
Scalable Optimal Multiway-Split Decision Trees with Constraints

Shivaram Subramanian*, Wei Sun*

IBM Research, Yorktown Heights, New York, USA
{subshiva, sunw}@us.ibm.com

Abstract

There has been a surge of interest in learning optimal decision
trees using mixed-integer programs (MIP) in recent years, as
heuristic-based methods do not guarantee optimality and find
it challenging to incorporate constraints that are critical for
many practical applications. However, existing MIP methods
that build on an arc-based formulation do not scale well as
the number of binary variables is in the order of O(2dN),
where d and N refer to the depth of the tree and the size of
the dataset. Moreover, they can only handle sample-level con-
straints and linear metrics. In this paper, we propose a novel
path-based MIP formulation where the number of decision
variables is independent of N . We present a scalable column
generation algorithm to solve the MIP. Our framework pro-
duces a multiway-split tree which is more interpretable than
the standard binary-split trees due to its shorter rules. Our
method can incorporate nonlinear metrics such as F1-score
and a broader class of constraints. We demonstrate its efficacy
with extensive experiments. We present results on datasets
containing up to 1,008,372 samples while existing MIP-based
decision tree models do not scale well on data beyond a few
thousand points. We report superior or competitive results
compared to the state-of-art MIP-based methods with up to
a 24X reduction in runtime.

1 Introduction
Decision trees are among the most popular machine learn-
ing models as the tree structure is visually easy to under-
stand. As learning an optimal decision tree is NP-hard (Lau-
rent and Rivest 1976), popular algorithms such as CART
(Breiman et al. 1984), ID3 (Quinlan 1986) and C4.5 (Quin-
lan 2014) rely on greedy heuristics to construct trees. Mo-
tivated by the heuristic nature of the traditional methods,
there have been many efforts across different fields to learn
optimal decision trees (ODT), e.g., dynamic programming
(Lin et al. 2020), constraint programming (Verhaeghe et al.
2020), Boolean satisfiability (Narodytska et al. 2018), item-
set mining (Aglin, Nijssen, and Schaus 2020). In particu-
lar, recent advances in modern optimization has facilitated
a nascent stream of research that leverages mixed-integer
programming (MIP) to train globally optimal trees with
constraints (Bertsimas and Dunn 2017; Aghaei, Azizi, and

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of OMT trained on car-evaluation.

Vayanos 2019; Verwer and Zhang 2019; Aghaei, Gómez,
and Vayanos 2021) - this is the methodology we are focusing
on in this paper.

Prior MIP-based methods rely on an arc-based formula-
tion that require a large number of binary decision variables
to identify splitting conditions at branch nodes as well as
label and sample assignments to leaf nodes. This approach
has several drawbacks: (1) the optimization problem be-
comes easily intractable as the number of binary variables
and constraints increases linearly with training data. Hence,
experiments are typically restricted to datasets with no more
than a few thousand samples. (2) Prior MIP frameworks can
only handle linear metrics. In many applications, it is de-
sirable to consider nonlinear metrics, e.g., F1-score is pre-
ferred over accuracy to evaluate machine learning models
trained on imbalanced datasets. (3) With the arc-based for-
mulation, it is challenging to impose constraints on individ-
ual decision rules and feature combinations. One such ex-
ample occurs in the medical field, where doctors have to ar-
rive at an appropriate diagnosis while taking into account
the costs of medical tests (Lomax and Vadera 2013). (4)
The vast majority of the decision tree literature focuses on
binary-split trees, where each node can have at most two
child nodes. Multiway-split trees (see Figure 1 for an exam-
ple) whose branching condition may contain several values
are often more intuitive and comprehensible (Fulton, Kasif,
and Salzberg 1995).

In this paper, we attempt to address these prior limitations
by proposing a scalable MIP-based framework to train con-
strained optimal multiway-split trees (OMT). Our contribu-
tions are five-fold.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9891

Novel path-based MIP formulation Unlike arc-based
MIP, we explicitly model decision rules or paths in a tree.
The high level idea is as follows - we first define a feature
graph that admits every possible combination of input fea-
tures as decision rule candidates. The objective of the MIP
is to identify a subset of rules from this potentially huge rule
space to minimize the prediction error. The feature graph
naturally embeds the hierarchical structure of a tree, and we
add a constraint to model another defining property of de-
cision trees where each sample can only be assigned to a
single rule.

Scalable algorithm Unlike existing MIP ODTs whose bi-
nary decision variables are in the order of O(2dN), where d
and N refer to the depth of the tree and the size of training
data, the number of binary decision variables in our formu-
lation is independent of N . It equals the number of candi-
date decision rules defined in the feature graph. While this
number can also be excessive in the worst case, we employ
column generation (CG) to dynamically generate a relatively
small number of candidates to recover a near-optimal solu-
tion. While existing MIP approaches can manage no more
than a few thousand training samples, an initial implementa-
tion of our proposed CG algorithm effectively solved a 106

sample dataset.
Flexible framework Our framework can be applied to

both classification and regression settings. The path-based
model allows us to incorporate any path-level metric, includ-
ing nonlinear ones, which enter the MIP as input parameters.
We also show how a broader class of constraints including
path-level, and attribute-level constraints, which are diffi-
cult to express within existing arc-based formulations, can
be easily incorporated into our framework.

