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Abstract

Cold-start problem is one of the most challenging prob-
lems for recommender systems. One promising solution to
this problem is cross-domain recommendation (CDR) which
leverages rich information from an auxiliary source domain
to improve the performance of recommender system in the
target domain. In particular, the family of embedding and
mapping methods for CDR is very effective, which explicitly
learns a mapping function from source embeddings to target
embeddings to transfer users’ preferences. Recent works usu-
ally transfer an overall source embedding by modeling a com-
mon or personalized preference bridge for all users. However,
a unified user embedding cannot reflect the user’s multiple
interests in the auxiliary source domain. In this paper, we
propose a novel framework called REinforced Multi-Interest
Transfer for CDR (REMIT). Specifically, we first construct
a heterogeneous information network and employ different
meta-path based aggregations to get users’ multiple interests
in the source domain, then transform different interest em-
beddings with different meta-generated personalized bridge
functions for each user. To better coordinate the transformed
user interest embeddings and the item embedding in the tar-
get domain, we systematically develop a reinforced method to
dynamically assign weights to transformed interests for dif-
ferent training instances and optimize the performance of the
target model. In addition, the REMIT is a general framework
that can be applied upon various base models in the target do-
main. Our extensive experimental results on large real-world
datasets demonstrate the superior performance and compati-
bility of REMIT.

Introduction
Recommender systems have been widely applied to many
online services such as e-commerce, advertising, and social
media to perform personalized information filtering (Cov-
ington, Adams, and Sargin 2016; Sun et al. 2022). However,
most of these recommender systems are hard to provide sat-
isfying recommendations for newly joining users and newly
arriving items, forming the so-called cold-start problem.

Cross-domain recommendation (CDR) is a promising so-
lution to address the cold-start problem, which aims to trans-
fer knowledge from an informative source domain to the
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Figure 1: (a) gives an example of HIN. (b) plots user embed-
dings learned from meta-path uiu(purple), uiciu(green), and
uibiu(orange), which capture users’ interests.

target domain. To address the problem, the Embedding and
Mapping approach for CDR (EMCDR) (Man et al. 2017) is
very effective, which encodes users’ preferences of source
and target domains on items into two embeddings, respec-
tively, and then explicitly learns a bridge function from
source embedding to target embedding with overlapping
users. With the advantage of EMCDR, many bridge-based
approaches (Kang et al. 2019; Zhu et al. 2020, 2022) have
been proposed. For these methods, the key is to bridge users’
preferences in the source domain and the target domain, also
called preference transfer (Zhao et al. 2020). However, these
methods give an overall source embedding for each user,
which is hard to represent multiple interests in the source
domain.

More recently, Heterogeneous Information Networks
(HIN) (Shi et al. 2016) have been leveraged to enrich user-
item interactions with complementary heterogeneous infor-
mation. As shown in Figure 1(a), a toy HIN can be con-
structed for movie recommendation, which captures how the
items(movies) are related with each other via brand(actors)
and category(genres). On the HIN, higher-order graph struc-
tures like meta-paths (Sun et al. 2011), a relation sequence
connecting two objects, can effectively capture users’ in-
terests. For instance, the meta-path user–item–brand–item-
user(uibiu) incorporates movies starring the same actor as a
facet of user preferences, which makes sense since the user
might be a fan of an actor and prefers most movies played by
the actor. Given different meta-paths, we can obtain multiple
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interest embeddings for user nodes. For example, in Figure
1(b), we find users have clearly three interests when we set
meta-path number to three. Intuitively, it is not necessary to
assign the same weight to different interests when predict-
ing a candidate item because only part of users’ interests
will influence his/her action. For example, a male basketball
player will click a recommended NBA-themed phone case
in the target domain mostly due to interests in NBA and
smartphones, rather than cars in the source domain. Based
on the above insights, there are two challenges in this pa-
per. 1) How to transfer different source interest embeddings.
2) How to select different transformed user interest embed-
dings for each instance in the target domain task.

