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Abstract

In several supervised learning scenarios, auxiliary losses are
used in order to introduce additional information or con-
straints into the supervised learning objective. For instance,
knowledge distillation aims to mimic outputs of a powerful
teacher model; similarly, in rule-based approaches, weak la-
beling information is provided by labeling functions which
may be noisy rule-based approximations to true labels. We
tackle the problem of learning to combine these losses in a
principled manner. Our proposal, AMAL, uses a bi-level op-
timization criterion on validation data to learn optimal mix-
ing weights, at an instance-level, over the training data. We
describe a meta-learning approach towards solving this bi-
level objective and show how it can be applied to different
scenarios in supervised learning. Experiments in a number
of knowledge distillation and rule denoising domains show
that AMAL provides noticeable gains over competitive base-
lines in those domains. We empirically analyze our method
and share insights into the mechanisms through which it pro-
vides performance gains. The code for AMAL is at: https:
//github.com/durgas16/AMAL.git.

1 Introduction
Deep learning techniques have shown significant impact
in a wide range of machine learning applications, driven
primarily by the availability of large amounts of reliable
labeled data (Sun et al. 2017). Despite this progress, su-
pervised learning faces certain challenges: first, the time
and effort needed to obtain large, reliable labeled datasets,
and second, the limited information contained in human-
annotated labels. Several approaches aim to improve gen-
eralization and sample efficiency of supervised learning by
incorporating additional sources of information, or learning
constraints, into the supervised learning paradigm. For in-
stance, rule-denoising techniques (Ratner et al. 2016) use
simple, approximate labeling rules (labeling functions) that
provide weak supervision and reduce dependence on data
annotation. Other work has combined learning from label-
ing functions with supervised learning from limited human-
annotated data (Maheshwari et al. 2021)–these approaches
leverage the supervised learning objective to offset the noisy
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labels from labeling functions. A challenge here is how to
optimally combine these complementary objectives.
Equally, cardinal labels do not capture the richness of in-
formation contained in the input data–e.g., object category
labels for images of natural scenes. Some of this impreci-
sion can be mitigated by using more nuanced ‘soft labels’, or
distributions over labels, as the target for supervision instead
of the cardinal labels. Knowledge distillation (KD) (Hinton,
Vinyals, and Dean 2015)) proposes using the inherent uncer-
tainty of a supervised model trained on cardinal labels (the
‘teacher model’) to generate these soft labels for training,
in combination with the conventional supervision loss. In-
deed, recent work (Menon et al. 2021) formalizes this pro-
cess from a Bayesian perspective, showing that when one-
hot labels are an imperfect representation of the true proba-
bility distribution, KD reduces the variance associated with
probability estimates in a student model. Other work exam-
ines, from an empirical perspective, when and how distil-
lation may improve upon training from scratch on the la-
bels alone. For instance, an overtrained teacher will likely
achieve low/zero error rates w.r.t. the (incomplete) label loss
simply by overfitting on random noise in the dataset; in these
circumstances, the probabilities output by the teacher do not
accurately represent the underlying uncertainty, and students
may be led astray.
We propose AMAL, an adaptive loss mixing technique for
addressing the challenge of optimally combining supervised
learning objectives with these varied auxiliary objectives.
Our proposal is driven by the following key insight: the mix-
ing of primary and auxiliary objectives greatly benefits by
being regulated on a sample-by-sample basis. This draws
from substantial literature showing the promise of instance-
reweighting, for example in handling noisy labels or out-
liers (Castells, Weinzaepfel, and Revaud 2020; Ren et al.
2018). We therefore propose to learn instance-specific mix-
ing parameters that combine complementary learning objec-
tives. We devise a meta-learning algorithm, based on a sep-
arate validation metric, to estimate these instance-specific
parameters in an unbiased manner. We demonstrate how
our method yields more accurate models when rule-based
losses are mixed with limited supervision losses (Mahesh-
wari et al. 2021) as well as in a knowledge distillation setting
(KD) (Hinton, Vinyals, and Dean 2015).
Motivation for our work: We present motivation for our
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Figure 1: Knowledge distillation (KD) performed on CI-
FAR100, with ResNet 8 as a student model. Subfig-
ure (a) uses ResNet110 as teacher whereas subfigure (b)
uses ResNet20 as teacher. KD performed with uniformly
weighted (λa) performs poorly as the gap between the learn-
ing capacities of the teacher and student models increases. In
both the cases, AMAL with the weights learned performs the
best.