Enhanced interpretability with multiway-splits To the
best of our knowledge, we are the first to train optimal
multiway-split trees for prediction tasks, where a node may
have more than two child nodes. Since a feature seldom ap-
pears more than once in any root-to-leaf path, multiway-split
trees are easier to comprehend than their binary counterparts
(Fulton, Kasif, and Salzberg 1995).

Extensive numerical results We conduct extensive com-
putational studies on public datasets and report the first MIP-
based results for large datasets containing up to 1,008,372
samples, which are an order of magnitude larger than the
prior datasets analyzed in the MIP-based ODT literature. We
show that our framework is either competitive or improves
upon the state-of-the-art MIP methods in terms of out-of-
sample accuracy and achieves up to a 24-fold reduction in
runtime.

2 Related Literature
The discrete nature of decisions involved in training a de-
cision tree and recent algorithmic advances in integer opti-
mization has inspired a burgeoning body of literature that
utilizes a MIP formulation to construct decision trees (Bert-
simas and Dunn 2017; Aghaei, Gómez, and Vayanos 2021;
Günlük et al. 2021). Different flavors of MIP-based trees
have been proposed in the literature, e.g., discrimination-
aware trees (Aghaei, Azizi, and Vayanos 2019), trees with

hyperplane splits (Zhu et al. 2020), prescriptive trees (Biggs,
Sun, and Ettl 2021; Subramanian et al. 2022).

Most of the existing MIP methods build on top of the Op-
timal Classification Tree (OCT) first introduced in Bertsimas
and Dunn 2017, where decisions about the split condition
at each node, label assignment for each leaf node, and the
routing of each data point from the root node to a leaf node
are made. As the computational tractability of the original
OCT formulation is limited by data size and tree depth, sub-
sequent efforts sought to improve the efficiency of the ap-
proach. The BinOCT approach of Verwer and Zhang 2019
employs a binary encoding method to model the thresh-
old selection at branch nodes to reduce the number of bi-
nary decision variables needed. Most notably, a recent paper
proposes FlowOCT (Aghaei, Gómez, and Vayanos 2021), a
strong max-flow based MIP formulation with binary data.
Its formulation yields a tighter underlying LP relaxation and
outperforms prior methods in many instances. Nevertheless,
due to the underlying arc-based formulation, all these meth-
ods face significant computational difficulties with larger
datasets and deeper trees.

This motivates us to seek a completely different approach,
by explicitly modeling the paths used to construct a tree.
While the worst-case number of rules can be huge with
high-dimensional data, we show that our problem can be
solved efficiently via column generation (CG). CG has been
successful in solving large-scale discrete optimization mod-
els in many domains including vehicle routing (Chen and
Xu 2006), crew scheduling (Subramanian and Sherali 2008;
Bront, Méndez-Dı́az, and Vulcano 2009), and supply chain
management, among others (Xu 2019). Utilizing large-scale
optimization techniques for MIP-based ODTs has been at-
tempted previously. Aghaei, Gómez, and Vayanos 2021
show that FlowOCT can be solved by Benders’ decompo-
sition (row generation). Its subproblem involves solving a
max-flow problem for every sample potentially, limiting its
scalability.

3 Problem Formulation

We consider a dataset which consists of N samples,
{(xi, yi)}Ni=1, where xi ∈ X k are features which are as-
sumed to be categorical. We will discuss how to handle nu-
merical features in Section 5, and present experiments on
datasets with both categorical and numerical features in Sec-
tion 6. yi is the outcome, which can be a discrete label for
classification or a continuous quantity for regression.

A binary-split tree of depth d can have at most 2d leaf
nodes. In a multiway-split tree, each node may have more
than two children. Thus, we use the depth of a tree d, and
the number of leaf nodes l, which are user-specified param-
eters to define the complexity of a tree. Figure 1 shows a
multiway-split tree with d = 3 and l = 8.

In our framework, we explicitly model individual decision
paths from the root to the leaf nodes. We begin by defining
a feature graph that contains every possible combination of
input features, followed by introducing a MIP optimization
problem to identify a subset of paths to form the tree.

9892

Figure 2: The feature graph for car-evaluation

Feature Graph
We consider an acyclic multi-level digraph, G(V,E), where
each feature indicates a level in the graph, represented by
multiple nodes corresponding to its distinct feature values.
Nodes of a feature are fully connected to nodes in the next
level. The graph includes a source and sink node. A decision
rule is defined as a path from the source to the sink node.

For each feature, we introduce a dummy node SKIP. If
a path goes through SKIP node of a feature, it means that
the particular feature is not used in a decision rule. As SKIP
nodes allow paths to ignore features, paths on this acyclic
graph represent all possible feature combinations, defining
the full search space P that one may need to consider to
construct an optimal tree. Figure 2 illustrates an example of
a feature graph using three features from car-evaluation, a
UCI dataset (Dua and Graff 2017), which records the assess-
ment of cars based on criteria such as “Persons” (number of
seats), “Buying” (purchase cost) and “Safety”. Two high-
lighted paths in Figure 2 correspond to the colored decision
rules in the OMT shown in Figure 1.

Denote η as the maximum unique feature values associ-
ated with a feature. The following result implies that enu-
merating through the space P may become impractical for
high-dimensional datasets.

Proposition 1 The search space P is O(ηk).