To address the challenges above, we propose a novel rein-
forced multi-interest transfer framework for CDR, dubbed
REMIT. After constructing a heterogeneous information
network and employing different meta-path based aggrega-
tions to get users’ multiple interests in the source domain.
We transform different interest embeddings with multiple
preference bridges for each user, and each bridge is person-
alized at the user level using a meta network fed with users’
characteristic embeddings, and employ a task-oriented opti-
mization procedure to learn the meta network stably. For bet-
ter performance in the target domain, we investigate how to
assign appropriate weights to different transformed interests
on various training samples. We formulate the interest selec-
tion problem under a reinforcement learning framework: the
decision of the interest-selector agent is made based on the
characteristics of training examples and the outputs of multi-
ple personalized bridges, while the policy is learned towards
maximizing the target domain performance as the return. Fi-
nally, we use the weights got from the agent to aggregate
one transformed user embedding, which can be utilized as
the initial embedding for the cold-start user in the target do-
main. To summarize, the main contributions of this paper are
as follows:

• To the best of our knowledge, this is the first work to use
multiple personalized bridges to transfer different source
interests for different users in the family of embedding
and mapping methods for CDR.

• A novel reinforcement learning framework is proposed
to formulate the multi-interest selection problem, which
dynamically assigns weights to transformed interests for
different training instances.

• Extensive experiments show that REMIT achieves sig-
nificant improvements over state-of-the-art models and
can be applied upon various base models in the target
domain. Further analysis presents insightful discussions
concerning the necessity and effectiveness of the multi-
personalized bridges and reinforced interest selector.

Related Work
Cross-domain recommendation (CDR) (Fu et al. 2019; Gao
et al. 2021; Kang et al. 2019; Man et al. 2017), which
aims to improve the recommendation performance by means
of transferring information from the auxiliary domain to
the target domain, is one of the promising ways to solve
data sparsity and cold start problem. At the very beginning,

CMF (Singh and Gordon 2008) proposes to achieve knowl-
edge integration across domains by concatenating multiple
rating matrices and sharing user factors across domains.
In recent years, researchers proposed many deep learning-
based models to enhance knowledge transfer (Hao et al.
2021; He et al. 2018; Hu, Zhang, and Yang 2018; Li and
Tuzhilin 2020; Xi et al. 2021). CoNet (Hu, Zhang, and Yang
2018) is proposed to train a deep cross-stitch network for
enhancing the recommendation on both domains simulta-
neously. MINDTL (He et al. 2018) combines the CF in-
formation of the target domain with the rating patterns ex-
tracted from a cluster-level rating matrix in the source do-
main. DDTCDR (Li and Tuzhilin 2020) develops a novel
latent orthogonal mapping to extract user preferences over
multiple domains while preserving relations between users
across different latent spaces.

Another group of CDR methods focuses on bridging user
preferences in different domains (Kang et al. 2019; Man
et al. 2017; Pan et al. 2010; Zhao et al. 2020; Zhu et al. 2020,
2021), which is the most related work. EMCDR (Man et al.
2017) explicitly maps user representations from different
domains via a multi-layer fully connected neural network.
With the advantage of EMCDR, many EMCDR-based ap-
proaches(Kang et al. 2019; Zhao et al. 2020; Zhu et al. 2020,
2022) have been proposed to explicitly model the preference
bridge, which falls into four main types, e.g., improving the
source embeddings representation capabilities (Zhao et al.
2020), handling situations where only a small amount of la-
beled data is available (Kang et al. 2019; Zhu et al. 2020),
dealing with the inconsistency between the goals of the map-
ping function task and the task in target domain (Zhu et al.
2021), personalized modeling of mapping functions (Zhu
et al. 2022). Our study falls into this bridge-based category.
However, to the best of our knowledge, all of the bridge-
based CDR methods only transfer an overall source embed-
ding to the target domain for each user, while our REMIT is
the first to learn multiple source interest embeddings transfer
and selection for each user.

