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Abstract
Streams of irregularly occurring events are commonly mod-
eled as a marked temporal point process. Many real-world
datasets such as e-commerce transactions and electronic
health records often involve events where multiple event
types co-occur, e.g. multiple items purchased or multiple
diseases diagnosed simultaneously. In this paper, we tackle
multi-label prediction in such a problem setting, and propose
a novel Transformer-based Conditional Mixture of Bernoulli
Network (TCMBN) that leverages neural density estimation
to capture complex temporal dependence as well as proba-
bilistic dependence between concurrent event types. We also
propose potentially incorporating domain knowledge in the
objective by regularizing the predicted probability. To rep-
resent probabilistic dependence of concurrent event types
graphically, we design a two-step approach that first learns
the mixture of Bernoulli network and then solves a least-
squares semi-definite constrained program to numerically ap-
proximate the sparse precision matrix from a learned covari-
ance matrix. This approach proves to be effective for event
prediction while also providing an interpretable and possibly
non-stationary structure for insights into event co-occurrence.
We demonstrate the superior performance of our approach
compared to existing baselines on multiple synthetic and real
benchmarks.

Introduction
Various types of human activities consist of irregularly oc-
curring events over a period of time. For example, online
customer transaction records involve purchases at a partic-
ular time for an account associated with an individual, and
electronic health records (EHRs) keep track of a patient’s
health history including diagnoses and treatments through-
out their life. Temporal point processes (TPPs) provide a
suitable continuous-time mathematical tool for modeling
event streams, where discrete events happen irregularly (Da-
ley and Jones 2003). A classic approach to model event se-
quences as TPPs is through the Hawkes process, in which
a simple parametric form is used to capture temporal de-
pendence among events (Hawkes 1971). In the past few
years, many researchers have developed neural TPP mod-
els that have achieved fruitful results on standard bench-
marks for predictive tasks, because neural networks are ca-
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pable of capturing more complex dependencies (Du et al.
2016; Mei and Eisner 2016; Xiao et al. 2017; Upadhyay, De,
and Gomez-Rodriguez 2018; Omi, Ueda, and Aihara 2019;
Shchur, Biloš, and Günnemann 2019; Zuo et al. 2020; Zhang
et al. 2020a; Shchur et al. 2020; Boyd et al. 2020; Gao et al.
2020; Gu 2021).

Many real-world applications involve event streams with
concurrent labels, i.e. multiple labels that occur simultane-
ously in an event (for the recorded temporal granularity). For
example, in the aforementioned applications of e-commerce
and healthcare, multiple items can be purchased at the time
of a transaction, and multiple diseases can be diagnosed dur-
ing a single provider visit. Importantly, concurrent event la-
bel occurrences can be highly correlated. For instance, Ama-
zon’s recommender system has the ‘frequently bought to-
gether’ option, and comorbidities such as type 2 diabetes and
Alzheimer’s disease for the elderly (Chatterjee and Mudher
2018) are very common in healthcare.

Although many proposed neural TPPs excel at solving
prediction problems, most are not directly applicable for
concurrent multi-label event streams. A notable exception
is a recent approach for modeling EHR data using attention-
based neural TPP models (Enguehard et al. 2020). This class
of model captures long-term, nonsequential dependencies of
contexts (Bahdanau, Cho, and Bengio 2014) and also jointly
models dependence of time with the associated labels.

As far as we are aware, existing approaches however fail
to provide meaningful structural dependence among coin-
ciding event labels at a given timestamp, and are unable to
incorporate such dependence for label prediction. We note
that although there is some prior work on graphical repre-
sentations of TPPs (Didelez 2008; Bhattacharjya, Subrama-
nian, and Gao 2018), these are directed graphs that capture
historical dependence when each event is associated with ex-
actly one event label. In contrast, our approach involves an
undirected graph for representing relations between concur-
rent labels; it is conceptually similar to prior work on time
series graphs (Eichler 1999).

In this paper, we propose a new approach for modeling
concurrent event labels using neural TPPs. Our main contri-
butions are as follows:

• We formalize the multi-label prediction problem in event
streams and propose a general framework for modeling
concurrent labels in event streams. Crucially, our method
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allows for both complex temporal dependence as well as
probabilistic dependence between concurrent labels.

• We enable potentially incorporating domain knowledge
for the prediction task through an approach that regular-
izes the predicted probability from our model. This can
improve model reliability whenever applicable.