Later in Section 4, we describe our algorithm which uses
a large-scale optimization technique to intelligently search
through the space, and only paths that can improve the cur-
rent solution are generated on the fly.

Path-Based MIP Formulation
We denote a decision rule as j ∈ {1, · · · , L}, where L =
|P|. Let Sj ∈ [N] be the subset of observations which fall
into rule j. Denote ξj as a user-specified metric associated
with rule j, e.g., misclassification error in rule j in a classi-
fication task, squared loss or absolute loss for regression.

Let zj be a binary decision variable which indicates
whether rule j is selected (1) or not (0), for j = 1, · · · , L.
We define non-negative slack variables si and a positive
penalty cost ci for each sample i. A MIP formulation to de-
termine an optimal multiway-split tree (OMT) can be writ-

ten as follows,

min
L∑

j=1

ξjzj +
N∑
i=1

cisi

s.t.
L∑

j=1

aijzj + si = 1, ∀i = 1, · · · , N (1)

L∑
j=1

zj ≤ l (2)

zj ∈ {1, 0}, ∀j = 1, · · · , L
si ≥ 0, ∀i = 1, · · · , N

The input parameter aij = 1 if sample i satisfies the con-
ditions specified in rule j, and 0 otherwise. While several
rules may contain the same data sample, the set partitioning
constraint (1) with a sufficiently large penalty ci ensures that
each sample is ultimately assigned to exactly one rule. The
cardinality constraint (2) stipulates that no more than l rules
are active in the optimal solution z∗.

It is well-known that set partitioning problems are NP-
hard (Hartmanis 1982). Thus, while optimal solutions can be
obtained in practice for moderate sized instances (Atamtürk,
Nemhauser, and Savelsbergh 1996), the problem may easily
become intractable to solve directly as the cardinality of fea-
sible rules grows exponentially with the feature space. We
will present an efficient algorithm to overcome this compu-
tational challenge in the next section.

4 Column Generation
Column generation (CG) is a classical technique to solve
large MIPs for which it is not practical to explicitly gener-
ate all columns (variables) of the problem (Lübbecke and
Desrosiers 2005). Specifically, we first consider a restricted
master program (RMP) version of OMT, where we 1) con-
sider only a subset of paths L̂, which is typically much
smaller than L and is determined dynamically, and 2) re-
lax the integrality constraints on zj to 0 ≤ zj ≤ 1 for all
j = 1, · · · , L̂.

Denote the dual variables associated with the set partition-
ing constraints in (1) and the cardinality constraint in (2) as
λi and µ respectively. The dual formulation of RMP can be
written as follows,

max
N∑
i=1

λi + nµ

s.t.
N∑
i=1

aijλi + µ ≤ ξj , ∀j = 1, · · · , L̂ (3)

µ ≤ 0, λi ≤ ci, ∀i = 1, · · · , N
Note that since zj ≤ 1 is implied by Eq (1), we are only left
with zj ≥ 0 in the primal RMP.

Based on the dual feasibility constraint for path j in (3),
the reduced cost for path j is equal to

rcj = ξj −

(
N∑
i=1

aijλi + µ

)
. (4)

9893

When RMP is solved to optimality, dual feasibility is
guaranteed only for the rules included in L̂. A path violat-
ing the dual constraint (3) has a negative reduced cost and
must be added to the RMP for the next iteration. To iden-
tify paths that maximally violate Eq (3), we need to solve
min rcj . We define the subproblem, as the search for some
K paths having the most negative reduced cost, which is a
K-shortest path problem (KSP) over the feature graph G,
where the cost on a path is its reduced cost defined in (4). If
no violating path exists, we obtain dual feasibility, and the
CG has converged.

The high-level view of the CG procedure is as follows: we
start by solving RMP with an empty set of candidate rules
with L̂ = ∅, which sets slack variables si to 1.0 and yields an
initial dual solution. Next, we use these dual values to solve
the subproblem to identify up to K candidate rules having
the most negative reduced cost. They are added to L̂ and the
RMP is re-optimized to obtain a new primal-dual solution,
and the process iterates. The CG procedure converges to an
optimal solution of the LP relaxation of OMT when dual fea-
sibility is achieved, i.e., rcj ≥ 0 for all j = 1, · · · ,M . After
the CG procedure has converged, the binary restrictions are
reimposed on z and we solve the resultant Master-MIP.

The CG procedure can be implemented exactly for prov-
able optimality, or approximately to obtain a near-optimal
decision tree. Prior works (Barnhart et al. 1998) have pro-
posed a branch-and-price technique to solve the Master-MIP
to provable optimality, which also requires the subproblem
to be solved exactly (Desrosiers and Lübbecke 2005).

For simplicity and replicability, we employ a CG heuris-
tic that solves the resultant Master-MIP directly using a
standard optimization package (CPLEX 2021). As noted in
Lübbecke and Desrosiers 2005, the role of the subproblem
is to provide a potential column or to prove that none ex-
ists. Since any negative reduced cost path contributes to this
aim, we employ a heuristic subproblem algorithm that is
a path-dependent adaptation of a K-shortest path method
for acyclic graphs with additive arc costs (Horne 1980).
Our KSP method is similar to the resource-constrained
shortest path heuristics used in CG applications (Desrosiers
and Lübbecke 2005; Desaulniers, Desrosiers, and Solomon
2006) and has polynomial-time complexity (additional de-
tails are given in the appendix). In our experiments, the CG
procedure terminates when the dual solution converges to
within a tolerance or we reach a maximum iteration limit.