Proposed Method
In this section, we first introduce the problem formulation
and then discuss the proposed framework in detail.

Problem Formulation
Assume we have a set of users u ∈ Ud , a set of items i ∈ Id

and a set of ratings rui ∈ Rd, where d ∈ {s, t} represents
the source domain s and target domain t respectively. For
each user u in source domain, we have his/her historical be-
havior sequence Su = {is1, is2, · · · isn}, where n denotes the
number of interacted items and ist represents the t-th item
interacted by user u in source domain. Each item i has its
corresponding category ci ∈ Cs and brand bi ∈ Bs. We
define the overlapping users between the two domains as
Uo = Us ∩ U t. In contrast, Is and It are disjoint, which
means there is no shared item between the two domains. The
pre-trained embeddings of user and item in target domain is
ut ∈ R1×k and it ∈ R1×k respectively, where k is the di-
mension of embeddings. Given rich behavioral data of the
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Figure 2: Details of REMIT. (a) illustrates the main procedure of REMIT, where users’ source multiple interests are transformed
by multi-bridge functions, personalized by the shared meta network with different inputs. Then, with interest selection agent’s
sampling probabilities, we can obtain the aggregated interest embedding as the initial embedding for each overlapping user in
target domain and make prediction. (b) shows how interest selection agent works from a reinforcement learning perspective.

overlapping users in the source domain and the pre-trained
embeddings in the target domain, the problem of bridge-
based methods in CDR is to transfer users’ interests from
the source domain to the target domain and predict the item
that cold-start user may interact with in target domain by
using the transformed interest embedding.

Traditional bridge-based methods mainly rely on one
overall source embedding as input for interest transfer.
Our paper focuses on multi-interest embeddings transforma-
tion and selection. Given pre-trained multiple interest em-
beddings in source domain, we use multiple personalized
bridges to transfer multiple interests. For each cold-start user
in the target domain, we focus on leveraging reinforcement
learning to select interests for improving the performance of
the target domain task. The general network structure is il-
lustrated in Figure 2. We first present the approach for multi-
interest transfer in subsection , then illustrate reinforced in-
terest selection method in subsection . Finally, we introduce
the model training algorithm in subsection .

Multi-Interest Transfer (MIT)
We follow the HIN construction and meta-path based aggre-
gation of HCDIR (Bi et al. 2020) to obtain the pre-trained
user interests and item embeddings in the source domain.
Specially, a HIN contains four types of nodes: users Us,
items Is, categories Cs and brands Bs. Edges exist between
Us and Is, between Is and Cs, between Is and Bs. Given
the meta-path set {p1, p2, · · · pK}, after node aggregation,
for node u, we can obtain K interest embeddings, denoted
as {hp1

u , hp2
u , · · · hpK

u }, where hpj
u ∈ R1×k is the j-th interest

embedding obtained by path pj . We also get the item embed-
ding is ∈ R1×k after updating the HIN node embeddings.
Our approach in general can be applied to more complex
HIN or other multi-interest extraction methods.

Multiple Personalized Bridges Given K interest
embeddings, we transfer them using bridge functions
{F1, F2, · · ·FK} that are personalized by the user’s source
features, where Fj means the j-th preference bridge.
Intuitively, the user’s historical behavior items Su have
different contributions to a specific bridge function Fj for
transferring one source interest embedding hpj

u . Therefore,
we use target-aware attention (Sun et al. 2022) to make
the interest embedding choose which item is used for
each bridge. Specifically, given the sequence embedding,
Vu ∈ Rn×k, which represents all pre-trained is in Su. we
first calculate the correlations between each item in the
sequence and one interest embedding hpj

u . Weight vector
Aj ∈ Rn×1 can be computed by:

Aj = softmax(Vu(hpj
u )⊤) (1)

Then we can obtain a weighted sum of item embedding pj
u ∈

R1×k as follows:
pj
u = (Aj)⊤Vu (2)

To personalize the bridge Fj , we feed pj
u into a shared meta

network (Zhu et al. 2022) f(·) to generate the parameters
W j

u for the j-th bridge function.