• To offer meaningful insights, we propose a two-step pro-
cedure for discovering an undirected graphical structure
among concurrent event labels and illustrate its effective-
ness through a case study on transaction data.

• We conduct an extensive empirical investigation includ-
ing ablation studies and demonstrate superior perfor-
mance of our proposed model as compared to state-of-
the-art baselines for next event multi-label prediction.

Related Work and Background
Temporal Point Processes
A marked temporal point process is a stochastic process
that generates not only a timestamp but also a label asso-
ciated with it: for an generated event sequence El, El =
{(ti, yi)}nl

i=1, where each event epoch is a tuple of a times-
tamp and its label. Each timestamp ti is the time of occur-
rence and ti ∈ R+, and each label yi belongs to the label set
L, whose cardinality is M . One common approach to char-
acterize a TPP is through the conditional intensity function
λ∗(t). A classic form of the conditional intensity function
is the Hawkes process (also called the self-exciting point
process) which has been applied to model many phenom-
ena in social networks, financial systems and Internet Pro-
tocol television (IPTV) systems (Hawkes 1971; Zhou, Zha,
and Song 2013; Bacry, Mastromatteo, and Muzy 2015; Luo
et al. 2015).

Neural Temporal Point Processes
The expressive power of neural networks has enriched the
TPP literature. Researchers have applied deep neural net-
works to model TPPs since the recurrent marked temporal
point process (RMTPP) (Du et al. 2016). A review of neural
TPP models appeared recently (Shchur et al. 2021). Neural
TPPs are able to capture more complex dependencies among
events than their parametric counterparts. The main idea in
RMTPP is to use an RNN (or its modern variants) to capture
the historical dependency of the events via the history em-
bedding or context. The history embedding for ith event hi
is modeled through a recurrent relation:

hi = ψ(Wtti + Wyyi + Whhi−1 + bh) (1)

where Wt, Wy , Wh, bh denote weights for the time and
mark at ith event, weights and bias for the history embed-
ding respectively; hi−1 is the history embedding at i− 1th

event, and ψ is an activation function. The conditional inten-
sity function at the ith event can be modeled as exponential
intensity, λ∗(ti) = exp(w(ti − ti−1) + vThi−1 + b) where
w, v and b are weights and bias. The label probabilities are
modeled independently from time and obtained via softmax:

p∗(yi = m) =
exp(Vy

mhi−1 + bym)∑M
m=1 exp(Vy

mhi−1 + bym)
(2)

where Vy and by are label weights and bias, and subscript
m represents mth row of Vy and mth entry of by . The
neural Hawkes process extends the classical Hawkes pro-
cess with neural networks so that it is self-modulating: past
events can not only excite but also inhibit future events (Mei
and Eisner 2016). Instead of modeling the instantaneous
conditional intensity function, FullyNN directly models the
cumulative intensity through a feed-forward network (Omi,
Ueda, and Aihara 2019).

Shchur, Biloš, and Günnemann (2019) propose intensity-
free modeling of TPPs. This approach allows characterizing
TPPs with inter-event times τi = ti− ti−1 ∈ R+. A mixture
of log-normal distributions is used to capture the conditional
density of τi. The history dependence of τ can be modeled
through a neural density network (Bishop 1994; Rezende
and Mohamed 2015), in which the parameters depend on
the history embedding.

Transformers for Event Streams
Attention and transformer models have been used to model
event data in recent years (Xiao et al. 2019; Zhang et al.
2020a; Zuo et al. 2020; Gu 2021). The self-attention mech-
anism, in this context, relates different event instances of a
single sequence in order to compute a representation of the
sequence. The architecture of transformers for TPPs consists
of an embedding layer and a self-attention layer. In Trans-
former Hawkes Processes (THP) (Zuo et al. 2020), for ex-
ample, temporal embedding for ti is through

[z(ti)]c =

{
cos(ti/10000

c−1
d ) if c is odd

sin(ti/10000
c
d ) if c is even

(3)

where d is the dimension of encoding, and subscript c de-
notes cth dimension. Time embedding and one-hot encoded
types are combined to form the embedded input X to be fed
into the attention module. The dot-product attention is com-
puted as:

S = AsV = softmax(
QKT

√
Mk

)V (4)

where Q, K, V are query, key and value matrix; they are
linear transformations of X. As is the attention score matrix.
The output S is then fed into a pointwise feed forward neural
network (FFN) to learn a high level representation of the
sequence for modeling the conditional intensity function.

