provide additional training signal and smooth decision
boundaries that benefit generalization. Therefore we develop
a fine-grained augmentation via feature disentanglement and
focus on the transitions over sensitive features.

We decompose representations in latent space into sensi-
tive and non-sensitive features via DecAug (Bai et al. 2020),
which is a powerful feature disentanglement technique for
Out-of-Distribution (OoD) generalization. The sensitive fea-
tures encode the information that is strongly correlated to
the sensitive attributes, while the non-sensitive features re-
tain as much other information (essential for prediction) as
possible. Then we apply semantic augmentation on the sen-
sitive features aiming to generate features correlated to the
opposite sensitive attributes. The augmented sensitive fea-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9918



Figure 1: An overview of the proposed Fair-CDA.

tures combined with the original non-sensitive features form
what we refer to as the augmented features.
Fairness. We eliminate the disparities of the predictions
made by a task model via training the model to make the
same decisions for the samples with the original features and
with the corresponding augmented features. So the augmen-
tation strategy determines the level of fairness. However, it
is not easy to control Mixup by tuning the distribution of the
interpolation weight, which is usually a Beta distribution.
According to Zhang et al. (2021), we consider adversarial
training with random perturbation size to augment sensitive
features more related to the opposite sensitive attribute. The
perturbation budget of the adversary becomes a key hyper-
parameter that monitors the generation procedure and con-
trols the degree of fairness. When the perturbation is signifi-
cant, the augmented features can be classified into the oppo-
site group with a high probability. Then the classifier learnt
with large perturbations becomes fairer against the sensitive
attribute.

A potential competitive edge of our approach is that we
can audit a learnt model at the individual level based on
objective criteria: whether the task model is robust to the
perturbation of the attribute classifier. Given an individual,
the key problem for testing discrimination is to simulate
the corresponding individual with a different protected at-
tribute. The white-box framework, Counterfactual Fairness
(Kusner et al. 2017) can accurately detect the bias and un-
derstand how the model discriminates. But the reliance on
a known causal mechanism limits its application scenarios
and may fail to identify instances of legally actionable dis-
crimination. Some black-box techniques generate mirror in-
dividuals via a learnt generative model, e.g. FlipTest (Black,
Yeom, and Fredrikson 2020). Notice that central to assess-
ing fair data generation is a learnt predictor for the sensitive
attribute. However, an intuitive question arises: had an in-

dividual been of an opposite sensitive attribute, would the
attribute predictor output the opposite attribute? Without a
white-box assumption, the optimal Bayesian classifier may
fail to predict the opposite attribute for some individuals, and
then the audits run the risk of becoming circular verification.
The proposed method does not suffer from this problem due
to the controllable augmentation. The perturbation budget
during training presents a quantitative standard to perform
the model audit.

We summarize the contributions as follows:

• We propose Fair-CDA that precisely applies augmenta-
tion for sensitive features to achieve fairness while com-
promising little accuracy.

• The proposed augmentation is controllable by tuning the
perturbation budget of the adversary and provides an au-
dit criterion via adversarial robustness.

• Extensive experiments show that Fair-CDA significantly
outperforms state-of-the-art methods in various settings,
which is effective and scalable. For instance, Fair-CDA
can be applied to different backbones, different tasks, and
real application scenarios.

Preliminaries
Suppose that data points {(xi, yi)} are drawn according to
some unknown joint distribution over X × Y with X ⊆ Rd.
Let A denote the given sensitive attribute that should not be
treated differently in decision-making. Without loss of gen-
erality, we consider a binary classification task Y = {0, 1}
with a binary sensitive attribute A ∈ {0, 1}. Let Ŷ be the
predictor, a random variable that is produced by a model
f : X → [0, 1] as a prediction of Y . In this work, we fo-
cus on two widely-used group fairness constraints: Demo-
graphic Parity (DP) (Dwork et al. 2012) and Equalized Odds
(EO) (Hardt, Price, and Srebro 2016).
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Demographic Parity. A predictor Ŷ satisfies demographic
parity (DP) if P (Ŷ | A = 0) = P (Ŷ | A = 1). DP requires
Ŷ to be statistically independent of A. In real-world appli-
cations, we use DP as the definition to ensure fairness when
historically biased decisions may have affected the quality
of the collected data and we want to see minority groups re-
ceiving positive decisions at the same rate. To evaluate the
fairness of a trained model f under this definition, we use
the following relaxed metric (Madras et al. 2018; Chuang
and Mroueh 2021):