W j
u = f(pj

u;ϕ) (3)
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Where f(·) is a two-layer feed-forward network, which is
parameterized by ϕ. Note that, The W j

u is a vector whose
size depends on the structure of the bridge function. The
bridge function can be defined as any structure. In this pa-
per, for simplicity, we use a linear layer following bridge-
based methods (Man et al. 2017). Thus, to fit the size of
the bridge’s parameters, we reshape the vector into a matrix
W j

u ∈ Rk×k. The output of bridge Fj is formulated as:

tpj
u = Fj(hpj

u ;W j
u) = hpj

u W j
u (4)

where tpj
u ∈ R1×k denotes the j-th personalized trans-

formed user’s embedding. As multi-bridge functions depend
on weights generated from meta network and vary from
user to user, we call it multiple meta-generated personalized
bridges.

With the multiple transformed interest embeddings, we
can use Reinforcement Learning (RL) based interest selector
to get a weighted sum of interests ût ∈ R1×k as follows:

ût
=

K∑
j=1

Pjtpj
u (5)

where Pj is the output of RL-based interest selector, which
we will illustrate later. Finally, we can utilize the trans-
formed embedding ût for prediction.

Task-oriented Optimization For better training perfor-
mance, we adopt the recently popular task-oriented opti-
mization(Zhu et al. 2021, 2022), which directly utilizes the
performance of the ultimate recommendation task as the op-
timization goal. In this paper, we focus on rating tasks, so
the task-oriented loss can be formulated as:

LossMIT =
1

|Rt
o|

∑
rui∈Rt

o

(rui − ût
(it)⊤)2 (6)

where Rt
o = {rui|u ∈ Uo, i ∈ It} denotes the interactions

of overlapping users in the target domain.

RL Based Interest Selector (IS)
Inspired by the insights discussed in Introduction, we pro-
pose to dynamically assign weights to transformed inter-
ests at the instance level using a reinforced approach (Sutton
1992).

Figure 2 (b) illustrates the overview of our reinforcement
learning based interest selection method. In each iteration,
an agent interacts with the environment and receives the
representation of a training instance, which is used for the
agent’s interest selection policy to calculate the sampling
probabilities of multiple interests. The outputs of the pol-
icy will be used as the weight in equation 5 to participate
in the muli-interest transfer (MIT) model. After an episode
of training examples, the performance of the trained MIT
model is used as the reward to update the policy parameters.
This process iterates on episodes until the performance of
the MIT model converges.

In general, a reinforcement learning approach involves el-
ements in the form of (state, action, reward). The elements
in our method are as follows.

State Our environment maintains a series of states s ∈ S
that summarize the characteristics of the input instances
in the target domain and the transformed interests in the
source domain. We design a state s as a vector Es ∈
R1×((K+2)∗k+K), which is concatenated by two features.

The first feature is a vector representation C ∈
R1×((K+2)∗k) of each transformed interest tpj

u , pre-trained
user embedding ut and item embedding it in target do-
main. To achieve the pre-trained embeddings in the target
domain, there are many optional methods. In this paper,
we explore three methods, MF (Koren, Bell, and Volinsky
2009), GMF (He et al. 2017) and YouTube DNN (Coving-
ton, Adams, and Sargin 2016)to get the pre-trained user and
item embeddings in the target domain.