Multi-Label Prediction
Multi-label classification is an extensively studied machine
learning task (Tsoumakas and Katakis 2007). Many success-
ful approaches have been proposed in the setting of tabular
data (Li et al. 2016; Yang et al. 2019) and also for set predic-
tion (Zhang, Hare, and Prugel-Bennett 2019; Xie et al. 2017)
particularly in image classification. A recent study consid-
ers the use of LSTM for multi-label classification in time-
series for fault detection (Zhang et al. 2020b). Enguehard
et al. (2020) apply encoder-decoder models for multi-label
prediction in TPPs without considering potential correlation
among concurrently occurring event labels – we address this
important aspect here in our proposed approach.
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Figure 1: Concurrent multi-label prediction in event streams
with a transformer architecture. The history embedding Hi’s
are used as features for next event label prediction. Two
groups of labels for each epoch are observed – an example
is crytocurrency transaction where group1 consists different
actions, and group2 coin types. The structure of the 2 groups
may change over time.

Task and Model Description
Concurrent Multi-Label Prediction
We bridge point process models with multi-label classifica-
tion and formalize concurrent multi-label prediction in event
streams. Consider a concurrent multi-label event sequence
dataset where each sequence El consists of event epochs
(ti,yi)

nl
i=1 where ti is a timestamp and yi ∈ {0, 1}M is a

binary M -dimensional vector. We formally define the prob-
lem as:

Definition 1 Given a set of label candidates Y = {1, 2,
..., M} and a time-stamped event dataset with events of
the form (ti,yi), the multi-label prediction task in event
streams aims to map any prior history hj = (ti,yi)

j
i=1 to

a subset of the label set as its next event labels yj+1 for
j = {1, 2, 3, ..., nl − 1}.

An illustrative example is shown in Figure 1. While state-
of-the-art TPP models exist for multi-class prediction and
can be as modeled via Eq. 2, a simple augmentation of labels
will result in an exponential number of classes. Multi-label
classification models such as conditional Bernoulli mixture
model (Li et al. 2016) are however not suitable for our set-
ting for the underlying dynamics of event streams results in
a non-IID pattern for each label occurrence. To capture both
inter-epoch label interaction and intra-epoch label depen-
dence, we propose a novel Transformer-based Conditional
Mixture Bernoulli Network (TCMBN) model for concurrent
multi-label prediction in event streams. Our approach em-
beds event epochs as temporal encodings (Zuo et al. 2020)
through Eq. 3. However, we allow multi-hot encoded labels
combined with its temporal encoding to form an embedded
input X = UY + Z where Z ∈ Rd×nl , U ∈ Rd×M is a
trainable weight matrix and Y ∈ {0, 1}nl×M is a multi-hot
encoding with max sequence length nl. The inter label-label
attention among epochs are captured by the dot-product at-
tention via Eq. 4. The output after B blocks of attention
layers and FFN with residual connection for event epoch i
which we denote as Hi can be considered as a high level
representation of the past up to ti. The expressiveness of

transformers for sequence modeling with position encod-
ing is thoroughly examined by prior work (Yun et al. 2019).
With temporal encoding, the following holds:

Theorem 1 Transformers with temporal encodings are
universal approximators for any continuous sequence-to-
sequence function with compact domain, i.e. they approxi-
mate any continuous functions f: X→ H with ε error w.r.t.
p-norm where 1 ≤ p <∞ and X,H ∈ Rd×nl .

The universal approximation property of temporally en-
coded transformer for event sequence-to-sequence is crucial
in continuous time, which differentiates significantly from
its time series (or sequences in natural language process)
counterpart. Learned history features can be used for any
downstream tasks. Given Hi for each event epoch, our prob-
lem evolves into a static multi-label prediction of next epoch.

Remark. Given a set of label candidates Y = {1, 2, ..., M}
and data points with history-embedded features (Hi,yi+1),
TCMBN aims to learn a classifier that maps each historical
feature Hi to a subset of the label set for prediction.

In order to distinguish the history between different input
epochs at ti and tj with their respective embedding Xi and
Xj , we show there exists a transformer that separates the
two, which gives feasibility guarantee for our multi-label
classification problem; otherwise, any classifier will fail to
distinguish two labels with identical features. The following
is a consequence of Theorem 1.

