
Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in
Federated Learning
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Abstract

Secure aggregation is a critical component in federated learn-
ing (FL), which enables the server to learn the aggregate
model of the users without observing their local models.
Conventionally, secure aggregation algorithms focus only on
ensuring the privacy of individual users in a single train-
ing round. We contend that such designs can lead to signif-
icant privacy leakages over multiple training rounds, due to
partial user participation at each round of FL. In fact, we
show that the conventional random user selection strategies
in FL lead to leaking users’ individual models within num-
ber of rounds that is linear in the number of users. To address
this challenge, we introduce a secure aggregation framework,
Multi-RoundSecAgg, with multi-round privacy guarantees.
In particular, we introduce a new metric to quantify the pri-
vacy guarantees of FL over multiple training rounds, and de-
velop a structured user selection strategy that guarantees the
long-term privacy of each user (over any number of training
rounds). Our framework also carefully accounts for the fair-
ness and the average number of participating users at each
round. Our experiments on MNIST, CIFAR-10 and CIFAR-
100 datasets in the IID and the non-IID settings demonstrate
the performance improvement over the baselines in terms of
privacy protection and test accuracy.

1 Introduction
Federated learning (FL) enables collaborative training of
learning models over the data collected and stored locally
by multiple data-owners. The training in FL is typically co-
ordinated by a central server who maintains a global model
that is updated locally by the users. The local updates are
then aggregated by the server to update the global model.
Throughout the training, the users never share their data with
the server, rather, they only share their local updates. How-
ever, as shown recently, the local models may still reveal
substantial information about the local datasets, and the pri-
vate training data can be reconstructed from the local models
through inference or inversion attacks (Fredrikson, Jha, and
Ristenpart 2015; Nasr, Shokri, and Houmansadr 2019; Zhu
and Han 2020; Geiping et al. 2020).
To prevent such information leakage, secure aggregation
protocols are proposed (e.g., (Bonawitz et al. 2017; So,
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Figure 1: A qualitative comparison of the reconstructed im-
ages in two settings is shown. The first setting corresponds to
the case that model privacy with random user selection (e.g.,
FedAvg (McMahan et al. 2018)) is protected by conven-
tional secure aggregation schemes as (Bonawitz et al. 2017)
at each round. In the second setting, our proposed method
ensures the long-term privacy of individual models over any
number of rounds, and hence model inversion attack cannot
work well. This reconstruction process is described in detail
in (So et al. 2021b, Appendix H).

Güler, and Avestimehr 2021; Kadhe et al. 2020; Zhao and
Sun 2021; Bell et al. 2020; Yang et al. 2021; So et al. 2021a))
to protect the privacy of the local models, from the server
and the other users, while still allowing the server to learn
their aggregate. More specifically, the secure aggregation
protocols ensure that, at any given round, the server can only
learn the aggregate model of the users, and beyond that no
further information is revealed about the individual model.

Secure aggregation, however, only ensures the privacy of
the users in a single training round, and do not consider their
privacy over multiple training rounds (Bonawitz et al. 2017;
Bell et al. 2020; So, Güler, and Avestimehr 2021; So et al.
2022). On the other hand, due to partial user selection (Cho,
Wang, and Joshi 2020; Chen, Horvath, and Richtarik 2020;
Cho et al. 2020; Ribero and Vikalo 2020), the server may
be able to reconstruct the individual models of some users
using the aggregated models from the previous rounds. In
fact, we show that after a sufficient number of rounds, all
local models can be recovered with a high accuracy if the
server uniformly chooses a random subset of the users to
participate at every round. As shown in Fig.1, performing
model inversion attack (Geiping et al. 2020) with the recov-
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ered local models yields reconstructed images with a similar
quality as the original images.

Contributions. As such motivated, we study the long-
term user privacy in FL. Specifically, our contributions are
as follows.
1. We introduce a new metric to capture long-term privacy

guarantees for secure aggregation protocols in FL for the
first time. This long-term privacy requires that the server
cannot reconstruct any individual model using the aggre-
gated models from any number of training rounds. Using
this metric, we show that the conventional random selec-
tion schemes can result in leaking the local models after
a sufficient number of rounds, even if secure aggregation
is employed at each round.

2. We propose Multi-RoundSecAgg, a privacy-preserving
structured user selection strategy that ensures the long-
term privacy of the individual users over any number of
training rounds. This strategy also takes into account the
fairness of the selection process and the average number
of participating users at each round.

3. We demonstrate that Multi-RoundSecAgg provides a
trade-off between the long-term privacy guarantee and
the average number of participating users. In particular,
as the average number of participating users increases,
the long-term privacy guarantee becomes weaker.