C = [tp1
u ∥tp2

u ∥ · · · ∥tpK
u ∥ut∥it] (7)

where ∥ represents a concatenate operation.
The second feature is the prediction (logit) vector L ∈

R1×K that is concatenated by Lj of each transformed inter-
est tpj

u and item it in target domain. In practice, the predic-
tion is often derived from a dot-product between tpj

u and it,
that is,

L = [L1∥L2∥ · · · ∥LK ]

Lj = tpj
u (it)⊤

(8)

Action We use only one agent to sample all transformed
interests. For each interest tpj

u , the agent chooses between
two possible actions, selecting the interest embedding or
not for the current instance in the target domain. A policy
function πθ(s, a) parameterized by θ determines the dis-
tribution over the states, from which the action value of
a ∈ {0, 1} is sampled. Although the action value is sam-
pled from {0, 1}, we can utilize the sampling probabilities
P = {P1, P2, · · · , PK} generated by the policy model g(·)
as the weights of all transformed interests to avoid informa-
tion loss.

πθ(s, a) = g(Es; θ) (9)

where g(·) is a two-layer feed-forward network with relu
activation function, which is parameterized by θ.

Reward The reward function is correlated with the per-
formance of the MIT model trained with the selected
transformed interest embeddings. We define an episode
as one batch of training instances, that is, Db =
{(x1, y1), (x2, y2), · · · , (xm, ym)}, where b represents the
batch ID, m is the batch size, x is the feature and y is the
label. For each instance (x, y) ∈ Db, we construct the state
vector sx and sample the action ajx for j-th interest accord-
ing to policy πθ(sx, a

j
x) (Equation 9). We reshape all actions

sampled as the weight in Equation 5 to train the muli-interest
transfer (MIT) model.

Our reward calculation method is the minus of ground
truth loss (Equation 6) of the MIT model, that is,

reward = −LossMIT (10)

Please note that the reward is not given immediately after
each step is taken. Instead, it is delayed until the training of
the whole batch is completed.
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Algorithm 1: Overall Training Procedure of REMIT

1: Input: Us, U t, Is, It, Rs, Rt, Uo

Stage I: Pre-training
2: Pre-train a source model {hp1

u , hp2
u , · · · hpK

u }, is and a
target model ut, it
Stage II: Reinforced Multi-Interet Transfer

3: Pre-train the MIT model ϕ by minimizing task-oriented
loss. ▷ Equation 6

4: Pre-train the IS policy θ by calculating the return under
ϕ with all transformed interests selected.

5: Iteratively train MIT and IS in turn. ▷ Algorithm 2
Stage III: Initialization

6: For a cold-start u in target domain, we use IS policy’s
action to aggregate ût as the user’s initialized vector.

Optimization We follow the standard policy gradient
method REINFORCE (Sutton 1992) to optimize the param-
eters, that is,

θ ← θ + β
∑
x∈Db

r
K∑
j=1

▽θπθ(sx, a
j
x) (11)

where r is the reward defined by Equation 10 and β is the
learning rate.

Algorithm 2: Joint Training of IS and MIT

1: Input: Epoch Number E; Training data D =
{D1, D2, · · · }; MIT and IS model initialized as ϕ, θ

2: for epoch e = 1 to E do
3: Shuffle D to obtain a new training sequence.
4: for each batch Db ∈ D do
5: IS samples actions ax for each instance (x, y) ∈

Db with θ to get the weights of multiple interests.
6: Store (x, y, ax) to the memory replay buffer M .
7: Compute ût. ▷ Equation 5
8: Update ϕ of MIT. ▷ Equation 6
9: end for

10: for each (x, y, ax) ∈M do
11: Compute delayed reward. ▷ Equation 10
12: Update parameter θ of IS. ▷ Equation 11
13: end for
14: end for

Model Training
Algorithm 1 shows the overall REMIT approach. Firstly, we
initialize the MIT model ϕ by using the same fixed weights
for each transformed interest embedding tpj

u , that is, the
agent’s action ajx denotes the same sampling probability Pj

for all interests. We then initialize parameter θ for the policy
function using the same setting under ϕ. After initialization,
we iteratively perform alternating training of multi-interest
transfer and interest selection.