Theorem 2 There exists a transformer g with temporal en-
coding that separates two points (Xi,Hi) and (Xj ,Hj),
i.e. g(X)i = Hi 6= g(X)j = Hj for some Xi 6= Xj where
Xi,Xj ,Hi,Hj ∈ Rd.

While many multi-label neural classifiers are available
(Read et al. 2021; Liu et al. 2021), we propose the mar-
riage of neural density estimation (Bishop 1994; Rezende
and Mohamed 2015) and a conditional Bernoulli mixture
model (Li et al. 2016) for multi-label classification given
a history embedding, due to the flexibility of neural mix-
ture models and non-diagonal covariance of a multivariate
Bernoulli mixture with K components (K > 1) which natu-
rally encodes label correlation. The responsibility network π
and mean network µ which make up the conditional mixture
of Bernoulli network (CMBN) have the following structure:

π = softmax(MLPπ(Hi)) (5)

µm,k = sigmoid� (MLPµ(Hi)) (6)
where MLP specifies multi-layer perceptron and � signifies
component wise operation for all K components, each with
dimension M . In particular, for 2-layer MLP, we use ELU
activation (Clevert, Unterthiner, and Hochreiter 2015):

MLP := W2(ELU(W1Hi) + b1) + b2) (7)

We use a separate set of weights and biases W1,W2,b1,b2

for π and µ network respectively for flexible learning. We
emphasize that π, µ are functions of history embedded fea-
tures and can be used to compute covariance matrix in the
sections to follow. Thus, with a focus on next event label(s)
prediction (time prediction can be tackled with either mix-
ture of log-normals (Shchur, Biloš, and Günnemann 2019)
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or RMTPP (Du et al. 2016)1 ), our generative approach for
concurrent multi-label prediction aims to optimize:

p(yi+1|Hi) =
K∑
k=1

πkBER(yi+1;µk) (8)

whereBER(y;µk) =
∏M
l=1Ber(ym;µm,k). BER signifies

the multivariate Bernoulli distribution and Ber the univariate
Bernoulli parametrized by the µm,k network. Alternatively,
our approach can be viewed as elegantly solving a neural
network parameterized linear systems of equations:

µ(Hi)π(Hi) = yi+1 (9)

Background Knowledge Injection
We enable potentially incorporating background knowledge
into the concurrent multi-label prediction problem. Our ap-
proach differs from prior use of a semantic loss function for
multi-class prediction where only 1 class is predicted (Xu
et al. 2018). In the multi-label classification setting where
each class of events is not mutually exclusive, we consider
a practical case involving the existence of exhaustive groups
which comprise all class labels such that within each group,
only q events can happen. For example, q = 1 indicates mu-
tually exclusive classes within each group. Such a partition
of groups is not uncommon in disease management and trip
itineraries where diseases are categorized and flights have
certain hubs and routes. In crypto-transactions, exactly one
action in the transaction group will take place and simultane-
ously one type of coin will be traded at each epoch. Let p̂cj
denote the predicted probability for cth class in jth group
(with a total of oj classes and G groups). We propose the
following background knowledge loss for an instance of pre-
diction:

LBK =
G∑
g=j

(

oj∑
cj=1

p̂cj − q)2 (10)

The least square loss can be considered a soft regulariza-
tion of allocation of probabilities. Such loss will promote our
model to find the mode of the joint distribution p(yi+1|Hi).
TCMBN seeks to minimize the following objective given N
sequences of El = {(ti,yi)}nl

i=1 for l = {1, 2, ..., N} :

LLL + λLBK = −
N∑
l

nl∑
i

(log p∗(yi+1))

+λ
N∑
l

nl∑
i

G∑
g=j

(

oj∑
cj=1

p̂cj ,i+1,l − q)2
(11)

where λ trades off between negative log-likelihood loss and
background knowledge loss (Dash et al. 2022).

Capturing Structure among Concurrent Labels
We propose a novel approach to learn the label structure
of an undirected graph G(i) = (V,Ei) at each epoch ti,
where the vertices V are the labels, and the edges Ei en-
codes label dependencies which may change over time by

1Results are given in Appendix.