4. We provide the convergence analysis of Multi-
RoundSecAgg, which shows that the long-term privacy
guarantee and the average number of participating users
control the convergence rate. The convergence rate is
maximized when the average number of participating
users is maximized (e.g., the random user selection
strategy maximizes the average number of participating
users at the expense of not providing long-term privacy
guarantees). As we require stronger long-term privacy,
the average number of participating users decreases and
a larger number of training rounds is required to achieve
the same level of accuracy as random selection.

5. Finally, our experiments in both IID and non-IID settings
on MNIST, CIFAR-10 and CIFAR-100 demonstrate that
Multi-RoundSecAgg achieves almost the same test ac-
curacy compared to the random selection scheme while
providing better long-term privacy guarantees.

2 Related Work
The underlying principle of the secure aggregation proto-
col in (Bonawitz et al. 2017) is that each pair of users ex-
change a pairwise secret key which they can use to mask
their local models before sharing them with the server. The
pairwise masks cancel out when the server aggregates the
masked models, allowing the server to aggregate the local
models. These masks also ensure that the local models are
kept private, i.e., no further information is revealed beyond
the aggregate of the local models. This protocol, however,
incurs a significant communication cost due to exchanging
and reconstructing the pairwise keys.

Several works also developed more efficient protocols
(So, Güler, and Avestimehr 2021; Kadhe et al. 2020; Bell
et al. 2020; Tang et al. 2021; Choi et al. 2020; Elkordy and

Avestimehr 2020; Yang et al. 2021), which are complemen-
tary to and can be combined with our work. Another line
of work focused on designing partial user selection strate-
gies to overcome the communication bottleneck in FL while
speeding up the convergence (Cho, Wang, and Joshi 2020;
Chen, Horvath, and Richtarik 2020; Cho et al. 2020; Ribero
and Vikalo 2020).

Previous works, however, do not consider mitigating the
potential privacy leakage as a result of partial user participa-
tion and the server observing the aggregated models across
multiple training rounds. While (Pejó and Biczók 2020)
pointed out to this problem, mitigating this leakage has not
been considered and our work is the first secure aggregation
protocol to address this challenge. Specifically, we identify a
metric to quantify the long-term privacy of secure aggrega-
tion, and develop a privacy-preserving user selection strat-
egy with provable long-term privacy.

Differential privacy (DP) techniques can also protect the
privacy over the multiple FL rounds (Dwork, Roth et al.
2014; Abadi et al. 2016; Wei et al. 2020; Bonawitz et al.
2021; Kairouz et al. 2021), but this comes at the expense
of the model performance. It is worth noting that secure ag-
gregation and DP are complementary, i.e., the benefits of
DP can be applied to the secure aggregation protocols by
adding noise to the local models (Bonawitz et al. 2021). In
this paper, however, our objective is to understand the secure
aggregation problem without DP.

3 System Model
We first describe the basic FL model in Section 3.1. Next, we
introduce the multi-round secure aggregation problem for
FL and define the key metrics to evaluate the performance
of a multi-round secure aggregation protocol in Section 3.2.

3.1 Basic Federated Learning Model
We consider a cross-device FL setup consisting of a server
and N users. User i ∈ [N ] has a local dataset Di consisting
of mi = |Di| data samples. The users are connected to each
other through the server, i.e., all communications between
the users goes through the server (McMahan et al. 2017;
Bonawitz et al. 2017; Kairouz et al. 2019). The goal is to col-
laboratively learn a global model x with dimension d, using
the local datasets that are generated, stored, and processed
locally by the users. The training task can be represented by
minimizing a global loss function,

min
x
L(x) s.t. L(x) =

1∑N
i=1 wi

N∑
i=1

wiLi(x), (1)

where Li is the loss function of user i andwi ≥ 0 is a weight
parameter assigned to user i to specify the relative impact
of that user. A common choice for the weight parameters
is wi = mi (Kairouz et al. 2019). We define the optimal
model parameters x∗ and x∗i as x∗ = arg minx∈Rd L(x) and
x∗i = arg minx∈Rd Li(x).
Federated Averaging with Partial User Participation. To
solve (1), the most common algorithm is the FedAvg algo-
rithm (McMahan et al. 2017). FedAvg is an iterative algo-
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rithm, where the model training is done by repeatedly it-
erating over individual local updates. At the beginning of
training round t, the server sends the current global model
x(t) to the users. Each round consists of two phases, local
training and aggregation. In the local training phase, user
i ∈ [N ] updates the global model by carrying out E (≥ 1)
local stochastic gradient descent (SGD) steps and sends the
updated local model x(t)i to the server. One of key features of
cross-device FL is partial device participation. Due to vari-
ous reasons such as unreliable wireless connectivity, at any
given round, only a fraction of the users are available to
participate in the protocol. We refer to such users as avail-
able users throughout the paper. In the aggregation phase,
the server selects K ≤ N users among the available users if
this is possible and aggregates their local updates. The server
updates the global model as follows