∆DP (f) =
∣∣E[f(X)|A = 0]− E[f(X)|A = 1]

∣∣.
To fulfill the requirement of DP, the evaluation metric
∆DP (f) shall go to zero. Since for certain predictions, such
as hobbies or expertise, there are indeed differences be-
tween groups, meeting the mandatory requirements of DP
will greatly decrease the prediction accuracy. Hence, the fol-
lowing alternate criterion is proposed to overcome the limi-
tations of DP.
Equalized Odds. A predictor Ŷ satisfies equalized odds
(EO) if P (Ŷ | A = 0, Y = y) = P (Ŷ | A = 1, Y = y),
for any y ∈ {0, 1}. EO requires Ŷ to be independent of A
conditioned on Y . In real-world applications, we use EO as a
criterion to ensure fairness if there are strict requirements for
making correct predictions and we strongly care about the
qualifications of candidates when making decisions. Simi-
larly, to evaluate the fairness of a trained model f under EO,
we use the following metric (Madras et al. 2018; Chuang
and Mroueh 2021):

∆EO(f) =
∑

y∈{0,1}

∣∣∣E[f(X)|A = 0, Y = y]

−E[f(X)|A = 1, Y = y]
∣∣∣.

Different from DP, EO considers the possible correlation be-
tween Y and A, it does not rule out the perfect predictor even
when the base rates differ across groups.

Fair-CDA
To fulfill the fairness constraint, we shall reduce the depen-
dence of model predictions on sensitive attributes. Simply
removing the sensitive attributes from the inputs does not
necessarily lead to a non-discriminatory model prediction,
as other attributes in the inputs might encode information for
inferring the sensitive attributes (Dwork et al. 2012; Feld-
man et al. 2015). Hence, we need to decompose the repre-
sentations of the inputs into sensitive and non-sensitive fea-
tures. Sensitive features encode information that can identify
whether the inputs belong to a certain group determined by
the sensitive attributes, while non-sensitive features retain
as much other information as possible (Zemel et al. 2013).
Moreover, we shall obfuscate the sensitive features to obtain
a fair model. To decompose the high-level representations of
the inputs, we train a task model to predict both data labels
and sensitive attributes with an orthogonality constraint on
gradients for the intermediate features (Bai et al. 2020).
Feature Disentanglement. Consider a task with training
data {(xi, yi, ai)}ni=1. To decompose the representations, we

denote three feature extractor: h, hy and ha, and write their
output features as

zi = h(xi), zyi = hy(zi), zai = ha(zi).

The mapping h is a pre-extractor that learns the high-level
representations of the input. Then ha and hy are two addi-
tional extractors after h to obtain sensitive and non-sensitive
features. The principle here is to enforce hy to extract fea-
tures that affect the label prediction loss the most will not
affect the sensitive attribute prediction loss and vice versa.
Therefore we design a regularization term as follows:

β(Ly
i + La

i + L⊥
i ), (1)

where β is a tuning parameter and

Ly
i := Ly

i (h, hy, gy) = ℓ(gy(z
y
i ), yi),

La
i := La

i (h, ha, ga) = ℓ(ga(z
a
i ), ai),

and

L⊥
i := L⊥

i (hy, ha, gy, ga) =
⟨∇ziL

y
i ,∇ziLa

i ⟩2

∥∇ziL
y
i ∥2 · ∥∇ziLa

i ∥2
.