work in a knowledge distillation (KD) setup on the standard
CIFAR100 dataset (Krizhevsky 2009)– the student model is
set to ResNet8 and the teacher model to ResNet110 in sub-
figure (a). Since the capacity difference between the student
and teacher models is large, mimicking the teachers out-
puts maybe harmful rather than helpful for the training of
the ResNet8 model (Cho and Hariharan 2019). This is il-
lustrated in Figure 1 where we present the performance of
KD obtained with different values of λa (parameter control-
ling the influence of KD loss - c.f. Section 4.1). Here we set
λp = 1 − λa as in equation (10). We compare this against
learning with only standard hard labels (no KD, i.e., λa = 0)
and AMAL with learned λs. In Figure 1 (a) we observe that
KD performs almost similar to or worse than No-Distillation
baseline. To understand the effect of capacity difference be-
tween the teacher and student models, in Figure 1 (b) we per-
form distillation with ResNet20 as teacher and ResNet8 as
student. Due to this reduction in the capacity difference, for
some values of λ, KD performs better than No-Distillation,
but cannot bridge the gap to AMAL’s performance using op-
timal loss mixing.

To further motivate instance-wise mixing, we apply
AMAL to a KD setup with 40% label noise injected into the
CIFAR100 dataset. Here, too, we use ResNet110 as teacher
and ResNet8 as student. We examine the difference between
the weights associated with the distillation loss and the su-
pervision loss (λa and λp respectively). Figure 2 shows this
difference as a histogram over instances separated into clean
and noisy labels. AMAL favors supervision loss for clean
data points (i.e., negative range of λa−λp ), as intended from
an optimal mixing perspective. This is consistent with the
observation we made on Figure 1, where the student learns
better when the KD loss is assigned lower weightage. In a

Figure 2: Distribution of difference between λa (weight
associated with the KD loss) and λp (weight associated
with the CE loss), obtained using AMAL while performing
knowledge distillation with Resnet8 as the student model
and Resnet110 the teacher model on CIFAR100 dataset with
40% label noise.

similar fashion, AMAL emphasizes KD loss for noisy points,
correctly identifying that the teacher model is more informa-
tive for those points than their misleading hard labels.
Our Contributions: Our key contributions are as follows:
1) We propose a general formulation for instance-specific
mixing of auxiliary objectives in supervised learning. This
is, to our knowledge, the first proposal of its kind (c.f.
Section 3).
2) AMAL in KD settings: We explore a range of settings
in Knowledge Distillation (KD), including vanilla KD,
multi-teacher KD, and early-stopping, showing significant
gains over and above SOTA KD approaches in these settings
(c.f. Section 4.1).
3) AMAL in Rule-Denoising Setting with Limited Super-
vision: We show how the problem of semi-supervised data
programming can benefit from AMAL and report gains of
2-5% on various datasets (c.f. Section 4.2).