As described in Algorithm 2, in the MIT process, we fix
the interest selection policy θ and learn the multi-interest
transfer model ϕ. In the IS process, we fix ϕ to calculate

Tasks Domain
Users Items Ratings

#users #overlap #items #categories #brands #ratings

Task 1
Moive 123,960

18,031
50,052 12164 472 1,697,533

Music 75,258 64,443 - - 1,097,592

Task 2
Book 603,668

37,388
367,982 123354 815 8,898,041

Moive 123,960 50,052 - - 1,697,533

Task 3
Book 603,668

16,738
367,982 123354 815 8,898,041

Music 75,258 64,443 - - 1,097,592

Table 1: Statistics of datasets in three tasks.

the return and optimize the interest selection policy θ. The
iteration continues for E epochs.

Experiments
In this section, we conduct extensive experiments to answer
four research questions: RQ1 How does REMIT perform in
cold-start scenarios compared to state-of-the-art approaches
from a bridge-based CDR perspective? RQ2 Can REMIT
generalize to different base models in the target domain?
RQ3 What’s the effect of MIT and IS in REMIT? RQ4 Why
could REMIT perform better?

Experimental Setup
Datasets. Following most existing methods (Zhu et al.
2021, 2022), we test our algorithms on the Amazon re-
view dataset1. Specifically, we pick 3 datasets out of 24, i.e.,
movies and tv (Movie), cds and vinyl (Music), and books
(Book). Three cross-domain recommendation tasks are built
upon these three datasets: Movie→Music (Task 1), Book
→Movie (Task 2) and Book→Movie (Task 3). Statistics of
these datasets are listed in Table 1.
Metrics. Amazon review dataset contains rating data (0 -
5 score). Following (Man et al. 2017; Zhu et al. 2022), we
adopt Mean Absolute Error(MAE) and Rooted Mean Square
Error(RMSE) to evaluate the performance.
Baselines. Since REMIT falls into the bridge-based meth-
ods for CDR, we mainly compare REMIT with the bridge-
based methods. Therefore, we choose the following meth-
ods as baselines. 1) TGT, a naive target model trained only
with data in the target domain. 2) CMF (Singh and Gordon
2008) shares user embeddings across the source domain and
the target domain. 3) EMCDR (Man et al. 2017) employs
MF to learn the embeddings and then utilizes a network to
transfer user embeddings from the source domain to the tar-
get domain. 4) SSCDR (Kang et al. 2019) trains the bridge
function in a semi-supervised manner. 5) PTUPCDR (Zhu
et al. 2022) turns to the meta net fed with users’ characteris-
tic embeddings to produce personalized bridge functions for
each user.
Implementation Details. The REMIT 2 is built based on
the code repository of PTUPCDR using PyTorch and GPU.
For both MIT and IS in each task and method, the initial
learning rate for the Adam (Kingma and Ba 2014) opti-
mizer is tuned by grid searches within {0.001, 0.005, 0.01,

1http://jmcauley.ucsd.edu/data/amazon/
2Code is available at https://github.com/mufusu21/REMIT
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Scenarios β Metric TGT CMF SSCDR EMCDR PTUPCDR REMIT Improve