To preserve interpretability, shallow trees are often pre-
ferred, where the depth d is small. The following result
shows how this constraint dramatically shrinks the CG
search space, especially for high-dimensional datasets.

Proposition 2 The constrained search space is O
((

k
d

)
ηd
)
.

Comparing this result to the unconstrained setting shown in
Proposition 1, we see that restricting each path to contain
no more than d features significantly reduces the total num-
ber of feasible paths, and the worst-case value for L̂ ≪ L.
Considering an example with d = η = 2, L̂ is bounded by
O(k2) versus L is O(2k). Prior MIP models are restricted to
a fixed-depth binary tree representation which requires cat-

egorical attributes to be encoded into a generic set of binary
features. Doing so prevents them from exploiting the ben-
eficial hierarchical feature graph structure used in our ap-
proach.

5 Flexible Framework
Nonlinear Metrics
Nonlinear metrics such as the F1-score, Matthews correla-
tion coefficient, and Fowlkes–Mallows index, are often used
to evaluate the performance of machine learning models
trained on imbalanced data (Demirovic and Stuckey 2021).
Existing MIP-based decision trees only consider linear met-
rics. In our approach, once the feature graph is defined, we
know the samples Sj which satisfy this rule and we can com-
pute the metric associated with this rule in the subproblem.
These nonlinear metrics may be represented as ξj and enter
RMP as an input parameter in the objective as shown in Sec-
tion 3. They can also enter RMP as constraints and we pro-
vide an example of incorporating F1-score in the appendix.
This transformative modeling capability of CG is invaluable
when solving optimization problems that are highly nonlin-
ear and nonconvex in their original form.

Constraints Enforcement
Existing optimal classification trees in the literature have
been extended to incorporate constraints to address fairness
and data imbalance issues. In this section, we show how our
method provides an elegant and unified framework to handle
constraints, including those which existing arc-based MIP
formulations cannot efficiently manage.

Path-level constraints Prior MIP-based decision trees
typically manage sample-level constraints, e.g., constrain-
ing precision or recall conditioned on samples’ class labels
(Aghaei, Gómez, and Vayanos 2021; Günlük et al. 2021), or
fairness metrics such as statistical parity conditioned on sen-
sitive features (Aghaei, Azizi, and Vayanos 2019; Aghaei,
Gómez, and Vayanos 2021). However, none of the existing
MIP-based methods are able to efficiently handle constraints
at path-level, as the notion of “path” is not explicitly defined
in the arc-based formulation.

Consider the example of cost-sensitive decision trees,
which is motivated by the medical domain. Often, doctors
must arrive at a diagnosis by taking into account the eco-
nomic constraints faced by a patient when different test op-
tions involve a tradeoff between accuracy and measurement
cost (Lomax and Vadera 2013; Núnez 1991). Denoting the
cost associated with each decision rule j which consists of
several medical tests as ρj and the budget as C, we specify
the following constraint: ρjzj ≤ C for all j = 1, · · · , L.
This constraint which ensures that each of the final selected
diagnostic methods (with zj = 1) is staying within the bud-
get, can be processed within the KSP subproblem. Addi-
tional examples can be found in the appendix.

In general, path-level constraints can be expressed as a
set of polyhedral inequalities on z, i.e.,

∑L
j=1 ρmjzj ≥

qm, ∀m = 1, · · · ,M. Let τm ≥ 0 denote the dual variables
corresponding to these constraints. Then, the reduced cost

9894

rcj for path j = ξj −
(∑N

i=1 aijλi + µ+
∑M

m=1 ρmjτm

)
.

These constraints influence the subproblem through the re-
sultant reduced costs to ensure that paths that are more likely
to be feasible are added to the RMP.

Attribute-level constraints Existing MIP methods are
also challenged by attribute-level constraints that represent
complex nonlinear conditions involving several features that
can not be abstracted efficiently into linear constraints, e.g.,
disallowing certain feature combinations. These constraints
are easily handled within the KSP subproblem as a feasibil-
ity check while extending a partial path to the next node in
G. A practical example of an attribute-level requirement is
the need to preserve attribute hierarchy. For example, in the
medical domain, doctors may perform temperature checks
or blood tests before proceeding to more advanced tests. En-
forcing such hierarchy makes the decision tree more reliable
and comprehensible for domain experts (Nanfack, Temple,
and Frénay 2022). This can be easily achieved by appropri-
ately arranging the nodes in the feature graph.

Cumulative Binning on Numerical Features
For tree-based approaches, numerical input are typically
handled via thresholding. For example, consider a numerical
feature with values in [0, 1] being divided into 3 intervals,
e.g., [0, 0.33), [0.33, 0.67) and [0.67, 1.0]. One can trans-
form this numerical feature to a categorical feature with 3
values, and create 3 nodes representing this feature in the
graph. This approach may be limiting as a binary-split tree
can branch on conditions such as x ≤ 0.67 or x > 0.3.
To address this limitation, we employ cumulative binning,
where intervals can be overlapping. We create additional
nodes representing intervals [0, 0.67), [0.33, 1.0], yielding
a total of 5 nodes. The coverage constraints (1) ensure that
the final rule set does not contain overlapping samples. In
our experiments, quantile discretization is used to create in-
tervals. More generally, with κ intervals, cumulative binning
results in O(κ2) nodes, i.e, a gain in a rule’s expressiveness
at the cost of higher computational effort.