2 Related Work
Knowledge Distillation (KD) KD (Hinton, Vinyals, and
Dean 2015) in a supervised learning setting trains a ‘stu-
dent’ model to mimic the outputs of a larger, pre-trained
‘teacher’ model instead of directly training on the super-
vised signal. The efficacy of KD can be limited by teacher
accuracy (see (Menon et al. 2021) for some theoretical re-
sults), and student representational capacity, among other
factors. Interestingly, early stopped teacher models aid bet-
ter in training the student models (Cho and Hariharan 2019);
however, identifying the best possible teacher requires re-
peating the distillation process multiple times on the stu-
dent model. To bridge the representational gap between the
teacher and the students, Teacher Assistants (TA) or inter-
mediate models were introduced (Mirzadeh et al. 2020), and
were improved by a stochastic approach (DGKD (Son et al.
2021)) for simultaneously training all intermediate models
with occasional model dropout. In (Liu, Zhang, and Wang
2020), multiple teacher networks are used with an intermedi-
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ate knowledge transfer step using latent distillation. All these
works attempt to improve KD efficacy in cases in which there
is a large gap between the teacher and student model as in
the case presented by us in Figure 1. However these meth-
ods require us to independently train additional models, in
contrast to our work wherein we strategically mix loss com-
ponents.
Instance-Specific Learning: A significant amount of past
literature has explored instance-specific learning, for in-
stance instance-specific temperature parameters in super-
vised learning (Saxena, Tuzel, and DeCoste 2019). Other
closely related work (Algan and Ulusoy 2021; Vyas, Sax-
ena, and Voice 2020) learns a per-instance label uncertainty
parameter to account for potential label noise. In the distil-
lation setting, too, Zhao et al. (2021) demonstrate the bene-
fits of learning an instance-level sequence (or curriculum) on
training samples. Castells, Weinzaepfel, and Revaud (2020)
propose a task-agnostic per-sample loss-function represent-
ing the reliability of each prediction. Other recent works
such as (Ren et al. 2018; Shu et al. 2019; Raghu et al. 2020),
use validation set based meta learning to learn instance-
specific weights to improve robustness. The novelty of our
work is that we seek task-agnostic, per-sample, loss mixing
coefficients, specifically for effective learning over multiple
losses.
Bi-level Optimization and Meta-Learning: Prior
work (Jenni and Favaro 2018; Bengio 2000; Domke
2012) has explored learning network hyper-parameters
via solving a two-level optimization problem–one on the
base-task and another on an external model-selection or
meta-task, often on validation data. These algorithms are
similar in spirit to the learning to learn literature, typically
in multi-task contexts (Finn, Abbeel, and Levine 2017;
Nichol, Achiam, and Schulman 2018; Hospedales et al.
2020; Vyas, Saxena, and Voice 2020). Typical approaches
aim to learn a “meta-”algorithm which can generalize across
tasks by mimicking the test dynamics (sampling test tasks,
in addition to test data, for measuring and optimizing loss)
during training (Hospedales et al. 2020). Although this liter-
ature, too, employs nested optimization objectives, it differs
from our work in that we wish to improve generalization
within a single task, rather than across tasks.
Training with Auxiliary Tasks: Information from auxiliary
tasks are used to improve the main task in methods like
(Lin et al. 2019; Navon et al. 2021) learn to reweigh aux-
iliary tasks to improve performance on the main task. Guo
et al. (2018) construct a dynamic curriculum by weighing
individual auxiliary tasks. Similarly, Shi et al. (2020) weigh
auxiliary tasks to perform learning in a limited labeled data
setting. The aforementioned approaches focus on unifying
several losses into a single coherent loss whereas our focus
is on instance-wise contribution of the loss components.

3 AMAL: Adaptive Mixing of Auxiliary
Losses

We consider the scenarios in which there are two or more
loss terms participating in a supervised learning setting. The
loss functions we consider adhere to the form specified in

Algorithm 1: Algorithm for learning λs via meta learning

Require: Training data U , Validation data V , θ(0) model pa-
rameters initialization, τ Temperature,η: learning rate,
ηλ: learning rate for updating λ.

Require: LLCE Primary Supervised Loss, La auxiliary
loss, max iterations T

1: Initialize model parameters θ(0) and
λ0
p, λ

0
a1
, λ0

a2
, · · · , λ0

aK
.

2: for t ∈ {0, . . . , T} do
3: Update θt+1 by Eq. (7).
4: if t % L == 0 then
5: xtrain, ytrain ←− SampleMiniBatch(U)
6: xval, yval ←− SampleMiniBatch(V)
7: Compute one step update for model parame-

ters as function of λ⌊ t
L ⌋

p , λ
⌊ t
L ⌋

a1 , λ
⌊ t
L ⌋

a2 , · · · , λ⌊ t
L ⌋

aK by
Eq.(4).

8: Update Λ⌊ t
L ⌋ by Eq.(6).

9: end if
10: end for

Eq. 1, where there is a primary objective and K auxiliary
objectives.