Here gy and ga are two classifier to predict y and a and ℓ is
the cross-entropy loss. The term L⊥

i imposes a constraint on
gradient orthogonality to disentangle features. To estimate
the feature extractors and the classifiers, Stage 1 of Fair-
CDA (Figure. 1) minimizes the objective function:

1

n

n∑
i=1

Li + β(Ly
i + La

i + L⊥
i ),

where Li is the loss function of the task model g over the
disentangled features:

Li := Li(h, hy, ha, g) = ℓ(g([zyi , z
a
i ]), yi). (2)

Semantic Augmentation. In Stage 2 of Fair-CDA, we do
an intervention on the sensitive features to mitigate unfair
biases. Intuitively, a model satisfies the requirement of the
fairness constraint if it can make the same prediction for
two samples with different sensitive features but the same
other features (Kusner et al. 2017). We augment the sensi-
tive features along the direction of increasing the attribute
prediction loss La

i :

z̃ai = zai + αi

∇za
i
ℓ(ga(z

a
i ), ai)∥∥∇za

i
ℓ(ga(zai ), ai)

∥∥ , (3)

where αi is a perturbation size. Since the direction of the
gradient is the direction in which the loss increases most
rapidly, augmentation in this way changes zai to the features
corresponding to the other sensitive attribute.
Transition Path. Chuang and Mroueh (2021) interpolates
the transition path between groups via Mixup. Zhang et al.
(2021) proves that the adversarial loss can be bounded above
by the Mixup loss. Therefore we generate the transition path
over sensitive features by randomizing the perturbation size.
In this work, we assume αi is a random variable follows a
uniform distribution over [0, λ]. Here λ is the perturbation
budget of (3) that controls the strength of the augmentation.
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After obtaining the generated sensitive features z̃ai , we con-
catenate them with the non-sensitive features zyi and train
the task model g with {([zyi , z̃ai ], yi)}. The loss function of
g over the augmented features is denoted by

L̃i := L̃i(h, hy, ha, g) = ℓ(g([zyi , z̃
a
i ]), yi). (4)

together with the aforementioned losses L1
i , L2

i and L⊥
i .

Different from existing works (Lahoti, Gummadi, and
Weikum 2019; Zafar et al. 2017; Chuang and Mroueh 2021),
our method strikes a balance between accuracy and fairness
via adjusting the perturbation budget λ. When the perturba-
tion is large, the augmented features can be classified into
the opposite group with a high probability. Then the clas-
sifier learnt with large perturbations becomes fairer against
the sensitive attribute.
Imputation Model. In Stage 2, we use the labels of the
original samples to mark the corresponding augmented fea-
tures. This is based on the intuition that a model is non-
discriminatory if it makes the same prediction for two sam-
ples only differing in sensitive features. However, for cer-
tain predictions, there are indeed correlations between la-
bels and sensitive features. Enforcing the model to meet the
mandatory requirement of the fairness constraint and ignor-
ing the possible correlations between labels and sensitive
features may decrease the prediction accuracy a lot. To fur-
ther improve the prediction accuracy, we introduce an im-
putation model to calibrate the labels of the augmented fea-
tures. Specifically, the Stage 1 solution of the task model,
denoted by ǧ, is taken to be the imputation model to label
the augmented features: y̌i = ǧ([zyi , z̃

a
i ]). The loss of pre-

dicting y̌i is denoted by

Ľi = Ľi(h, hy, ha, g) = ℓ(g([zyi , z̃
a
i ]), y̌i). (5)

The task model is then trained to predict both the original
labels and the labels given by the imputation model. We for-
mulate the final problem of Fair-CDA as minimizing:

1

n

n∑
i=1

γL̃i + (1− γ)Ľi + β(L1
i + L2

i + L⊥
i ), (6)

where γ is a hyper-parameter balancing L̃i and Ľi. For time-
saving, our method initializes with the imputation model to
solve the optimization problem in (6).
Summary. As mentioned above, Fair-CDA balances the pre-
diction accuracy and fairness via adjusting the perturbation
strength λ. The algorithm is summarized in Algorithm 1.
Stage 1 disentangles features and learns the task model with
the original training samples. In Stage 2, we fine-tune the
task model with the augmented features to achieve fairness.