6 Experiments
While OMT is a general framework which can also be used
in regression settings, we focus on classification tasks in our
experiments as most of the existing ODTs are classifica-
tion trees. We group our experiments by dataset size, where
small/medium datasets are loosely defined as having a few
thousand samples, and a dataset is considered large if it has
many thousands of samples and several hundred binary fea-
tures (Dash, Gunluk, and Wei 2018).

To benchmark our approach OMT, we implement the
following MIP-based methods, i.e., FlowOCT (Aghaei,
Gómez, and Vayanos 2021), BinOCT (Verwer and Zhang
2019) and OCT (Bertsimas and Dunn 2017). Although
CART cannot produce constrained decision rules, we still
include it as a baseline. As the benchmarks produce binary-
split trees of a given depth d, we construct a comparable
multiway-split tree via the cardinality constraint that re-
stricts the number of leaf nodes l to be at most 2d, i.e.,
l = 2d, and limit the rule length to d.

0 200 400 600 800 1000 1200
Training time (seconds)

0

50

100

150

200

250

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed

OMT
OCT
BinOCT
FlowOCT

Figure 3: Runtime performance on a total of 240 instances

CPLEX 20.1 (CPLEX 2021) was used to solve the MIP-
based methods. CART was trained using scikit-learn (Pe-
dregosa et al. 2011) using default hyper-parameters. The
minimum number of samples per rule for OMT was set to
1% of the training data. The maximum value for K was set
to 1000 in the KSP for all instances except the large dataset
experiments, where it was reduced to 100 to stay within the
RAM limit. We set a maximum CG iteration limit of 40 and
a L̂ limit of 10,000. All experiments were run on an Intel
8-core i7 PC with 32GB RAM. Details on the experiment
setup can be found in the appendix.

Small/Medium Datasets
We evaluate the same 12 classification datasets from the
UCI repository (Dua and Graff 2017) that have been used
in FlowOCT (Aghaei, Gómez, and Vayanos 2021), which is
considered the state-of-the-art ODT. We closely follow the
experiment setup in Aghaei, Gómez, and Vayanos 2021 to
construct decision trees with d ∈ {2, 3, 4, 5}. We create 5
random splits for each dataset into training (50%), valida-
tion (25%), and test sets (25%). A time limit of 20 minutes
is imposed on each experiment, in contrast to the one hour
limit used in Aghaei, Gómez, and Vayanos 2021.

Table 1 reports the out-of-sample accuracy averaged over
five splits for d ∈ {4, 5} (the complete results across all
depths can be found in the appendix). Best accuracy in a
given row is reported in bold. Among 48 (data, depth) com-
binations, OMT dominates other methods in 56.3% of them,
FlowOCT 33.3%, OCT 29.2%, BinOCT 8.3%, and CART
14.6% (including ties). These results demonstrate that our
OMT method achieves competitive and often superior re-
sults compared to MIP-based binary-split ODT models.

Next, we analyze the solution time taken by different
MIP-based methods. We define an “instance” as a unique
(dataset, depth, data split) combination. With 5 random data
splits, there are 12× 4× 5 = 240 instances in total. In Fig-
ure 3, the x-axis shows the solution time in seconds, while
the y-axis shows the number of instances solved. With the
MIP-based ODT benchmarks, when the solution time is un-
der the time limit, implying the instance is solved to opti-
mality or near optimality. Figure 3 shows that OMT solves
most instances before the 20 minutes time limit, followed by
FlowOCT, BinOCT and OCT. Specifically, 188 out of 240
instances was solved under 1 minute by OMT, in contrast to