x(t+1) =
∑
i∈S(t)

w′ix
(t)
i = X(t)>p(t), (2)

where S(t) is the set of participating users at round t,
p(t) ∈ {0, 1}N is the corresponding characteristic vector
and w′i = wi∑

i∈S(t) wi
. That is, p(t) denotes a participa-

tion vector at round t whose i-th entry is 0 when user i is
not selected and 1 otherwise. X(t) denotes the concatena-
tion of the weighted local models at round t, i.e., X(t) =[
w′1x(t)1 , . . . , w′Nx(t)

N

]> ∈ RN×d. Finally, the server broad-
casts the updated global model x(t+1) to the users for the
next round.
Threat Model. Similar to the prior works on secure aggre-
gation as (Bonawitz et al. 2017; Kadhe et al. 2020; So, Güler,
and Avestimehr 2021), we consider the honest-but-curious
model. All participants follow the protocol honestly in this
model, but try to learn as much as possible about the users.
At each round, the privacy of individual model x(t)i in (2)
is protected by secure aggregation such that the server only
learns the aggregated model

∑
i∈S(t) w′ix

(t)
i .

3.2 Multi-round Secure Aggregation
While secure aggregation protocols have provable privacy
guarantees at any single round, in the sense that no infor-
mation is leaked beyond the aggregate model at each round,
the privacy guarantees do not extend to attacks that span
multiple training rounds. Specifically, by using the aggre-
gate models and participation information across multiple
rounds, an individual model may be reconstructed. For in-
stance, consider the following user participation strategy
across three training rounds, p(1) = [1, 1, 0]>, p(2) =

[0, 1, 1]>, and p(3) = [1, 0, 1]>. Assume a scenario where
the local updates do not change significantly over time (e.g.,
models start to converge), i.e., xi = x(t)i for all i ∈ [3] and
t ∈ [3]. Then the server can single out all individual models,
even if a secure aggregation protocol is employed at each
round.

In this paper, we study secure aggregation protocols with
long-term privacy guarantees (which we term multi-round

secure aggregation) for the cross-device FL setup. We as-
sume that user i ∈ [N ] drops from the protocol at each round
with probability pi. U (t) denotes the index set of available
users at round t and u(t) ∈ {0, 1}N is a vector indicating
the available users such that {u(t)}j = 1{j ∈ U (t)}, where
{u}j is j-th entry of u and 1{·} is the indicator function. The
server selectsK users from U (t), if |U (t)| ≥ K, based on the
history of selected users in previous rounds. If |U (t)| < K,
the server skips this round. The local models of the selected
users are then aggregated via a secure aggregation protocol
(i.e., by communicating masked models), at the end of which
the server learns the aggregate of the local models of the se-
lected users. Our goal is to design a user selection algorithm
A(t) : {0, 1}t×N × {0, 1}N → {0, 1}N ,

A(t)
(
P(t), u(t)

)
= p(t) such that ‖p(t)‖0 ∈ {0,K}, (3)

to prevent the potential information leakage over multiple
rounds, where p(t) ∈ {0, 1}N is the participation vector de-
fined in (2), ‖x‖0 denotes the L0-“norm” of x and K de-
notes the number of selected users. We note that A(t) can
be a random function. P(t) is a matrix representing the user
participation information up to round t, and is termed the
participation matrix, given by

P(t) =
[
p(0), p(1), . . . , p(t−1)]> ∈ {0, 1}t×N . (4)

Key Metrics. A multi-round secure aggregation protocol
can be represented by A = {A(t)}t∈[J], where A(t) is the
user selection algorithm at round t defined in (3) and J is
the total number of rounds. The inputs of A(t) are a ran-
dom vector u(t), which indicates the available users at round
t, and the participation matrix P(t) defined in (4) which can
be a random matrix. Given the participation matrix P(J), we
evaluate the performance of the corresponding multi-round
secure aggregation protocol through the following metrics.
1. Multi-round Privacy Guarantee. Secure aggregation

protocols ensure that the server can only learn the sum
of the local models of some users in each single round,
but they do not consider what the server can learn over
the long run. Our multi-round privacy definition extends
the guarantees of the secure aggregation protocols from
one round to all rounds by requiring that the server can
only learn a sum of the local models even if the server
exploits the aggregate models of all rounds. That is, our
multi-round privacy guarantee is a natural extension of
the privacy guarantee provided by the secure aggregation
protocols considering a single training round.
Specifically, a multi-round privacy guarantee T requires
that any non-zero partial sum of the local models that the
server can reconstruct, through any linear combination
X>P(J)>z, where z ∈ RJ \ {0}, must be of the form1