L = λp ∗ Lp +
K∑

k=1

λak
Lak

(1)

Here, Lp and Lai
respectively are the primary and auxiliary

loss objectives. While this formulation is general, in this pa-
per, we explicate the formulation in two different settings
– knowledge distillation (Section 4.1), and rule-denoising
(Section 4.2). In these settings, we begin with a labeled
dataset D = {(xi, yi)}Ni=1 with instances xi and categor-
ical labels yi and an unlabelled dataset U = {(xi)}N+M

i=N
only with instances xi. Note that, in the knowledge distil-
lation setting, U will be empty and in the case of rule-based
denoising setting N << M . Our main proposal is to modify
the objective in Eq. (1) so that loss-mixing coefficients (Λ)
are instance-specific. Formally, we modify the loss function
in Eq. (1) as follows:

L(θ,Λ) =
∑
i

(
λpi
Lp (yi,xi|θ) +

K∑
k=1

λak,i
Lak,i

)
(2)

Note that formulation in Eq. (2) is a generalization of
Eq. (1), with an instance-specific value of mixing param-
eters Λ = {λp, λa1

, λa2
, · · · , λaK

} corresponding to the
ith training instance xi. Jointly optimizing the objective in
Eq. (2) with respect to both sets of parameters θ,Λ on the
training dataset alone can lead to severe overfitting. To mit-
igate this risk, we instead attempt to solve the bi-level min-
imization problem in Eq. (3) using a meta-learning proce-
dure:

outer−level︷ ︸︸ ︷
argmin

Λ
LCE

(
argmin

θ
L(θ,Λ)︸ ︷︷ ︸

inner−level

,V
)

(3)
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Figure 3: KD performed with ResNet (8,20,32,56,110) models on CIFAR100 in subfigure (a), Wide Residual Networks (WRN-
16-1, WRN-16-3,WRN-16-4,WRN-16-6,WRN-16-8) on Stanford Cars in subfigure (b) and with Wide Residual Networks
(WRN-16-3,WRN-16-4,WRN-16-6,WRN-16-8) as teachers and Resnet8 as student on FGVC-Aircraft in subfigure (c). AMAL
consistently outperforms various state-of-the-art methods when the model compression ratio is higher.

By solving the inner level minimization, we wish to obtain
model parameters θ that minimise the objective in Eq. (2).
The outer minimization yields λs such that the standard
cross-entropy loss is minimised on the validation set V . This
problem is a bi-level optimisation problem since model pa-
rameters θ are dependent on Λ and computation of Λ is de-
pendent on model parameters θ as shown in Eq.(3).

Since the inner optimisation problem cannot be solved in
a closed form in Eq. (3), we need to make some approxima-
tions in order to solve the optimization problem efficiently.
We take an iterative approach, simultaneously updating the
optimal model parameters θ and appropriate Λ in alternat-
ing steps as described in the Algorithm1. We first update the
model parameters by sampling a mini-batch with n instances
from the training set, and simulating a one step look-ahead
SGD update for the loss in Eq.(2) on model parameters (θt)
as a function of Λt, resulting in Eq. (4), with L being a hy-
perparameter governing how often the lambda values are up-
dated.

θ̂t
(
Λ⌊ t

L ⌋
)
= θt − η

n

n∑
i=1

∇θtLi(θ
t(Λ

⌊ t
L ⌋

i )) (4)

Using the approximate model parameters obtained using the
one step look-ahead SGD update, the outer optimization
problem is solved as,

∇
Λ

⌊ t
L

⌋
i

LCE(θ̂t,V) (5)

= − η

n
.∇θ̂tLCE(θ̂t,V).∇

Λ
⌊ t
L

⌋
i

∇θtLT
i

Using the meta-gradient in Eq.(5) we update the λs for each
of the training samples using the first order gradient update
rule as,

Λ
⌊ t
L ⌋+1

i = Λ
⌊ t
L ⌋

i − ηλ∇
Λ

⌊ t
L

⌋
i

LCE(θ̂t,V) (6)

Here, ηΛ is the learning rate for mixing parameters. We
update Λ values every L epochs. The updated Λ

⌊ t
L ⌋+1

i values
are then used to update the model parameters as,

θt+1 = θt − η

n

n∑
i=1

∇θtLi(θ
t(Λ

⌊ t
L ⌋+1

i )) (7)

Our method converges to the optima of both the validation
and training loss functions under some mild conditions.

3.1 Speeding Up AMAL
We borrow two important implementation schemes from
few of the recent subset selection techniques (Killamsetty
et al. 2021b,a) to streamline mixing parameter updates in
AMAL. Firstly, instead of using the complete high dimen-
sional loss gradient associated with modern deep neural net-
works we only consider last-layer gradient of a network.
This helps in reducing both computation time and memory
in both the one step update (Eq. (4)) and computation of the
meta-gradient (Eq. (5)). Similarly, the proposal to update Λ
only after L epochs also reduces the computation time sig-
nificantly. Bi-level optimisation solved with these tricks has
been shown to yield significant speedup (Killamsetty et al.
2021b) and with minimal loss in performance. Thus, train-
ing with AMAL introduces negligible overhead.