Dataset # Classes # Seqs. Avg. Len. Data type

Synthea 232 2500 43 Simulated EHR

Dunnhumby 24 2500 93 Real Transaction

MIMIC III 169 6644 3 Real EHR

Defi 39 5000 27 Real Finance

Table 1: Properties of four benchmark event datasets.

numerically approximating the precision matrix of the mul-
tivariate Bernoulli distribution (Banerjee, El Ghaoui, and
d’Aspremont 2008; Bai et al. 2019; Ravikumar, Wainwright,
and Lafferty 2010). Since we learn the covariance in closed-
form at each epoch from TCMBN, we can compute its
inverse numerically. A more attractive feature is to learn
a sparse precision matrix as in the multivariate Gaussian
case (Friedman, Hastie, and Tibshirani 2008). In our setting,
jointly approximating the precision matrix with a sparsity
constraint while performing concurrent multi-label classifi-
cation is challenging because of the symmetric positive def-
initeness of the matrix. Hence we propose a two-step pro-
cedure for algorithmic practicality, analogous to learning
Gaussian graphical models (Giraud 2015):

Step 1: Solve minimization problem: minimize log-
likelihood term for event streams and obtain learned covari-
ance matrices as in the following from TCMBN.

Cov(yi+1) =
K∑
k=1

πk[Σk+µ:,k(µ:,k)T ]−E(yi+1)E(yi+1)T

(12)
where E(y) =

∑K
k=1 πkµk is the weighted mean of all the

component means. Σk = diag(µm,k(1 − µm,k)) for k ∈ K
is the variance of a univariate Bernoulli with mean µm,k.
Note that all terms above depend on Hi; we dropped such a
dependency to avoid notational cluttering.

Step 2: For each learned covariance matrix Ĉ: solve the
following least-squares sparse approximation (LSSA) to ob-
tain the estimated precision matrix:

min
P

1

2
||Ĉ ∗P− I||2F + γ||F ◦P||1

s.t. P ∈ Sn++.
(13)

where P is the precision matrix to optimize, I the identity
matrix, 1 matrix of ones, F = 1 − I, γ the shrinkage pa-
rameter, F the Frobenius norm, Sn++ the set of symmetric
positive definite matrices, and ◦ Hadamard product of two
matrices. Note that LSSA is a convex optimization problem
and can be solved by efficient solvers such as cvxopt (Ander-
sen et al. 2013). We emphasize that our approach TCMBN-
LSSA is completely data-driven and capable of capturing the
nonstationarity of labels (Trivedi et al. 2019).

Experiments
Model Setting, Baselines & Evaluation Metrics
We implement and train our model with Pytorch and
report results using 64 Bernoulli mixture components
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for all experiments. Hyper-parameter λ is chosen from
{0.1, 0.01, 0.001} and is only used if domain knowledge is
injected; otherwise it is set to 0. Further details and codes
are included in Appendix A in supplementary material. We
compare our model with encoder-decoder based TPP models
(Enguehard et al. 2020) including RMTPP (Du et al. 2016),
intensity-free (Shchur, Biloš, and Günnemann 2019) and
attention-based models for comparison (Xiao et al. 2019).
For the baselines, best performing results are selected from
running a few default settings according to the package
provided by the authors2. Some potential baselines are not
suitable for the concurrent multi-label setting (Zhang et al.
2020a; Gu 2021; Xu, Farajtabar, and Zha 2016; Wu et al.
2019, 2020) while employing others (Wu et al. 2018; Li
et al. 2017) will require a significant non-trivial altering of
the original models. We run a transformer model with a lo-
gistic regression for each class (dubbed Transformer-LG) by
adapting from transformer hawkes process (Zuo et al. 2020)
and an RNN model with CMBN (dubbed RNN-CMBN) for
further comparison. We evaluate the performance of differ-
ent models on the task of multi-label prediction on the test
data using several evaluation metrics. Specifically, we con-
sider the weighted ROC-AUC score (Biloš, Charpentier, and
Günnemann 2019; Enguehard et al. 2020) as well as the
weighted F1 score and the Hamming score (Sorower 2010).

Synthetic Concurrent Multi-Label Events

We generate 2 synthetic datasets: Poisson-MBN (PM) and
Hawkes-MBN (HM) with M = 5 labels, where times-
tamps are generated using a Poisson and exponential kernel
Hawkes process respectively. For each timestamp, we par-
tition the 5 labels into 2 groups – one with 3 classes and
the other with 2. For each class in each group, we count the
number of historical occurrences of the class and normalize
by their total sum: this is the probability for each class to
generate labels for the next event epoch. Thus, our approach
for generation naturally induces a long history dependence
and interaction among labels in every epoch (both pair-wise
and 3rd order interaction). We generate 5 simulations, each
of which consists of a total of 1000 sequences and randomly
split 60-20-20 training-dev-test subsets. Further details re-
garding data generation are supplied in Appendix B.