X>P(J)>z =
∑
i∈[n]

ai
∑
j∈Si

xj

= a1
∑
j∈S1

xj + a2
∑
j∈S2

xj + · · ·+ an
∑
j∈Sn

xj , (5)

1We assume that wi =
1
N
, ∀i ∈ [N ] in this paper.
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where ai 6= 0, ∀i ∈ [n], n ∈ Z+, |Si| ≥ T and
Si ∩ Sj = ∅ when i 6= j. Here all the sets Si, the
number of sets n, and each ai could all depend on z. In
equation (5), we consider the worst-case scenario, where
the local models do not change over the rounds. That is,
X(t) = X, ∀t ∈ [J ]. Intuitively, this guarantee ensures
that the best that the server can do is to reconstruct a par-
tial sum of T local models which corresponds to the case
where n = 1. When T ≥ 2, this condition implies that
the server cannot get any user model from the aggregate
models of all training rounds (the best it can obtain is the
sum of two local models).

Remark 1. (Weaker Privacy Notion). It is worth not-
ing that, a weaker privacy notion would require that
‖P(J)>z‖0 ≥ T when P(J)>z 6= 0. When T = 2, this
definition requires that the server cannot reconstruct any
individual model (the best it can do is to obtain a linear
combination of two local models). This notion, however,
allows constructions in the form of axi + bxj for any
a 6= 0, b 6= 0. When a � b, however, this is almost the
same as recovering xi perfectly, hence this privacy cri-
terion is weaker than that of (5). We refer to (Deer, Ali,
and Avestimehr 2022) for a follow-up work that consid-
ers this weaker notion.

Remark 2. (Multi-round Privacy of Random Selection).
In Section 6, we empirically show that a random selec-
tion strategy in which K available users are selected uni-
formly at random at each round does not ensure multi-
round privacy even with respect to the weaker definition
of Remark 1. Specifically, the local models can be recon-
structed within a number of rounds that is linear inN . We
also show theoretically in (So et al. 2021b, Appendix H)
that when min(N −K,K) ≥ cN , where c > 0 is a con-
stant, then the probability that the server can reconstruct
all local models after N rounds is at least 1− 2e−c

′N for
a constant c′ that depends on c. Finally, we show that a
random selection scheme in which the users are selected
in an i.i.d fashion according to Bern( K

N(1−p) ) reveals all
local models after N rounds with probability that con-
verges to 1 exponentially fast.

Remark 3. (Worst-Case Assumption). In (5), we consid-
ered the worst-case assumption where the models do not
change over time. When the models change over rounds,
the multi-round privacy guarantee becomes even stronger
as the number of unknowns increases. In Fig. 1 and (So
et al. 2021b, Appendix H) , we empirically show that the
conventional secure aggregation schemes leak extensive
information of training data even in the realistic settings
where the models change over the rounds.

2. Aggregation Fairness Gap. The average aggregation
fairness gap quantifies the largest gap between any two
users in terms of the expected relative number of rounds
each user has participated in training. Formally, the aver-
age aggregation fairness gap is defined as follows

F = max
i∈[N ]

lim sup
J→∞

1

J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
−

min
i∈[N ]

lim inf
J→∞

1

J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
, (6)

where {p(t)}i is i-th entry of the vector p(t) and the ex-
pectation is over the randomness of the user selection al-
gorithm A and the user availability. The main intuition
behind this definition is that when F = 0, all users par-
ticipate on average on the same number of rounds. This
is important to take the different users into considera-
tion equally and our experiments show that the accuracy
of the schemes with small F are much higher than the
schemes with high F .

3. Average Aggregation Cardinality. The aggregation car-
dinality quantifies the expected number of models to be
aggregated per round. Formally, it is defined as

C = lim inf
J→∞

E
[ J−1∑
t=0

‖p(t)‖0
]
/J, (7)

where the expectation is over the randomness in A and
the user availability. Intuitively, less number of rounds
are needed to converge as more users participate in the
training. In fact, as we show in Section 5.2, C directly
controls the convergence rate.

3.3 Baseline Schemes
In this subsection, we introduce three baseline schemes for
multi-round secure aggregation.
Random Selection. In this scheme, at each round, the server
selects K users at random from the set of available users if
this is possible.
Random Weighted Selection. This scheme is a modified
version of random selection to reduce F when the dropout
probabilities of the users are not equal. Specifically,K users
are selected at random from the available users with the min-
imum frequency of participation in the previous rounds.
User Partitioning (Grouping). In this scheme, the users are
partitioned into G = N/K equal-sized groups denoted as
G1, · · · ,GG. At each round, the server selects one of the
groups if none of the users in this group has dropped out.
If multiple groups are available, to reduce F , the server se-
lects a group including a user with the minimum frequency
of participation in previous rounds. If no group is available,
the server skips this round.