4 Two Application Scenarios for AMAL
In this Section, we present two application scenarios for
AMAL, described in the previous Section 3, viz., knowl-
edge distillation 4.1 and learning with limited supervision
and rule-denoising in Subsection 4.2.

4.1 Knowledge Distillation
Any (student) model having output logits as a(S) =
StudentModel(x), is traditionally trained by optimizing
a cross-entropy based loss Ls defined as follows:

Ls = LCE

(
softmax(a(S)), y

)
(8)

Let us say we have access to a pretrained teacher model (typ-
ically of higher learning capacity) which outputs the log-
its a(T ) = TeacherModel(x). We can frame a teacher
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matching objective for the student as a KL-divergence be-
tween the predictions of the student and the teacher:

LKD = τ2KL
(
y(S), y(T )

)
(9)

Then the training of the student model can be performed us-
ing both the teacher matching objective and the traditional
cross entropy loss as,

Lstudent(θ, λ) =
∑
i

(1− λ)Ls (yi,xi|θ) + λLKD

(
y
(S)
i , y

(T )
i

)
(10)

This is the standard knowledge distillation loss, in which
a temperature parameter τ is typically used to control the
softening of the KD loss in Eq. (9); therefore we have y(S) =

softmax
(
a(S)

τ

)
and y(T ) = softmax

(
a(T )

τ

)
. We change

this objective to match AMAL’s objective as,

Lstudent(θ,Λ) =
∑
i

λpiLs (yi,xi|θ) + λa1iLKD

(
y
(S)
i , y

(T )
i

)
(11)

Clearly, here Lp would be Ls and La would be LKD.
We present the results of applying AMAL to adaptively mix
these losses in Section 5.1. AMAL can be extended to set-
tings where distillation is performed with multiple teachers
such as DGKD (Son et al. 2021).

4.2 Learning with Limited Supervision and
Rule-Denoising

Several rule-denoising approaches (Maheshwari et al. 2022,
2021; Awasthi et al. 2020; Ratner et al. 2017) encode mul-
tiple heuristics in the form of rules (or labeling functions)
to weakly associate labels with instances. These weak la-
bels are aggregated to determine the probability of the cor-
rect labels using generative models (Chatterjee, Ramakrish-
nan, and Sarawagi 2020; Ratner et al. 2017) without requir-
ing labeled data. In contrast, recent approaches (Maheshwari
et al. 2021; Karamanolakis et al. 2021; Awasthi et al. 2020;
Ren et al. 2020, 2018) assume that a small labeled dataset is
available in conjunction with the noisy rules. Motivated by
the success of rule denoising approaches, we propose adap-
tive loss mixing to leverage a small labeled set while be-
ing trained in a joint manner. We directly adopt the model
and loss formulations from the most recent of these ap-
proaches (Maheshwari et al. 2021), since it performs consis-
tently better than the previous ones (Maclaurin, Duvenaud,
and Adams 2015; Awasthi et al. 2020; Ren et al. 2020, 2018)
(see Section 5.3).

Our setting borrowed from SPEAR (Maheshwari et al.
2021) is as follows: In addition to the setting described
in Section 3, we also have access to m rules or labelling
functions (LF) lf1 to lfm. We modify D to be D′ =
{(xi, yi, li)}Ni=1 and U to be U ′ = {(xi, li)}N+M

i=N , where
li = (li1, li2, ·, lim) is a boolean vector with lij = 1 if the
corresponding jth LF is activated on example xi and lij = 0
otherwise. Exactly as per (Maheshwari et al. 2021), our
model is a blend of the feature-based classification model
P f
θ (x) and the rule-based model Pϕ(li, y). We have two

types of supervision in our joint objective. First, we have

access to y for the labeled instances D′ and to lij for all the
labeled as well as unlabeled instances D′⋃U ′. We measure
the loss of P f

θ and Pϕ on the small labeled set D′ through
standard cross-entropy. Second, we model interaction be-
tween P f

θ and Pϕ on the union of labeled and unlabeled
sets. Intuitively, the rule denoising model Pϕ learns with re-
spect to the clean labeled setD′ and simultaneously provides
labels over U that can be used to train the feature model
P f
θ (y|x). We want both the models to agree in their predic-

tions over the union D′⋃U ′ (Please refer to Supplementary
Section E for details about individual loss components.)