Our method introduces three additional hyper-parameters:
two weights of different losses β and γ, and perturbation
budget λ. In the experiment, we set β according to the initial
loss values to make different loss values in the same magni-
tude range. We adjust γ on the Adult dataset (Dua and Graff
2017) to get the best accuracy and fairness trade-off on the
validation set and then adopt the same value which is 0.9
for all the datasets. Our method balances the prediction ac-
curacy and fairness via adjusting the perturbation strength

Algorithm 1: Fair-CDA: Continuous and Directional Aug-
mentation for Group Fairness

Input: Training data {(xi, yi, ai)}ni=1, batch sizes b, learning rate
η1, η2, perturbation strength λ, weights γ, β, iteration number
T , S

Output: θ = (h, hy, ha, g, gy, ga);
Stage 1:

1: Initialize θ(0) = (h(0), h
(0)
y , h

(0)
a , g(0), g

(0)
y , g

(0)
a );

2: for 1 ≤ t ≤ T do
3: Sample a batch of training data {(xi, yi, ai)}bi=1;
4: Compute Li, Ly

i , La
i , and L⊥

i according to Eq. (1) and
Eq. (2)

5: Update θ

θ(t) = θ(t−1) − η1
b

b∑
i=1

∇θ

(
Li + β(Ly

i + La
i + L⊥

i )
)
;

6: end for
Stage 2:

7: for 1 ≤ s ≤ S do
8: Sample a batch of training data {(xi, yi, ai)}bi=1;
9: for each (xi, yi, ai) do

10: Compute zyi = h
(T+s−1)
y ◦ h(T+s−1)(xi) and zai =

h
(T+s−1)
a ◦ h(T+s−1)(xi);

11: Compute Ly
i , La

i and L⊥
i ;

12: Randomly draw αi according to U(0, λ);
13: Generate z̃ai according to Eq. (3);
14: Compute L̃i according to Eq. (4);
15: Impute the label ỹi = g(T )([zyi , z̃

a
i ]);

16: Compute Ľi according to Eq. (5);
17: end for
18: Update θ:

θ(T+s) =θ(T+s−1) − η2
b

b∑
i=1

∇θ

(
γL̃i + (1− γ)Ľi

+ β(Ly
i + La

i + L⊥
i )

)
;

19: end for

λ, while previous works (Chuang and Mroueh 2021; Zhang,
Lemoine, and Mitchell 2018) balance them via adjusting the
weights of the regularization terms. On different datasets,
we first conduct experiments with λ = 0, 1, 10, 100, 1000
to narrow down the range of λ and then, do grid search
between the determined range of λ (reported in Appendix)
with a budget of 20 points to generate the Pareto Front in
Figure 2,5,6,7. In real-world applications, the number of grid
search points can be determined according to the budget.

Experiments on Public Datasets
We evaluate Fair-CDA on tabular dataset Adult (Dua and
Graff 2017), vision dataset CelebA (Liu et al. 2018), and rec-
ommender dataset MovieLens (Harper and Konstan 2015).
We demonstrate the effectiveness of Fair-CDA across di-
verse tasks and task models. In the ablation studies, we
examine the contributions of feature decomposition and
the imputation model. We compare Fair-CDA with other
baseline methods: ERM, GapReg (Chuang and Mroueh
2021), AdvDebias (Zhang, Lemoine, and Mitchell 2018),
and Mixup / Manifold Mixup (Chuang and Mroueh 2021)
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Task Attribute Label Ratio
Adult Female Salary<= 50k 88.7%