4 Proposed Scheme: Multi-RoundSecAgg
In this section, we present Multi-RoundSecAgg, which has
two components as follows.

• The first component designs a family of sets of users that
satisfy the multi-round privacy requirement. The inputs of
the first component are the number of users (N ), the num-
ber of selected users at each round (K), and the desired
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Figure 2: Our construction with N = 8, K = 4 and T = 2.

multi-round privacy guarantee (T ). The output is a fam-
ily of sets of K users satisfying the multi-round privacy
guarantee T , termed as a privacy-preserving family. This
family is represented by a matrix B, where the rows are
the characteristic vectors of these user sets.

• The second component selects a set from this family to
satisfy the fairness guarantee. The inputs to this compo-
nent are the privacy-preserving family represented by the
matrix B, the set of available users at round t, U (t), and
the frequency of participation of each user. The output is
the set of users that will participate at round t.

We now describe these two components in detail.
Component 1 (Batch Partitioning (BP) of the users to
guarantee multi-round privacy). The first component de-
signs a family of RBP sets, where RBP is the size of the set,
satisfying the multi-round privacy requirement T . We de-
note the RBP ×N binary matrix corresponding to these sets
by B = [b1, · · · , bRBP ]>, where ‖bi‖0 = K, ∀i ∈ [RBP].
That is, the rows of B are the characteristic vectors of those
sets. The main idea of our scheme is to restrict certain sets of
users of size T , denoted as batches, to either participate to-
gether or not participate at all. This guarantees a multi-round
privacy T as we show in Section 5.

To construct a family of sets with this property, the users
are first partitioned into N/T batches. At any given round,
either all or none of the users of a particular batch participate
in training. The server can choose K/T batches to partici-
pate in training, provided that all users in any given selected
batch are available. Since there are

(
N/T
K/T

)
possible sets with

this property, then the size of this privacy-preserving fam-
ily of sets is given by RBP

def
=
(
N/T
K/T

)
2. In the extreme case of

T = 1, this strategy specializes to random selection where
the server can choose any K possible users. In the other ex-
treme case of T = K, this strategy specializes to the par-
titioning strategy where there are N/K possible sets. We
next provide an example to illustrate the construction of B
as shown in Fig. 2.

Example 1 (N = 8,K = 4, T = 2). In this example, the
users are partitioned into 4 batches as G1 = {1, 2},G2 =
{3, 4},G3 = {5, 6} and G4 = {7, 8} as given in Fig. 2. The
server can choose any two batches out of these 4 batches,
hence we have RBP =

(
4
2

)
= 6 possible sets. This ensures a

multi-round privacy T = 2.

Component 2 (Available batch selection to guarantee
fairness). At round t, user i ∈ [N ] is available to partici-

2We assume for simplicity that N/T and K/T are integers.

pate in the protocol with a probability 1 − pi ∈ (0, 1]. The
frequency of participation of user i before round t is denoted
by f (t−1)i

def
=
∑t−1
j=0 1

{
{p(j)}i = 1

}
. Given the set of avail-

able users at round t, U (t), and the frequencies of partici-
pation f (t−1) = (f

(t−1)
1 , · · · , f (t−1)N ), the server selects K

users. To do so, the server first finds the submatrix of B de-
noted by B(t) corresponding to U (t). Specifically, the i-th
row of B denoted by b>i is included in B(t) provided that
supp(bi) ⊆ U (t). If B(t) is an empty matrix, then the server
skips this round. Otherwise, the server selects a row from
B(t) uniformly at random if pi = p, ∀i ∈ [N ]. If the users
have different pi, the server selects a row from B(t) that in-
cludes the user with the minimum frequency of participation
`
(t−1)
min

def
= arg mini∈U(t) f

(t−1)
i . If there are many such rows,

then the server selects one of them uniformly at random.

Remark 4. (Necessity of the Second Component). The sec-
ond component is necessary to guarantee that the aggrega-
tion fairness gap goes to zero as we show in Theorem 1 and
Section 6.

Overall, the algorithm designs a privacy-preserving family
of sets to ensure a multi-round privacy guarantee T . Then
specific sets are selected from this family to ensure fairness.
We describe the two components of Multi-RoundSecAgg in
detail in Algorithms 1 and 2 in (So et al. 2021b, App. D).