Results. Table 2 compares 7 different models on PM and
HM. Our model achieves the best performance over all base-
lines using all three metrics. Note that the encoder-decoder
models do not incorporate potential correlation among la-
bels at each timestamp. A close competitor is RNN-CMBN
– while it is able to capture the correlation, it may have
missed the complex history dependence. Table 3 summa-
rizes the performance of the models for each class. TCMBN
consistently achieves much better ROC-AUC scores for all
classes in both experiments compared to baselines. Interest-
ingly, all models predict better when the label interaction is
pairwise in Group 1 (classes 1 and 2) than that of the third
order interaction in Group 2 (classes 3, 4 and 5).

2https://github.com/babylonhealth/neuralTPPs

Real-World Concurrent Multi-Label Events
We consider the following 4 event datasets for the task of
multi-label prediction. Their properties are summarized in
Table ??. We incorporate domain knowledge only on the
Defi dataset where each event label consists of only 1 coin
type and 1 transaction type.

Synthea. This is a simulated EHR dataset that closely
mimics real EHR data (Walonoski et al. 2018). Each module
generates patient populations with events that can occur in a
medical history of a synthetic patient.3

Dunnhumby. We extract this dataset from Kaggle’s
Dunnhumby - The Complete Journey dataset.4 We use the
transaction file with household level transactions over two
years from a group of 2,500 households frequently shopping
at a retailer. To roll up the item types, each item is mapped
to its department category based on the product file.

MIMIC III. The MIMIC III database provides patient-
level de-identified health-related data associated with
the Israel Deaconess Medical Center between 2001 and
2012 (Johnson, Pollard, and Mark 2016; Johnson et al.
2016; Goldberger et al. 2000). We extract hospital admis-
sion records for each patient to include admission time and
ICD-9 codes which were mapped to CCS codes as labels.

Defi. This dataset provides user-level cryptocurrency trad-
ing history under a specific protocol called Aave.5 The data
includes timestamp, transaction type and coin type for each
transaction. Coupled marks that concatenate the transaction
and coin type are used as labels for each event.

Results. Table 4 summarizes the performances of 7 dif-
ferent models on the benchmarks. TCMBN achieves overall
superior performance compared to all baselines. In particu-
lar, it achieves the best results on 6 out of 12 evaluations,
and close to best performance on the other 6 evaluations;
none of the other models compare in terms of consistent ro-
bust performance on this task. A suggested strong baseline
– GRU-CP (Enguehard et al. 2020) – achieves noticeably
inferior results than our model.

Ablation I: Mixture Components
Figure 2 shows the effects of varying mixture components.
Overall, we did not observe dramatic changes in predictive
performance with varying the number of mixture compo-
nents. The most changes comes with respect to Hamming
loss, while all models perform roughly the same with re-
spect to weighted ROC-AUC and F1 scores. TCMBN with
32 mixture components appears to perform best, while our
choice of 64 components comes after. The lack of noticeable
variation in performance for neural mixtures of Bernoulli
models is different from the classical E-M type of mixture
of experts where performance is usually boosted with more
components, as observed in tabular multi-label classification
task (Li et al. 2016). The optimization mechanism underlies
this difference: the likelihood in the classical E-M approach
is bound to increase with more mixture components, while

3https://github.com/synthetichealth/synthea
4https://www.kaggle.com/frtgnn/dunnhumby-the-complete-

journey
5aave.com
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Data Metric/Model GRU-CP GRU-RMTPP GRU-LNM GRU-ATTN Transformer-LG RNN-CMBN TCMBN (ours)
ROC-AUC 0.751(0.012) 0.733(0.026) 0.724(0.028) 0.669(0.038) 0.568(0.013) 0.752(0.009) 0.764(0.011)

PM F1 0.676(0.005) 0.651(0.015) 0.662(0.012) 0.639(0.009) 0.620(0.005) 0.677(0.007) 0.686(0.004)
Hamming 0.345(0.008) 0.416(0.039) 0.409(0.055) 0.467(0.058) 0.561(0.006) 0.342(0.008) 0.337(0.006)
ROC-AUC 0.754(0.006) 0.751(0.011) 0.755(0.005) 0.650(0.019) 0.585(0.003) 0.755(0.011) 0.765(0.005)

HM F1 0.675(0.004) 0.665(0.016) 0.675(0.004) 0.640(0.009) 0.619(0.001) 0.679(0.006) 0.683(0.002)
Hamming 0.345(0.013) 0.378(0.041) 0.338(0.006) 0.506(0.011) 0.563(0.002) 0.342(0.006) 0.336(0.013)

Table 2: Overall predictive performances on PM & HM datasets as measured by weighted ROC-AUC, weighted F1 and Ham-
ming loss. Mean values are shown along with standard deviation in parentheses. Best results are in bold.