Female Salary> 50k 11.3%
Male Salary<= 50k 68.5%
Male Salary> 50k 31.5%

CelebA Female Not Smiling 46.2%
(Smiling) Female Smiling 53.8%

Male Not Smiling 60.1%
Male Smiling 39.9%

CelebA Female Not Wavy Hair 55.3%
(Wavy Hair) Female Wavy Hair 44.7%

Male Not Wavy Hair 85.7%
Male Wavy Hair 14.3%

CelebA Female Not Attractive 31.7%
(Attractive) Female Attractive 68.3%

Male Not Attractive 72.1%
Male Attractive 27.9%

MovieLens Minority Not Recommend 41.4%
Minority Recommend 58.6%
Majority Not Recommend 44.1%
Majority Recommend 55.9%

Table 1: Statistical data of different tasks on three datasets.

using two metrics: prediction accuracy and fairness. To mea-
sure the accuracy, we use Average Precision (AP) for tab-
ular (Adult) and vision (CelebA) tasks, and Area Under
Curve (AUC) for recommender (MovieLens) task. To mea-
sure fairness, we use two widely-used fairness metrics: De-
mographic Parity (DP) and Equalized Odds (EO) which are
defined in Preliminaries. Also, we compare our method with
FFAVE and β-VAE following the setting in (Creager et al.
2019). Please refer to the Appendix for more details about
the datasets.
Unjustified biases from the observed data. We count the
imbalance in the number of training data across sensitive at-
tribute groups and the detailed statistical data are shown in
Table 1. In the Adult dataset, the proportion of males with
high salaries is significantly higher than that of females. In
the CelebA dataset, the proportion of males with a posi-
tive label is significantly lower than that of females. In the
MovieLens dataset, movies from minority producers also
have different positive rates from that of another group. All
these imbalances and biases can be inherited and amplified
by the models.
Implementations. Our framework is implemented with Py-
Torch 1.4 (under BSD license), Python 3.7, and CUDA v9.0.
For the baseline methods, we implement with PyTorch 1.3.1
to keep the same setting as their source code. We conducted
experiments on NVIDIA Tesla V100. The results of baseline
methods on Adult and CelebA are referenced from (Chuang
and Mroueh 2021), while the results of baseline methods on
MovieLens are implemented by ourselves.

Results and Discussion
Results on Adult dataset. Fair-CDA achieves State-Of-
The-Art (SOTA) performance in terms of both fairness and
accuracy on the Adult dataset, as shown in Figure 2. ERM
has a moderate AP but poor fairness, while GapReg achieves
better fairness but lower AP than ERM. It utilizes the fair-
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Figure 2: The trade-off between AP and ∆DP / ∆EO on
Adult dataset.

Figure 3: The trend of loss and performance during two
stages on Adult dataset. The orange color in the figure cor-
responds to Stage 1, while the blue color represents Stage 2.
In Stage 1, Fair-CDA mainly optimizes the prediction ac-
curacy, while in Stage 2, Fair-CDA mainly optimizes the
model fairness.

ness constraint in the training phase, which lacks generaliza-
tion at evaluation time. Fair Mixup achieves a better trade-
off compared to the previous three methods but is dominated
by Fair-CDA. In particular, Fair-CDA is the only method
consistently achieving a higher AP than ERM under two
fairness constraints.

To evaluate the feature augmentation, we sample 1,000
training samples from the Adult dataset, extract the sensitive
features with the trained model, and generate the augmented
features. The trained gender classifier, whose prediction ac-
curacy is 86.8% when using the original sensitive features,
predicts opposite labels for all the augmented features. This
means the augmentation policy successfully generates the
features corresponding to the opposite sensitive attribute.

To evaluate the prediction accuracy of the imputation
model on the augmented samples, we select all the pairs of
training samples (208 pairs in total) with the same other at-
tributes but different sensitive attributes and different labels.
Intuitively, an accurate imputation model should predict the
opposite label for the augmented samples since every aug-
mented sample has a real sample with an opposite label cor-
responding to it. The imputation model predicts the oppo-
site label on 258 augmented samples (out of 416 samples),
which means the prediction accuracy of the task model can
be improved with label calibration.