5 Theoretical Results
In this section, we provide the theoretical guarantees of
Multi-RoundSecAgg.

5.1 Guarantees of Multi-RoundSecAgg
In this subsection, we establish the theoretical guarantees
of Multi-RoundSecAgg in terms of the multi-round privacy
guarantee, the aggregation fairness gap and the average ag-
gregation cardinality.

Theorem 1. Multi-RoundSecAgg with parameters N,K, T
ensures a multi-round privacy guarantee of T , an aggrega-
tion fairness gap F = 0, and an average aggregation cardi-
nality that is given by

C = K

1−
N/T∑

i=N/T−K/T+1

(
N/T

i

)
qi(1− q)N/T−i

,
where q = 1 − (1 − p)T , when all users have the dropout
probability p.

We provide the proof in (So et al. 2021b, Appendix A).

Remark 5. (Trade-off between “Multi-round Privacy Guar-
antee” and “Average Aggregation Cardinality”). Theorem 1
indicates a trade-off between the multi-round privacy and
the average aggregation cardinality since as T increases, C
decreases which slows down the convergence as we show in
Sec. 5.2. We show this trade-off in Fig. 3.

Remark 6. (Necessity of Batch Partitioning (BP)). We
show that any strategy that satisfies the privacy guarantee
in Equation (5) must have a batch partitioning structure, and
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Figure 3: An illustration of the trade-off between the multi-
round privacy guarantee T and the average aggregation car-
dinality C. In this example, N = 120 and K = 12.

for given N,K, T,K ≤ N/2, the largest number of distinct
user sets in any strategy is at most

(
N/T
K/T

)
, which is achieved

in our design in Section 4. We provide the proof in (So et al.
2021b, Appendix C).

Remark 7. (Non-linear Reconstructions of Aggregated
Models). The privacy criterion in Eq. (5) considers linear
reconstructions of the aggregated models. One may also
consider more general non-linear reconstructions. The long-
term privacy guarantees of batch partitioning hold even un-
der such reconstructions as the users in the same batch al-
ways participate together or do not participate at all. Hence,
the server cannot separate individual models within the same
batch even through non-linear operations.

5.2 Convergence Analysis of Multi-RoundSecAgg

For convergence analysis, we first introduce a few common
assumptions (Li et al. 2019; Yu, Yang, and Zhu 2019).

Assumption 1. L1, . . . , LN in (1) are all ρ-smooth: ∀a, b ∈
Rd and i ∈ [N ], Li(a) ≤ Li(b)+(a−b)>∇Li(b)+ ρ

2‖a−
b‖2.

Assumption 2. L1, . . . , LN in (1) are all µ-strongly convex:
∀a, b ∈ Rd and i ∈ [N ],Li(a) ≥ Li(b)+(a−b)>∇Li(b)+
µ
2 ‖a− b‖2.

Assumption 3. Let ξ(t)i be a sample uniformly selected
from the dataset Di. The variance of the stochastic gra-
dients at each user is bounded, i.e., E‖∇Li(x(t)i , ξ

(t)
i ) −

∇Li(x(t)i )‖2 ≤ σ2
i for i ∈ [N ].

Assumption 4. The expected squared norm of the stochastic
gradients is uniformly bounded, i.e.,
E‖∇Li(x(t)i , ξ

(t)
i )‖2 ≤ G2 for all i ∈ [N ].

We now state our convergence guarantees.

Theorem 2. Consider a FL setup with N users to train a
machine learning model from (1). Assume K users are se-
lected by Multi-RoundSecAgg with average aggregation car-
dinality C defined in (7) to update the global model from
(2), and all users have the same dropout rate, hence Multi-
RoundSecAgg selects a random set of K users uniformly

from the set of available user sets at each round. Then,

E[L(x(J))]− L∗

≤ ρ

γ + C
KEJ − 1

(
2(α+ β)

µ2
+
γ

2
E‖x(0) − x∗‖2

)
, (8)

where α = 1
N

∑N
i=1 σ

2
i + 6ρΓ + 8(E − 1)2G2, β =

4(N−K)E2G2

K(N−1) , Γ = L∗ −
∑N
i=1 L

∗
i , and γ = max

{
8ρ
µ , E

}
.