9895

dataset N d OMT OCT BinOCT FlowOCT CART

soybean-small 47 4 0.883±0.139 0.944±0.048 0.833±0.22 0.944±0.083 1.0±0.0
soybean-small 47 5 0.95±0.075 0.972±0.096 0.722±0.21 0.972±0.083 1.0±0.0
monks-3 122 4 0.987±0.008 0.99±0.015 0.988±0.011 0.99±0.011 0.993±0.007
monks-3 122 5 0.987±0.008 0.978±0.014 0.983±0.015 0.99±0.012 0.993±0.007
monks-1 124 4 1.0±0.0 1.0±0.029 1.0±0.0 1.0±0.03 0.806±0.064
monks-1 124 5 1.0±0.0 0.935±0.142 1.0±0.0 1.0±0.03 0.787±0.042
hayes-roth 132 4 0.75±0.075 0.75±0.038 0.642±0.138 0.8±0.066 0.55±0.087
hayes-roth 132 5 0.77±0.089 0.75±0.076 0.575±0.066 0.817±0.029 0.708±0.058
monks-2 169 4 0.603±0.045 0.662±0.031 0.581±0.027 0.662±0.023 0.598±0.033
monks-2 169 5 0.779±0.03 0.662±0.05 0.607±0.03 0.662±0.055 0.651±0.055
house-votes-84 232 4 0.962±0.046 0.971±0.01 0.914±0.03 0.971±0.01 0.96±0.02
house-votes-84 232 5 0.955±0.026 0.971±0.01 0.96±0.01 0.971±0.01 0.96±0.02
spect 267 4 0.834±0.04 0.801±0.086 0.746±0.065 0.791±0.079 0.731±0.026
spect 267 5 0.803±0.039 0.791±0.06 0.721±0.048 0.796±0.085 0.731±0.03
breast-cancer 277 4 0.74±0.046 0.724±0.038 0.662±0.091 0.743±0.079 0.69±0.058
breast-cancer 277 5 0.669±0.094 0.738±0.0 0.567±0.157 0.676±0.036 0.671±0.049
balance-scale 625 4 0.781±0.016 0.747±0.048 0.707±0.006 0.699±0.01 0.769±0.033
balance-scale 625 5 0.772±0.012 0.735±0.01 0.565±0.1 0.72±0.045 0.762±0.013
tic-tac-toe 958 4 0.802±0.039 0.776±0.073 0.786±0.021 0.757±0.032 0.758±0.019
tic-tac-toe 958 5 0.82±0.061 0.711±0.025 0.812±0.029 0.788±0.05 0.778±0.046
car-evaluation 1728 4 0.879±0.009 0.796±0.076 0.848±0.01 0.823±0.016 0.842±0.029
car-evaluation 1728 5 0.91±0.005 0.742±0.041 0.815±0.052 0.8±0.016 0.857±0.019
kr-vs-kp 3196 4 0.96±0.006 0.847±0.094 0.938±0.012 0.94±0.011 0.94±0.011
kr-vs-kp 3196 5 0.968±0.003 0.652±0.098 0.847±0.164 0.946±0.057 0.94±0.011

Table 1: Mean ± standard deviation of out of sample accuracy on the small/medium datasets.

137, 95 and 59 instances by FlowOCT, BinOCT and OCT
respectively; 230 instances out of 240 was solved under 10
minutes by OMT, compared to 175, 118 and 90 instances by
the benchmarks. The bulk of the unsolved instances by the
time limit is the medium datasets with d ≥ 3.

Table 2 reports the solution times of different MIP meth-
ods with respect to tree depth. The solution time of unsolved
instances is capped at 20 minutes. Due to the skewed dis-
tributions contributed by huge discrepancies in terms of data
size and feature size, we report the median values. As CART
finishes all instances in seconds, we omit the results in the
table. We note that CART’s solutions may be infeasible by
ignoring constraints considered in this work.

Table 2 shows that the state-of-the-art MIP-based bench-
mark, FlowOCT takes the least time per instance among all
methods including OMT at d = 2, However, it experiences
a nearly 20X increase in runtime as d increases from 2 to 3,
which grows by another 4.5X when d = 4. We believe this
is an under-statement as the solution time of many unsolved
instances at higher depth are capped at 20 minutes. A further
increase in runtime is observed in OCT and BinOCT whose
binary variables increase exponentially with d. In contrast,
for OMT, the runtime increases are merely 1.4X, 0.68X,
0.4X as d increases from 2 to 5. Overall, our speedup over
FlowOCT at d = 4 and 5 is 10.3X and 24.6X respectively.
The exact OMT speedup is likely to be even higher if we
compare runtime to achieve the same solution quality.

The strong CG performance can also be explained by
examining the gap between the objective value achieved
by the Master-MIP (νIP) and the final RMP (νLP), i.e.,
∆ = (νIP − νLP)/νIP . A table that reports on this MIP-

d OMT FlowOCT BinOCT OCT

2 3.9 1.9 6.1 33.9
3 9.3 32.5 727.8 1200.4
4 15.6 177.0 1201.9 1202.5
5 21.9 561.4 1203.5 1205.9

Table 2: Median runtime (seconds) for MIP-based methods

LP gap with respect to d is included in the appendix. In
particular, the median gap is no more than 0.3% across all
depths, suggesting that the path-based LP relaxation is a
relatively strong approximation of the nonconvex discrete
OMT model. This tight gap also underscores the advantage
of converging to a relatively small subset of high quality
paths from which an effective decision tree can be distilled
using a standard MIP solver.

Large Datasets
We test our method on the six largest datasets analyzed in the
MIP-based ODT literature (Zhu et al. 2020). We follow the
same experiment setup described earlier but limit runtime to
one hour to account for the larger data size. As in Zhu et al.
2020, we focus on d = {2, 3}. Table 3 summarizes the av-
erage out-of-sample accuracy of different MIP approaches.
The left entries under column “CART” shows the CART re-
sults that we obtain. None of the arc-based MIP methods are
able to obtain an optimal solution on any of the 12 large in-
stances at d = 3 within the time limit, with FlowOCT win-
ning in one instance, and no wins for OCT and BinOCT.
On the other hand, OMT dominates 6 out of 12, and CART