To better understand the training process of Fair-CDA, we
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Figure 4: Saliency map on the wavy hair recognition task.
The saliency maps of sensitive features focus more on the
whole face, while those of non-sensitive features focus more
on the hair of a man/woman.

plot the trend of loss and performance during two stages on
the Adult dataset, as shown in Figure 3. Stage 1 stands for
the process of the model trained with original data, while
Stage 2 stands for that of the model trained with augmented
data. At the beginning of Stage 1, the model is initialized
with random parameters (without pre-training). The mean
value of the output of both groups tends to be very close,
resulting in low fairness disparity. As the training process
goes on, the loss of Fair-CDA converges gradually with the
AP rising to a high point. Both DP and EO reach a high value
(which means poor fairness). In Stage 2, the AP remains sta-
ble, the loss fluctuates at the beginning, and finally drops to
a low point. Both DP and EO reach a low value.
Results on CelebA. To illustrate each model’s ability for
vision tasks, we choose smiling, wavy hair, and attractive
to form three binary classification tasks. As shown in Fig-
ure 5, Fair-CDA achieves SOTA performance followed by
two mixup methods. It is worth mentioning that the DP and
EO gap of these methods on the smiling recognition task is
smaller compared with other tasks, which is a relatively fair
scenario, but Fair-CDA can still improve the fairness. Also,
Fair-CDA is the only method that achieves considerable ac-
curacy given high fairness requirements on both tasks.

To visualize the effect of feature decomposition, we adopt
deep neural network interpretability methods in (Adebayo
et al. 2018). We draw the saliency map on the wavy hair
recognition task, as shown in Figure 4. Sensitive features are
those strongly related to gender, while non-sensitive features
are those strongly related to wavy hair. It can be seen that the
saliency maps of sensitive features focus more on the whole
face, while those of non-sensitive features focus more on the
hair of a man/woman.

Additionally, we evaluate Fair-CDA on more sensitive
features on CelebA dataset. We implement Fair-CDA on the
same task as that in (Creager et al. 2019) (CelebA Heavy-
Makeup recognition task) to compare our method with two
VAE methods. Noted that the fairness metric is demographic
parity and the performance metric is accuracy in this setting.
As shown in Table 2, Fair-CDA outperforms FFVAE and

Male Chubby Eyeglasses
∆DP /Acc ∆DP /Acc ∆DP /Acc

β-VAE 0.330/0.712 0.202/0.732 0.250/0.715
0.400/0.725 0.220/0.740 0.280/0.735

FFVAE 0.330/0.730 0.202/0.748 0.250/0.725
0.400/0.752 0.400/0.825 0.400/0.824

Fair-CDA 0.234/0.733 0.184/0.816 0.217/0.814
0.369/0.836 0.197/0.825 0.245/0.824

Table 2: Results on CelebA dataset. Compared with two
VAE methods, Fair-CDA improves the fairness measure-
ment ∆DP and accuracy significantly.

β-VAE on CelebA Heavy-Makeup recognition task consid-
ering three different sensitive attributes.
Results on MovieLens dataset. Recommendation, a com-
mon scenario of machine learning, poses unique challenges
for applying fairness and non-discrimination concepts. We
choose the rating recognition task on MovieLens to evalu-
ate different fair methods. Similar to the trends on the Adult
dataset, Fair-CDA achieves SOTA performance followed by
Fair Mixup and GapReg, as shown in Figure 6. AdvDe-
bias achieves better fairness than ERM accompanied by se-
vere accuracy degradation. In addition, Fair-CDA can reach
the smallest ∆DP and ∆EO among all the methods, which
shows its superior ability to obtain the group fairness.