We provide the proof in (So et al. 2021b, Appendix B).
Remark 8. (The average aggregation cardinality controls
the convergence rate.) Theorem 2 shows how the average
aggregation cardinality affects the convergence. When the
average aggregation cardinality is maximized, i.e., C = K,
the convergence rate in Theorem 2 equals that of the ran-
dom selection algorithm provided in Theorem 3 of (Li et al.
2019). In (8), we have the additional term E (number of lo-
cal epochs) in front of J compared to Theorem 3 of (Li et al.
2019) as we use global round index t instead of using step
index of local SGD. As the average aggregation cardinality
decreases, a greater number of training rounds is required to
achieve the same level of accuracy.
Remark 9. (General Convex and Non-Convex). Theorem 2
considers the strongly-convex case, but the general convex
and the non-convex cases can be addressed as in (Karim-
ireddy et al. 2020).
Remark 10. (Different Dropout Rates). When the dropout
probabilities of the users are not the same, characterizing the
convergence guarantees is challenging. This is due to the fact
that batch selection based on the frequency of participation
breaks the conditional unbiasedness of the user selection,
which is required for the convergence guarantee. However,
we empirically show that Multi-RoundSecAgg guarantees
the convergence with different dropout rates.

6 Experiments
We first numerically demonstrate the performance of Multi-
RoundSecAgg compared to the baselines of Sec. 3.3 in
terms of the key metrics of Sec. 3.2. Next, we implement
convolutional neural networks (CNNs) with MNIST (Le-
Cun, Cortes, and Burges 2010), CIFAR-10, and CIFAR-
100 (Krizhevsky and Hinton 2009) to investigate the effect
of the key metrics on the test accuracy.

Scheme Family size (= R)

Random selection ∼ 1016

Weighted random selection ∼ 1016

User partition 10
Multi-RoundSecAgg, T=6 190
Multi-RoundSecAgg, T=4 4060
Multi-RoundSecAgg, T=3 91389

Table 1: Family size with N = 120, K = 12.

Setup. We consider a FL setting withN = 120 users, where
the server aims to choose K = 12 users at every round. We
study two settings for partitioning the CIFAR-100 dataset.
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(a) Multi-round privacy guarantee. (b) Aggregation fairness gap. (c) Average aggregation cardinality.

Figure 4: The key metrics with N = 120 (number of users), K = 12 (number of selected users at each round).
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Figure 5: Trade-off between multi-round privacy and aggregation cardinality and also the test accuracy of VGG11 in (Simonyan
and Zisserman 2014) on the CIFAR-100 dataset with N = 120 and K = 12.

• IID Setting. 50000 training samples are shuffled and par-
titioned uniformly across N = 120 users.

• Non-IID Setting. We distribute the dataset using a Dirich-
let distribution (Hsu, Qi, and Brown 2019). Specifically,
for user i ∈ [N ], we sample a vector πππi ∼ Dir(κπππ) with
κ = 0.5 and πππ is the prior class distribution over the 100
classes. The parameter κ controls the heterogeneity of the
distributions, where κ→∞ results in IID setting.

We implement a VGG-11 (Simonyan and Zisserman 2014),
which is sufficient for our needs, as our goal is to evaluate

various schemes, not to achieve the best accuracy. The hy-
perparameters are provided in (So et al. 2021b, App. F).
Modeling dropouts. To model heterogeneous system,
users have different dropout probability pi selected from
{0.1, 0.2, 0.3, 0.4, 0.5}. At each round, user i ∈ [N ] drops
with probability pi.
Implemented Schemes. We implement the three baselines
introduced in Sec. 3.3, referred to as Random, Weighted
Random, and Partition. For Multi-RoundSecAgg, we con-
struct three privacy-preserving families with different tar-
get multi-round privacy guarantees, T = 6, T = 4, and
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T = 3 which we refer to as Multi-RoundSecAgg (T = 6),
Multi-RoundSecAgg (T = 4), and Multi-RoundSecAgg
(T = 3), respectively. One can view the Random and Parti-
tion schemes as extreme cases of Multi-RoundSecAgg with
T = 1 and T = K, respectively. Table 1 summarizes the
family size R defined in Section 4.
Key Metrics. To numerically demonstrate the performance
of the six schemes in terms of the key metrics defined in Sec.
3.2, at each round, we measure the following metrics.
• For the multi-round privacy guarantee, we measure

the number of models in the partial sum that the
server can reconstruct, which is given by T (t) :=

minz∈RJ} ‖z>P(t)‖0, s.t. P(t)>z 6= 0. This corresponds
to the weaker privacy definition of Remark 1. We use
this weaker privacy definition as the random selection
and the random weighted selection strategies provide the
worst privacy guarantee even with this weaker defini-
tion, as demonstrated later. On the other hand, Multi-
RoundSecAgg provides better privacy guarantees with
both the strong and the weaker definitions.

• For the aggregation fairness gap, we measure the in-
stantaneous fairness gap F (t) := maxi∈[N ] F

(t)
i −

mini∈[N ] F
(t)
i , where F (t)

i = 1
t+1

∑t
l=0 1

{
{p(l)}i = 1

}
.

• We measure the instantaneous aggregation cardinality as
C(t) := 1

t+1

∑t
l=0 ‖p(l)‖0.