Task 1

20%
MAE 4.4730 1.4128 1.2151 1.1963 1.0051 0.9393* 6.55%
RMSE 5.1615 1.8725 1.4946 1.4803 1.3498 1.2709* 5.85%

50%
MAE 4.5064 1.5179 1.3235 1.4570 1.1464 1.0437* 8.96%
RMSE 5.1774 2.0225 1.6794 1.8086 1.5987 1.4580* 8.80%

80%
MAE 4.5129 1.8609 1.6382 1.9397 1.4245 1.2181* 14.49%
RMSE 5.1983 2.4507 2.1576 2.3290 2.0338 1.6601* 18.37%

Task 2

20%
MAE 4.2026 1.4857 1.2631 0.9834 0.9093 0.8759* 3.67%

RMSE 4.7677 1.9308 1.4700 1.2295 1.1914 1.1650 2.22%

50%
MAE 4.2225 1.5974 1.3407 1.0556 0.9567 0.9172* 4.13%
RMSE 4.7890 2.0636 1.5607 1.3238 1.2712 1.2379 2.62%

80%
MAE 4.2405 2.3416 1.2495 1.2249 1.0519 1.0055* 4.41%
RMSE 4.8201 2.8561 1.5572 1.5334 1.4338 1.3772* 3.95%

Task 3

20%
MAE 4.4516 1.7873 1.5988 1.6121 1.4701 1.3749* 6.48%

RMSE 5.1455 2.3316 2.1146 2.1638 2.0707 1.9940* 3.70%

50%
MAE 4.4825 1.9348 1.8166 1.9050 1.5872 1.4401* 9.27%

RMSE 5.1585 2.5232 2.2718 2.3289 2.2279 2.0495* 8.01%

80%
MAE 4.5188 2.3989 2.1749 2.2192 1.8344 1.6396* 10.62%
RMSE 5.2001 3.0838 2.5652 2.6331 2.5235 2.2653* 10.23%

Table 2: Mean results (MAE and RMSE) over five runs on 3 cross-domain cold-start tasks. Best results are labeled in bold and
* indicates 0.05 level, paired t-test of REMIT vs. PTUPCDR. Improve denotes relative improvement over PTUPCDR.

Figure 3: Generalization experiments for EMCDR, PTUPCDR and REMIT upon three base models (a) MF, (b) GMF, (c)
YouTube DNN. Mean results of MAE over five random seeds are reported.

0.02, 0.1}. The epoch number is tuned by grid searchs be-
tween 5 and 15. In addition, we set the dimension of em-
beddings as 10 and the batch size as 512. The meta-path set
is {uiu, uiciu, uibiu}, which represents users’ interests of
item, category and brand. The hidden size of meta network
in MIT and policy network in IS is set to 50 and 25. We
employ the same fully connected layer to facilitate compar-
ison for the cross-domain bridge functions of EMCDR, SS-
CDR, PTUPCDR and REMIT. Following (Zhu et al. 2022),
to evaluate the effectiveness of REMIT, we randomly re-
move all the ratings of a fraction of overlapping users in
the target domain and regard them as test users, and the
samples of other overlapping users are used for training the
bridge function. In our experiments, we set the proportions
of test (cold-start) users β as 80%, 50%, and 20% of the total
overlapping users, respectively. For each task, we report the
mean results over five random runs.

Cold-Start Experiments (RQ1)
The most concerning experimental result is how our frame-
work performs in cold-start scenarios. In Table 2, we com-
pare REMIT with five baseline models mentioned above to
validate the effectiveness. We demonstrate the results on 3
CDR tasks under different settings of β, where β represents
the percentage of cold-start users. Obviously, both MAE and
RMSE increase as β grows since larger β leads to smaller
training sets. Furthermore, we find that TGT performs worst
because it relies only on interactions in the target domain.
On the contrary, CMF takes advantage of information from
the auxiliary source domain and thus achieves better re-
sults. However, CMF cannot differentiate information be-
tween different domains and thus ignores the domain shift.
Having made up for this problem, the bridge-based method
PTUPCDR stands out from existing methods by taking user
personalities into consideration. But user preferences are
usually too complicated to be characterized by a single rep-
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resentation. Thus instead of focusing on only one prefer-
ence embedding in source domain, our framework, REMIT,
transfers multiple source interest embeddings and employs
an RL-based interest selector, achieving the best results.