5 Results
In this section, we present results for the two application
scenarios for AMAL as outlined in Section 4.

5.1 Results with Knowledge Distillation
In this section, we report a range of experimental results
from the knowledge distillation (KD) scenario as described
in Section 4.1. We performed a range of experiments com-
paring AMAL against several SOTA knowledge distillation
approaches on several real-world datasets, with a special fo-
cus on those settings wherein we found the gap between the
teacher and student models to be large.
Datasets The datasets in our experiments include CI-
FAR100 (Krizhevsky 2009), Stanford Cars (Krause et al.
2013)and FGVC-Aircraft (Maji et al. 2013). For the CIFAR
datasets we used the standard RGB images of size 32 × 32,
whereas for the other datasets we used RGB images of size
96× 96.
Model Architecture and Experimental Setup We ex-
plored two families of models, viz., (i) Wide Resid-
ual Networks (WRN-16-1, WRN-16-3,WRN-16-4,WRN-
16-6,WRN-16-8) (Zagoruyko and Komodakis 2016), and
(ii) ResNet (8,20,32,56,110) models (He et al. 2016) to
show the effectiveness of our method across the different
model families. We also perform a distillation on Resnet8
with WRN-16-3,WRN-16-4,WRN-16-6 and WRN-16-8 as
teachers to show the effect of our technique in the cross-
model distillation.

For datasets without pre-specified validation sets, we split
the original training set into new train (90%) and validation
sets (10%). Training consisted of SGD optimization with an
initial learning rate of 0.05, momentum of 0.9, and weight
decay of 5e-4. We divided the learning rate by 0.1 on epochs
150, 180 and 210 and trained for a total of 240 epochs.
Effect of Optimal λs on Knowledge Distillation In the
first experiment, we examine effective transfer of learned
knowledge from various teachers to a student model which
has fewer parameters. We compares test accuracies ob-
tained with KD, AMAL , TAKD (Mirzadeh et al. 2020) and
DGKD (Son et al. 2021) and SSKD (Xu et al. 2020). TAKD
takes taking multiple KD training hops, with each step re-
ducing the model complexity from teacher to student by a
small amount. DGKD introduces all the intermediate teach-
ers in a single KD training step using a single λ, across all
training instances, for each teacher. In addition, stochastic
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DGKD was proposed where a subset of teachers is intro-
duced at each training step, determined by a binomial (hy-
perparamter) variable.
Additional Experimental Setup We perform KD with
ResNet (20,32,56,110) as teacher and ResNet8 as stu-
dent models on CIFAR100, Wide Residual Networks
(WRN-16-3,WRN-16-4,WRN-16-6,WRN-16-8) as teacher
and WRN-16-1 as student models on Stanford Cars and with
Wide Residual Networks (WRN-16-3,WRN-16-4,WRN-16-
6,WRN-16-8) as teachers and Resnet8 as student on FGVC-
Aircraft. For TAKD and DGKD we use ResNet14 for CI-
FAR100 and WRN-16-2 for Stanford Cars and FGVC-
Aircraft as teaching assistant models. In all our knowledge
distillation experiments we use temperature τ = 4 and
λa = 0.9 (weights associated with KD loss) except in case
of AMAL. For DGKD we use set the binomial variable to be
0.75, best reported in the paper.
Figure 3 shows that AMAL consistently outperforms other
techniques when a much smaller model learns from large
teacher model (CIFAR100, Stanford Cars) and is com-
parable to DGKD in FGVC-Aircraft dataset. The figure
shows plot relative test accuracies (w.r.t. non-KD students)
vs model compression ratio1.Interestingly, methods such as
KD, SSKD and TAKD actually perform worse than training
a student model with standard cross entropy loss. This obser-
vation is consistent with (Cho and Hariharan 2019), where
authors claim KD may fail if the student is too weak. This
problem gets worse when techniques such as SSKD bring
even more additional information for the student model to
learn. TAKD tries to address this issue by bring in teach-
ing assistant model, which have already gone through with
knowledge distillation from the teacher model. However,
this also transfer errors from the higher level to the lower
level models (Son et al. 2021). It is important to note that
AMAL doesn’t require any additional intermediate model to
be trained like TAKD and DGKD and therefore has a lesser
memory footprint and training time.