Ablation Studies
Without imputation model. To examine whether the impu-
tation model contributes to performance, we train Fair-CDA
without imputation model (Fair-CDA (no IM)) on Movie-
Lens dataset and plot the Pareto Front in Figure 7. We can
see the Pareto Front of Fair-CDA dominates that of Fair-
CDA (no IM) for both DP and EO. Without an imputation
model, Fair-CDA can still achieve good fairness but suffer a
little accuracy loss.
Sample generating at the attribute level. To illustrate the
effectiveness of feature decomposition, we use a naive way
to generate the flip sample. Simply flipping the value of
the sensitive attribute with a specific probability during the
training phase, we can get the results of model training
with different data distributions. We name the method as
Attribute-Level. By setting different probabilities, we can
get the Pareto Front, as shown in Figure 7. Compared with
ERM, Attribute-Level can mitigate the unfairness to some
extent, while it can not solve the problem mentioned earlier:
other variables correlated with sensitive attributes can serve
as a source for unfairness.

Experiments on Product.
To further validate our algorithm in realistic scenarios, we
deploy Fair-CDA in an online course recommender sys-
tem. There are nearly 100,000 users and more than 12,000
courses developed by more than 100 different suppliers,
nearly 50% of the courses coming from top 5% suppli-
ers. Thus we consider supplier as the sensitive attribute to
evaluate fairness. Similar to the previous setting on Movie-
Lens, we divide the suppliers into the majority and minor-
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Figure 5: CelebA. The trade-off between AP and ∆DP / ∆EO. Fair-CDA outperforms other methods across tasks.

0.788

0.792

0.796

0.800

0.804

0.808

0 0.02 0.04

△EO

ERM

GapReg

Mixup

AdvDebias

Fair-CDA
0.788

0.793

0.798

0.803

0.808

0 0.006 0.012 0.018 0.024

A
U
C

△DP

Figure 6: MovieLens. The trade-off between AP and ∆DP /
∆EO. Fair-CDA can reach the smallest ∆DP / ∆EO among
all the methods without obvious accuracy degradation.

Method AUC ∆EO Top-10 Recall
LightGCN (Baseline) 0.9503 0.0448 0.1116
Fair-CDA 0.9679 0.0227 0.1328

Table 3: Offline results on a product dataset from an online
course recommender system.

ity groups according to the number of courses developed
by the suppliers. The top 5% suppliers who provide nearly
50% of the courses are regarded as the majority supplier and
the remaining suppliers are regarded as the minority sup-
plier. In this scenario, we choose Equalized Odds as the
fairness measurement since it has been shown that demo-
graphic parity causes a loss in the utility and infringes in-
dividual fairness (Singh and Joachims 2018), and we adopt
AUC and Top-10 Recall as the offline accuracy evaluation.
We use LightGCN (He et al. 2020) as the backbone network
and compare Fair-CDA with the original LightGCN method.
The results are shown in Table 3. Fair-CDA achieves better
performance on both accuracy and fairness measurements
than the baseline method.

Inspired by the performance of offline evaluation, we im-
plement and deploy Fair-CDA in the production environ-

Figure 7: Ablation studies on MovieLens dataset. Fair-CDA
without imputation model (Fair-CDA (no IM)) can still sat-
isfy the fairness requirement but suffer an accuracy loss.
By generating the samples with opposite sensitive attributes
(Attribute-Level), the unfairness can hardly be decreased.

ment and verify its effectiveness through a consecutive on-
line A/B test. We split the users into two groups uniformly,
each of which has an average of 3000 users every week. The
first group gets courses recommended by the baseline model,
and the Fair-CDA generates recommendations for the other
group. The two models are updated daily. After a 5-week
online A/B test, the Fair-CDA is consistently superior than
the baseline model, with an average Click Through Rate
(CTR) improvement of 6.5%. During the online A/B test,
our method increases the diversity of recommended courses
and enhances group fairness, resulting in a higher CTR.

Conclusions
We propose Fair-CDA to counter the unfairness problem
via feature decomposition and data augmentation. Fair-CDA
improves fairness and minimizes the impact on accuracy. We
experimentally compare our method with other state-of-the-
art fairness methods on various benchmarks and show that
Fair-CDA significantly outperforms the other methods in all
the experimental settings.
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