9896

Univariate Multivariate

dataset N k d OMT OCT BinOCT FlowOCT CART S1O

pendigits 7494 16 2 0.395∗ 0.348 0.291 0.329 0.352/0.362 0.389
pendigits 7494 16 3 0.685∗ 0.517 0.347 0.459 0.558/0.579 0.625

avila 10430 10 2 0.475 0.461 0.096 0.509 0.501/0.503 0.526∗

avila 10430 10 3 0.524 0.417 0.403 0.504 0.527/0.535 0.558∗

EEG 14980 14 2 0.658 0.602 0.584 0.648 0.624/0.586 0.665∗

EEG 14980 14 3 0.690∗ 0.572 0.493 0.649 0.659/0.642 0.665
HTRU 17898 8 2 0.973 0.977 0.705 0.956 0.978/0.973 0.978∗

HTRU 17898 8 3 0.977 0.978 0.552 0.973 0.979/0.981∗ 0.979
shuttle 43500 9 2 0.968∗ 0.821 0.285 0.920 0.939/0.938 0.940
shuttle 43500 9 3 0.984 0.793 0.390 0.914 0.996/0.997 0.995∗

skin 245057 3 2 0.875∗ 0.899 0.774 0.802 0.907/0.806 0.863
skin 245057 3 3 0.967∗ 0.793 0.855 0.801 0.965/0.871 0.949

Table 3: Out of sample accuracy, using the large datasets from (Zhu et al. 2020).

wins 5 out of 12 cases. While the quality improvement over
CART is not dramatic, the latter is unable to handle con-
straints, which is a key practical feature of our approach.
Meanwhile, we improve upon the average misclassification
error achieved by FlowOCT by 8.4%.

Table 3 also includes a column “S1O”, taken from Zhu
et al. 2020. For ease of comparison, we include their CART
values shown as the right entries under column “CART” in
Table 3. We want to point out that it is not quite fair to com-
pare the two: Firstly, OMT is a univariate tree with axis-
parallel splits, whereas S1O is a multivariate (oblique) tree,
wherein splits at a node use multiple variables, or hyper-
planes. These multivariate splits tend to be much stronger
than univariate splits (Bertsimas and Dunn 2017), at the ex-
pense of losing some interpretability. Furthermore, the time
limit for S1O reported in Zhu et al. (2020) was four hours,
while we limit OMT to an hour (the average OMT runtime
per instance is 6.8 and 13.9 minutes at d = 2 and 3, re-
spectively). Finally, instead of running on the raw data as in
OMT, S1O employs a LP-based data-selection preprocess-
ing step. Nevertheless, we benchmark OMT against S1O
(and their CART results) in Table 3, and the best achieved
accuracy is marked with a star (∗). Of the 12 cases, OMT
still wins 6, while S1O and CART wins 5 and 2 cases re-
spectively. These results highlight our method’s ability to
produce good quality results in a relatively short training
time, and without sacrificing interpretability.

Lastly, we stress-test our method by analyzing challeng-
ing datasets in the UCI repository that are an order of magni-
tude larger than those reported for prior optimal ODT meth-
ods. We increase the degree of difficulty in two dimensions:
More samples (up to one million) and more raw features (up
to k = 175). For such large datasets, we found a negligible
change in solution quality for different random seeds, so we
solved each instance once using a fixed random seed and a
six-hour time limit and report the results in Table 4. As none
of the prior optimal ODTs could process such large data,
we compare the achieved solution quality to CART. Note
via proposition 1 that setting d = 2 for the crop-mapping
dataset (η = 4) yields L̂ ≤ 16× 1752 versus L = 4175. We
improve upon CART’s test accuracy in 6 of the 8 instances

dataset N k d OMT CART

MiniBooNE 130065 50 2 0.850 0.835
MiniBooNE 130065 50 3 0.873 0.865
crop mapping 325834 175 2 0.769 0.679
crop mapping 325834 175 3 0.841 0.797
covertype 581012 54 2 0.667 0.668
covertype 581012 54 3 0.684 0.677
susy 1008372 18 2 0.744 0.748
susy 1008372 18 3 0.760 0.755

Table 4: Out-of-sample accuracy on additional large datasets

with an average runtime of 3.7 hours per large instance.

7 Conclusion
In this paper, we propose a scalable and flexible mixed-
integer optimization framework based on column genera-
tion (CG) to identify optimal multiway-split decision trees
with constraints. We present a novel path-based MIP for-
mulation for decision trees where the number of columns
or binary variables is independent of the training data size.
Our method can generate both classification and regression
trees by minimizing any of the commonly used nonlinear
error metrics while still solving a linear MIP model. A first
“plain vanilla” CG implementation is tested on several pub-
lic datasets ranging up to a million data samples. We are
able to achieve a performance that is comparable to or supe-
rior than those achieved by the state-of-art optimal classifi-
cation tree methods in the literature while consuming only a
small fraction of their runtime. Our CG approach is also able
to seamlessly handle a wide variety of practical constraints
that cannot be efficiently managed by prior ODT models or
popular heuristics like CART.

The current framework has to discretize numerical fea-
tures. One way to handle numerical features without dis-
cretization is to employ a preprocessing step like BinOCT
[Verwer & Zhang 2019], which we leave as future work.
For deeper trees (e.g., d ≥ 10), the computational benefit
of Proposition-2 diminishes and a more sophisticated CG
implementation may be required.