We demonstrate these key metrics in Figure 4. We make the
following key observations.
• Multi-RoundSecAgg achieves better multi-round privacy

guarantee than both the random selection and random
weighted selection strategies, while user partitioning
achieves the best multi-round privacy guarantee, T =
K = 12. However, the partitioning strategy has the worst
aggregation cardinality, which results in the lowest con-
vergence rate as demonstrated later.

• Figure 5(a) demonstrates the trade-off between the multi-
round privacy guarantee T and the average aggregation
cardinality C. Interestingly, Multi-RoundSecAgg when
T = 3 or T = 4 achieves better multi-round privacy guar-
antee than both the random selection and the weighted
random selection strategies while achieving almost the
same average aggregation cardinality.

Remark 11. (Multi-round Privacy of Random and
Weighted Random). The multi-round privacy guarantees of
Random and Weighted Random drop sharply as shown in
Fig. 4(a) as the participating matrix P(t) ∈ {0, 1}t×N be-
comes full rank with high probability when t ≥ N , and
hence the server can reconstruct the individual models. More
precisely, Theorem 3 in (So et al. 2021b, Appendix H)
shows this thresholding phenomenon, where the probabil-
ity of reconstructing individual models after certain number
of rounds converges to 1 exponentially fast.

Key Metrics versus Test Accuracy. To investigate how the
key metrics affect the test accuracy, we measure the test ac-
curacy of the six schemes in the two settings, the IID and the
non-IID settings. Our results are demonstrated in Figure 5.
We now make the following key observations.

• In the IID setting, Multi-RoundSecAgg has a test ac-
curacy that is comparable to the random selection and
random weighted selection schemes while the Multi-
RoundSecAgg schemes provide higher levels of privacy.
Specifically, the Multi-RoundSecAgg schemes achieve
T = 3, 4, 6 while the random selection and random
weighted selection schemes have T = 1.

• In the non-IID setting, Multi-RoundSecAgg not only out-
performs the random selection scheme but also achieves a
smaller aggregation fairness gap as shown in Fig. 4(b).

• In both IID and non-IID settings, the user partitioning
scheme has the worst accuracy as its average aggrega-
tion cardinality is much smaller than the other schemes
as demonstrated in Fig. 4(c).

We provide additional experiments in (So et al. 2021b, App.
E and G).

7 Conclusion
Partial user participation may breach user privacy in fed-
erated learning, even if secure aggregation is employed at
every training round. To address this challenge, we intro-
duced the notion of long-term privacy, which ensures that
the privacy of individual models are protected over all train-
ing rounds. We developed Multi-RoundSecAgg, a struc-
tured user selection strategy that guarantees long-term pri-
vacy while taking into account the fairness in user selec-
tion and average number of participating users, and showed
that Multi-RoundSecAgg provides a trade-off between long-
term privacy and the convergence rate. Our experiments on
the CIFAR-100, CIFAR-10, and MNIST datasets on both
the IID and non-IID settings show that Multi-RoundSecAgg
achieves comparable accuracy to the random selection strat-
egy (which does not ensure long-term privacy), while ensur-
ing long-term privacy guarantees.
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based Communication-Efficient Client Selection Strategies
for Federated Learning. arXiv preprint arXiv:2012.08009.

Cho, Y. J.; Wang, J.; and Joshi, G. 2020. Client Se-
lection in Federated Learning: Convergence Analysis and
Power-of-Choice Selection Strategies. arXiv preprint
arXiv:2010.01243.

Choi, B.; Sohn, J.-y.; Han, D.-J.; and Moon, J. 2020.
Communication-Computation Efficient Secure Aggregation
for Federated Learning. arXiv preprint arXiv:2012.05433.

Deer, A.; Ali, R. E.; and Avestimehr, A. S. 2022. On multi-
round Privacy in Federated Learning. In 2022 56th Asilomar
conference on signals, systems, and computers. IEEE.

Dwork, C.; Roth, A.; et al. 2014. The algorithmic founda-
tions of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4): 211–407.

Elkordy, A. R.; and Avestimehr, A. S. 2020. Secure aggrega-
tion with heterogeneous quantization in federated learning.
arXiv preprint arXiv:2009.14388.

Fredrikson, M.; Jha, S.; and Ristenpart, T. 2015. Model
inversion attacks that exploit confidence information and
basic countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, 1322–1333.

Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
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Pejó, B.; and Biczók, G. 2020. Quality Inference in Fed-
erated Learning with Secure Aggregation. arXiv preprint
arXiv:2007.06236.
Ribero, M.; and Vikalo, H. 2020. Communication-efficient
federated learning via optimal client sampling. arXiv
preprint arXiv:2007.15197.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
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