Knowledge Distillation in Presence of Noise As AMAL
performs instance wise mixing of loss components, noise
filtering in knowledge distillation (with two loss compo-
nents) is an appropriate use case. We perform knowledge
distillation with CIFAR100 dataset with n% labels ran-
domly changed to a wrong label. We continue using the
ResNet (8,20,32,56,110) model with ResNet8 being the stu-
dent model. We present test accuracies obtained while train-
ing with 40% and 60% label noise in Figure 4. We compare
against two loss agnostic robust learning techniques viz. (i)
Superloss (Castells, Weinzaepfel, and Revaud 2020): It is
curriculum learning based approach which dynamically as-
signs weights to each instance to perform robust learning.(ii)
CRUST (Mirzasoleiman, Bilmes, and Leskovec 2020): It
selects a noise free subset of data points which approximates
the low-rank Jacobian matrix.

Figure 4 we see that AMAL achieves best performance
which could be explained by the mixing parameters’(Λ)

1We define model compression ratio as (no. of learnable pa-
rameters in teacher model)/(no. of learnable parameters in student
model); higher is better
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Figure 4: Test performance obtained after performing
knowledge distillation with ResNet8 as the student and
Resnet (20,32,56,110) as the teachers with CIFAR100
dataset corrupted with 40% and 60% label noise.

Method Test Accuracy
Complete data (skyline) 66.43

Random 44.92
Sampled according to λ2

p + λ2
a 45.5

Sampled according to |λp − λa| 46.28

Sampled according to λa

λp
46.31

Table 1: Test accuracies obtained after training with 20%
subset obtained using various strategies using the WRN-16-
1 model on the CIFAR100 dataset. We perform training only
with the CE loss.

distribution presented in Figure 2. AMAL identifies impor-
tance of learning form cross entropy based loss for the clean
points and learning from KD loss for noisy points. However,
CRUST as it selects a subset selection it can’t take advan-
tage of both the losses. Superloss, on the other enjoys per-
formance improvement over KD for smaller model compres-
sion ratios. However, superloss’s performance drops signif-
icantly for higher compression ratios as it doesn’t perform
any kind of mixing.

5.2 Connection to a Coreset
Since, AMAL controls the contribution of each of the in-
stances in training a model by weighting each of the points
loss functions. We try to understand the significance of the
weights associated with each data point with a coreset based
experiment. Coreset selection has become popular in recent
times where a subset of training points are used to train a
model from scratch. Based on the final λp(weighted asso-
ciated with the CE loss) and λa(weighted associated with
the KD loss) values while training WRN-16-1 model using
WRN-16-8 as a teacher model on CIFAR100 dataset, we de-
rive a probability of selection pi for each point i in the train-
ing set as,
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1. pi ∝ λ2
pi

+ λ2
ai

, here we pick points with maximum
weights as they would contribute maximum to the model
training

2. pi ∝ |λpi − λai |, here we pick points that should be
preferably learnt with only one of the losses

3. pi ∝
λai

λpi
, here we pick points that should be preferably

learnt with only KD loss

In Table 1 we present the test accuracies obtained on train-
ing WRN-16-1 with the coresets obtained when sampled us-
ing the corresponding probabilities. We also present the re-
sult of training the same model with randomly (sampled with
uniform distribution) obtained subset. We train with subsets
of 20% size of the original training data and train with only
the CE loss. Clearly, the points that have higher weights have
maximum information. More, specifically the points that re-
quire a teacher model’s assistance and cannot be learned us-
ing the ground truth seem to have the most information and
therefore coreset formed using 3 performs the best.

We tried techniques such as Platt-scaling (Guo et al. 2017)
etc. which strengthens baselines with the use of validation
data, but all those efforts either weakened or did not add any
value to the existing baselines.