Data Metric/Model GRU-CP GRU-RMTPP GRU-LNM GRU-ATTN Transformer-LG RNN-CMBN TCMBN (ours)
G1C1 0.771(0.016) 0.774(0.018) 0.780(0.016) 0.769(0.019) 0.580(0.024) 0.775(0.016) 0.783(0.018)
G1C2 0.778(0.023) 0.780(0.022) 0.786(0.020) 0.777(0.017) 0.581(0.020) 0.778(0.013) 0.791(0.019)

PM G2C1 0.728(0.019) 0.691(0.058) 0.636(0.086) 0.584(0.082) 0.560(0.009) 0.733(0.011) 0.738(0.015)
G2C2 0.732(0.012) 0.678(0.054) 0.682(0.064) 0.574(0.064) 0.554(0.016) 0.728(0.013) 0.747(0.020)
G2C3 0.724(0.012) 0.704(0.017) 0.685(0.057) 0.552(0.081) 0.551(0.016) 0.722(0.010) 0.740(0.009)
G1C1 0.786(0.014) 0.790(0.010) 0.791(0.011) 0.793(0.015) 0.602(0.011) 0.783(0.017) 0.799(0.011)
G1C2 0.781(0.014) 0.784(0.018) 0.786(0.016) 0.781(0.017) 0.598(0.010) 0.780(0.017) 0.790(0.016)

HM G2C1 0.722(0.014) 0.714(0.015) 0.720(0.016) 0.520(0.016) 0.571(0.013) 0.730(0.008) 0.735(0.010)
G2C2 0.729(0.013) 0.713(0.023) 0.729(0.012) 0.531(0.031) 0.570(0.015) 0.730(0.013) 0.741(0.013)
G2C3 0.725(0.009) 0.719(0.011) 0.720(0.012) 0.524(0.021) 0.569(0.009) 0.729(0.011) 0.734(0.010)

Table 3: ROC-AUC for each class on PM & HM. Best results are in bold. G:Group C:Class

stochastic gradient descent in our neural models does not
guarantee this increase. Nevertheless, even with a relatively
small number of mixture components, our approach shows
competitive predictive strength.

(a) PM (b) HM

Figure 2: TCMBN results with varying mixture components.

Ablation II: Background Knowledge Constraint
We train TCMBN without background knowledge loss on
the synthetic datasets and Defi. A comparison of two cases in
Table 5 shows that our prediction without the additional loss
consistently gets worse in terms of F1-weighted score, while
fluctuating with respect to Hamming loss. Such discrepancy
is likely due to class imbalance in our setting.

Structure Discovery for Synthetic Binary I.I.D.
Data (without Timestamps)
We further test our two-step CMBN-LSSA approach for
learning label dependency from i.i.d. data by generating
binary data with a dimension of 5 and 8 variables based
on the Ising model: Prob(x1, x2, ..., xM ) = exp(Θ0 +∑

Θixi +
∑
i<j Θijxixj) according to a procedure de-

scribed elsewhere (Ravikumar, Wainwright, and Lafferty
2010). The second order interaction coefficient Θij indicates
the presence of an edge between node i and j if Θij 6= 0.
We compare our approach with a few representative mod-
els: Logistic-Neighborhood-Max (L-N-M) model (Raviku-
mar, Wainwright, and Lafferty 2010), current state-of-the-art
NeurISE (Lokhov et al. 2020) and Mobius Inversion (M-I)
(De Canditiis 2019). A detailed description on training these
models is in Appendix C. As shown in Table 6, our approach
is most effective at recovering structures and outperforms all
baselines for both dimensions with small sample sizes. It is
worth noting that our model is more efficient to run com-
pared to NeurISE because the latter requires looping through
all dimensions (i.e. coordinate-wise training) during training
while ours does not. Thus, our proposed two-step procedure
is also a suitable tool for discovering undirected structures
even for applications involving i.i.d. data.