Generalization Experiments (RQ2)
By default, we employ matrix factorization(MF) to learn
embeddings for users and items in the target domain. How-
ever, MF might be too simple to fit the data in large-scale
real-world recommendations. Besides, it is often the case
that embeddings are trained by many quite different mod-
els, challenging the robustness and compatibility of bridge
functions. Thus, to testify the compatibility of REMIT as
well as other bridge-based methods (EMCDR, PTUPCDR),
we switch the base model in the target domain to GMF (He
et al. 2017) and YouTube DNN (Covington, Adams, and Sar-
gin 2016) in turn. GMF is an advanced version of MF, where
assigns various weights for different dimensions in the dot-
product prediction function, we only use user embeddings
during transfer. For YouTube DNN, the bridge function only
transforms the output of the user tower. With β = 20%,
we conduct experiments over three tasks, and the results
are demonstrated in Figure 3. On one hand, we can obvi-
ously see that the base models always yield the worst per-
formances without absorbing auxiliary information. On the
other hand, no matter how we switch the base model, these
bridge-based methods continue to improve the performance,
indicating their robustness and good generalization ability.
Notably, changing the base model will not prevent REMIT
from producing the best results, and it justifies the general-
ization ability of our framework.

Ablation Study (RQ3)
In this section, we aim to find out the key factors that af-
fect performance most. To this end, we select PTUPCDR
as the baseline and incrementally propose two variants, i.e.,
PTUP+ and MIT. PTUP+ augments the original PTUPCDR
model by introducing multi-interest user embeddings, but all
of them share a common personalized bridge. MIT further
customizes interest-specific bridge functions for each user.
Both PTUP+ and MIT use the same weight for each trans-
formed interest. Our framework, REMIT, distinguishes itself
by weighing the importance of different interests. We test
these algorithms on task 1 over different settings of β and
report the results in Table 3. Firstly, it can be seen that sim-
ply incorporating multi-interest user embeddings negatively
affects the performance, resulting from the fact that differ-
ent interests share a common bridge, in which case a great
challenge is posed to the bridge function since it is hard to
capture users’ diverse preferences. In MIT, we explicitly de-
sign different bridge functions for different interests in the
source domain, and treat them equally, we can see that MIT
successfully achieves better results. However, delivering the
same weight to each interest will prevent the model from
recognizing the interest relevance as we mentioned in the
Introduction. Hence, by employing an RL-based interest se-
lector upon MIT, we can notice that REMIT makes a signif-
icant improvement far beyond other algorithms.

Algorithms
β = 20% β = 50% β = 80%

MAE RMSE MAE RMSE MAE RMSE
PTUPCDR 1.0051 1.3498 1.1464 1.5987 1.4245 2.0338

PTUP+ 1.0136 1.3629 1.1541 1.6116 1.4266 2.0413
MIT 0.9891 1.3313 1.1031 1.5744 1.2619 1.7920

REMIT 0.9393 1.2709 1.0437 1.4580 1.2181 1.6601

Table 3: Model performance of ablation study. The best re-
sults are underlined and highlighted in bold.

Figure 4: Case study of our REMIT.

Case Study (RQ4)
To explain the weight distribution over different interests,
we pick out one instance specially and analyze the behavior
of this cold-start user in Figure 4. In this instance, REMIT
attempts to predict the rating of the user for the album ”Su-
perman: Hancock” in the target music domain. At the same
time, we can see that in the source movie domain, the same
user viewed a lot of movies and TV shows about sports and
life science. As all items in both source and target domain
are independent of each other and starred by different actors
or singers, therefore low weights are assigned to embeddings
obtained through meta-path uiu and uibiu. However, note
that most items in the source domain are related to sports,
strongly implying that the user prefers sports. The ”Super-
man: Hancock” album in the target domain collects music
played in the movie ”Hancock”, which is exciting and can
cheer up people much during sports time, thus the embed-
ding obtained by uiciu can get higher weight, which helps
make better predictions for target domain task.

Conclusions
In this paper, we tackle the problem of multi-interest transfer
and selection in cross-domain recommendations when mul-
tiple source interests are available. After transforming differ-
ent interest embeddings with different meta-generated per-
sonalized bridge functions for each user, we propose a novel
RL-based interest selection method, which dynamically as-
signs weights to transformed interests at instance level to
better coordinate the transformed user interest embeddings
with the item embedding in the target domain. The extensive
experiments confirm the effectiveness of our framework.
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