5.3 AMAL with Limited Supervision and
Rule-Denoising

SMS IMDB YouTube

Only-L 91.45 (1.3) 77.35 (1.5) 89.60 (2.9)

Imply Loss +0.25 (1) -1.47 (1.8) +2.70 (0.8)

L2R -0.20 (1.3) -2.18 (1.4) +3.40 (1.2)

MWN -0.10 (1.2) -1.53 (1.7) +3.70 (1.5)

SPEAR -0.76 (1.4) -0.04 (1) +4 (1)

AMAL +1.53 (0.9) +1.67 (1.6) +4.70 (0.8)

Table 2: Performance of our AMAL approach with rule-
based approaches Imply Loss, SPEAR, L2R and MWN.
AMAL with fixed λ = 1 corresponds to SPEAR. All num-
bers reported are gains over the baseline method (Only-L).
All results are averaged over 5 random seed runs having dif-
ferent L and U set in each run. Numbers in brackets ‘()’
represent standard deviation of the original score.

In this section, we report our experimental results for the
scenario of limited supervision combined with weak super-
vision from labeling functions (also referred to as semi-
supervised data programming (Maheshwari et al. 2021)),
as summarized in Section 4.2. Datasets We used three
dataset in our experiments, namely, YouTube, SMS and
IMDB. YouTube (Alberto, Lochter, and Almeida 2015) is
a spam classification task over YouTube comments; SMS
(Almeida, Hidalgo, and Yamakami 2011) is a binary spam
classification containing 5574 documents; IMDB is a movie
plot genre binary classification dataset.

In Table 2, we compare our approach with the follow-
ing approaches: (1) Only-L : We train the classifier Pθ(y|x)
only on the labeled data. To ensure fair comparison, we use

the same classifier model for different datasets as mentioned
in (Maheshwari et al. 2021). We choose this as a baseline
and report gains over it. (2) L2R (Ren et al. 2018): This is
an online reweighting algorithm that leverage validation set
to assign weights to examples based on gradient directions.
It learns to re-weigh weak labels from domain specific rules
and learn instance-specific weights via meta-learning. (3)
Meta-Weight-Net(MWN) (Shu et al. 2019) Trains a neu-
ral network assigns instantaneous weights. Neural network
is trained to minimise validation set loss. However, weights
are not learnt to mix losses in L2R and MWN. (4) Imply
Loss (Awasthi et al. 2020): This is a rule-exemplar approach
that jointly trains a rule denoising network and leverages ex-
emplar-based supervision for learning instance-specific and
rule-specific weights. In addition, it also learns a classifica-
tion model with a soft implication loss in a joint objective.
(5) SPEAR (Maheshwari et al. 2021): Finally, we compare
with another rule-denoising approach that uses same objec-
tive as AMAL and is trained on both feature-based classifier
and rule-classifier using a small labeled set. AMAL with all
λs fixed to 1 (and not trainable) corresponds to SPEAR.

Our approach outperforms both rule-based and re-
weighing approaches on all datasets. MWN, L2R and
SPEAR perform worse than the baseline method (only-
L) on SMS and IMDB dataset whereas Imply-Loss is
marginally better on SMS. All approaches achieve better
performance over the baseline method on YouTube dataset.
However, AMAL consistently reports highest gains. Recall
that SPEAR has the same objective as AMAL but without
trainable λs and all λs fixed to 1. AMAL tries to identify
instance-wise weighted combination of loss components so
that the trained feature classification model performs better.
Instance wise mixing is useful to identify the loss compo-
nent from which a data point could be learned better and
use of fixed weights prevents from understanding nuance of
each data point.

6 Conclusion

In this paper we present two setting viz. rule-denoising
setting with limited supervision and knowledge distillation
(KD), where Adaptive Loss Mixing is useful. We present
AMAL which via adaptive loss mixing extracts useful infor-
mation from the limited supervision to prevent degradation
of model learnt due to the presence of noisy rule. In knowl-
edge distillation (KD) setting it titrates the teacher knowl-
edge and ground truth label information through an instance-
specific combination of teacher-matching and ground super-
vision objectives to learn student models that are more ac-
curate. Our iterative approach is pivoted on solving a bi-
level optimization problem in which the instance weights are
learnt to minimize the CE loss on a held-out validation set
whereas the model parameters are themselves estimated to
minimize the weight-combined loss on the training dataset.
Through extensive experiments on real-world datasets, we
present how AMAL yields accuracy improvement and better
generalization on a range of datasets in both the settings.
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