Dunnhumby: Case Study of Structure Discovery
for Concurrent Multi-Label Events
Figure 3 shows two discovered structures, one at an earlier
time (i = 1st) and the other at a later time (i = 101st),
from Dunnhumby. Each nonzero entry in the learned pre-
cision matrix is shown as an edge on the graph. A partial
correlation score for two nodes Vi and Vj given the other
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Data Metric/Model GRU-CP GRU-RMTPP GRU-LNM GRU-ATTN Transformer-LG RNN-CMBN TCMBN (ours)
ROC-AUC 0.841 0.805 0.834 0.707 0.619 0.679 0.852

Synthea F1 0.419 0.367 0.408 0.293 0.227 0.212 0.456
Hamming 0.014 0.012 0.015 0.022 0.012 0.042 0.014
ROC-AUC 0.654 0.620 0.636 0.620 0.552 0.697 0.691

Dunnhumby F1 0.592 0.558 0.568 0.563 0.555 0.599 0.598
Hamming 0.127 0.619 0.155 0.162 0.881 0.123 0.122
ROC-AUC 0.679 0.677 0.678 0.577 0.566 0.635 0.752

MIMIC III F1 0.288 0.273 0.279 0.241 0.240 0.270 0.354
Hamming 0.078 0.051 0.090 0.135 0.384 0.080 0.058
ROC-AUC 0.776 0.767 0.734 0.655 0.585 0.502 0.771

Defi F1 0.462 0.449 0.417 0.363 0.324 0.276 0.469
Hamming 0.071 0.069 0.072 0.105 0.411 0.469 0.073

Table 4: Overall predictive performance on 4 real applications. Best results are in bold.

Data/Metric ROC-AUC F1 Hamming
PM 0.764(0.010) 0.684(0.003) ↓ 0.344(0.009) ↑
HM 0.765(0.004) 0.682(0.003) ↓ 0.332(0.010) ↓
Defi 0.767 ↓ 0.464 ↓ 0.071 ↓

Table 5: Results on synthetic datasets without background
knowledge constraint.

Nodes Samples M-I L-N-M NeurISE CMBN-LSSA

150 0.72(0.10) 0.29(0.24) 0.73 (0.07) 0.80(0.00)
5 300 0.72(0.16) 0.67(0.14) 0.75 (0.07) 0.82(0.05)

500 0.80(0.06) 0.82(0.14) 0.83(0.06) 0.86(0.00)

150 0.65(0.12) 0.39(0.26) 0.71 (0.03) 0.73(0.02)
8 300 0.66(0.04) 0.65(0.17) 0.75 (0.05) 0.76(0.02)

500 0.67(0.06) 0.79(0.07) 0.79 (0.03) 0.76(0.01)

Table 6: F1 score evaluation on structure recovery on syn-
thetic binary i.i.d. data with 5 and 8 dimensions.

nodes is shown as an edge weight and calculated as be-
low: ρVi,Vj |V\{Vi,Vj} = − Pij√

PiiPjj

where Pij denotes the

(i, j) entry of the matrix. A distinctive pattern from both
graphs is restaurant and garden center visits are independent
of the other shopping behavior. Another identified pattern
is that produce and meat are most strongly linked together
since both are associated with grocery shopping. The two
structures show slightly differing shopping behaviors of the
households, possibly due to seasonality. For example, at the
earlier epoch, getting gas tends to be negatively partially cor-
related with purchasing produce, meat and pastries; later, it
negatively links to nutritional products and salad bar as well.
In practice, learning dynamic graph structures of items could
provide valuable insights for better goods allocation, strate-
gic planning of promotions, and etc.

Conclusion
We have proposed an effective interpretable approach for
concurrent multi-label learning in event streams. To the best

Learned Graph at i = 1st event.

Learned Graph at i = 101st event.

Figure 3: Learned undirected structure on Dunnhumby. For
clarity, we only show 8 of the 24 departments as labels.

of our knowledge, we are the first to systematically per-
form multi-label prediction and learn structures in continu-
ous time. We model a neural mixture density that can incor-
porate any meaningful domain knowledge; and our model
shows promising results on experiments across domains.
It is flexible enough to embed additional features for each
epoch, if and when available. Our work can be extended in
a few directions. For example, while (T)CMBN-LSSA is a
powerful two-step procedure, one could develop end-to-end
joint learning of event sequences and structure among la-
bels. Our framework provides further actionable insights for
many data-driven applications involving event streams.
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