9897

References
Aghaei, S.; Azizi, M. J.; and Vayanos, P. 2019. Learning op-
timal and fair decision trees for non-discriminative decision-
making. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 1418–1426.
Aghaei, S.; Gómez, A.; and Vayanos, P. 2021. Strong opti-
mal classification trees. arXiv preprint arXiv:2103.15965.
Aglin, G.; Nijssen, S.; and Schaus, P. 2020. Learning opti-
mal decision trees using caching branch-and-bound search.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 3146–3153.
Atamtürk, A.; Nemhauser, G. L.; and Savelsbergh, M. W.
1996. A combined Lagrangian, linear programming, and im-
plication heuristic for large-scale set partitioning problems.
Journal of heuristics, 1(2): 247–259.
Barnhart, C.; Johnson, E. L.; Nemhauser, G. L.; Savels-
bergh, M. W.; and Vance, P. H. 1998. Branch-and-price:
Column generation for solving huge integer programs. Op-
erations research, 46(3): 316–329.
Bertsimas, D.; and Dunn, J. 2017. Optimal classification
trees. Machine Learning, 106(7): 1039–1082.
Biggs, M.; Sun, W.; and Ettl, M. 2021. Model Distilla-
tion for Revenue Optimization: Interpretable Personalized
Pricing. In International Conference on Machine Learning,
946–956. PMLR.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.
Bront, J. J. M.; Méndez-Dı́az, I.; and Vulcano, G. 2009. A
column generation algorithm for choice-based network rev-
enue management. Operations research, 57(3): 769–784.
Chen, Z.-L.; and Xu, H. 2006. Dynamic column generation
for dynamic vehicle routing with time windows. Transporta-
tion Science, 40(1): 74–88.
CPLEX, I. I. 2021. Introducing IBM ILOG CPLEX Opti-
mization Studio 20.1.0.
Dash, S.; Gunluk, O.; and Wei, D. 2018. Boolean decision
rules via column generation. Advances in neural information
processing systems, 31.
Demirovic, E.; and Stuckey, P. J. 2021. Optimal decision
trees for nonlinear metrics. In Thirty-fifth AAAI Conference
on Artificial Intelligence.
Desaulniers, G.; Desrosiers, J.; and Solomon, M. M. 2006.
Column generation, volume 5. Springer Science & Business
Media.
Desrosiers, J.; and Lübbecke, M. E. 2005. A primer in col-
umn generation. In Column generation, 1–32. Springer.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. http://archive.ics.uci.edu/ml.
Fulton, T.; Kasif, S.; and Salzberg, S. 1995. Efficient al-
gorithms for finding multi-way splits for decision trees. In
Machine Learning Proceedings 1995, 244–251. Elsevier.
Günlük, O.; Kalagnanam, J.; Li, M.; Menickelly, M.; and
Scheinberg, K. 2021. Optimal decision trees for categorical
data via integer programming. Journal of global optimiza-
tion, 81(1): 233–260.

Hartmanis, J. 1982. Computers and intractability: a guide to
the theory of np-completeness (michael r. garey and david s.
johnson). Siam Review, 24(1): 90.
Horne, G. 1980. Finding the K least cost paths in an acyclic
activity network. Journal of the Operational Research Soci-
ety, 31(5): 443–448.
Laurent, H.; and Rivest, R. L. 1976. Constructing optimal
binary decision trees is NP-complete. Information process-
ing letters, 5(1): 15–17.
Lin, J.; Zhong, C.; Hu, D.; Rudin, C.; and Seltzer, M.
2020. Generalized and scalable optimal sparse decision
trees. In International Conference on Machine Learning,
6150–6160. PMLR.
Lomax, S.; and Vadera, S. 2013. A survey of cost-sensitive
decision tree induction algorithms. ACM Computing Surveys
(CSUR), 45(2): 1–35.
Lübbecke, M. E.; and Desrosiers, J. 2005. Selected topics in
column generation. Operations research, 53(6): 1007–1023.
Nanfack, G.; Temple, P.; and Frénay, B. 2022. Constraint
Enforcement on Decision Trees: a Survey. ACM Computing
Surveys (CSUR).
Narodytska, N.; Ignatiev, A.; Pereira, F.; Marques-Silva, J.;
and RAS, I. 2018. Learning Optimal Decision Trees with
SAT. In Ijcai, 1362–1368.
Núnez, M. 1991. The use of background knowledge in de-
cision tree induction. Machine learning, 6(3): 231–250.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learning
in Python. the Journal of machine Learning research, 12:
2825–2830.
Quinlan, J. R. 1986. Induction of decision trees. Machine
learning, 1(1): 81–106.
Quinlan, J. R. 2014. C4. 5: programs for machine learning.
Elsevier.
Subramanian, S.; and Sherali, H. D. 2008. An effective de-
flected subgradient optimization scheme for implementing
column generation for large-scale airline crew scheduling
problems. INFORMS Journal on Computing, 20(4): 565–
578.
Subramanian, S.; Sun, W.; Drissi, Y.; and Ettl, M. 2022.
Constrained Prescriptive Trees via Column Generation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, 4602–4610.
Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.-G.; and
Schaus, P. 2020. Learning optimal decision trees using con-
straint programming. Constraints, 25(3): 226–250.
Verwer, S.; and Zhang, Y. 2019. Learning optimal classifica-
tion trees using a binary linear program formulation. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, 1625–1632.
Xu, Y. 2019. Solving Large Scale Optimization Problems
in the Transportation Industry and Beyond Through Column
Generation. In Optimization in Large Scale Problems, 269–
292. Springer.

9898

Zhu, H.; Murali, P.; Phan, D.; Nguyen, L.; and Kalagnanam,
J. 2020. A Scalable MIP-based Method for Learning Op-
timal Multivariate Decision Trees. In Advances in Neural
Information Processing Systems, volume 33, 1771–1781.

9899

