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Abstract 
Recent years, graph contrastive learning (GCL), which aims 
to learn representations from unlabeled graphs, has made 
great progress. However, the existing GCL methods mostly 
adopt human-designed graph augmentations, which are sen-
sitive to various graph datasets. In addition, the contrastive 
losses originally developed in computer vision have been di-
rectly applied to graph data, where the neighboring nodes are 
regarded as negatives and consequently pushed far apart from 
the anchor. However, this is contradictory with the homoph-
ily assumption of networks that connected nodes often belong 
to the same class and should be close to each other. In this 
work, we propose an end-to-end automatic GCL method, 
named NCLA to apply neighbor contrastive learning on 
learnable graph augmentation. Several graph augmented 
views with adaptive topology are automatically learned by 
the multi-head graph attention mechanism, which can be 
compatible with various graph datasets without prior domain 
knowledge. In addition, a neighbor contrastive loss is devised 
to allow multiple positives per anchor by taking network to-
pology as the supervised signals. Both augmentations and 
embeddings are learned end-to-end in the proposed NCLA. 
Extensive experiments on the benchmark datasets demon-
strate that NCLA yields the state-of-the-art node classifica-
tion performance on self-supervised GCL and even exceeds 
the supervised ones, when the labels are extremely limited. 
Our code is released at https://github.com/shenxiao-
cam/NCLA. 

Introduction   
Over the past several years, graph neural networks (GNNs) 
have attracted great attention due to their outstanding per-
formance in various graph mining tasks, such as node clas-
sification (Kipf and Welling 2017), link prediction (Shen 
and Chung 2020) and graph classification (Hamilton, Ying, 
and Leskovec 2017). Most existing GNNs are trained in a 
supervised manner which heavily relies on a large amount 
of well-annotated labels. However, in the real-world appli-
cations, it is often resource-expensive and time-consuming 
to collect abundant labeled graph structured data (Shen et al. 
2020a; Shen et al. 2020b; Shen, Mao, and Chung 2020; Wu 
et al. 2020; Dai et al. 2022).  
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Contrastive learning (CL) is one of the most representa-
tive self-supervised learning techniques that can reduce the 
reliance on manual labels. CL has demonstrated unprece-
dented performance on unsupervised representation learn-
ing in computer vision (CV) (Zhu et al. 2020) and natural 
language processing (NLP) (Aberdam et al. 2021). Inspired 
by the development of CL, recently, tremendous endeavors 
have been devoted to graph contrastive learning (GCL) 
(Hassani and Khasahmadi 2020; Zhu et al. 2020; Xia et al. 
2022a; Xia et al. 2022b; Zheng et al. 2022), which couple 
GNNs with CL to learn robust representations from unla-
beled graphs.  

Most existing GCL methods adopt a similar paradigm. 
Firstly, they employ various graph augmentation strategies, 
such as node dropping (You et al. 2020), edge perturbation 
(Zhu et al. 2020), attribute masking (Zhu et al. 2021), sub-
graph (Yang et al. 2022) and graph diffusion (Hassani and 
Khasahmadi 2020), to generate several graph augmented 
views with discrepancy. Secondly, they apply the contras-
tive losses widely utilized in CV, such as InfoNCE (Van den 
Oord, Li, and Vinyals 2018), normalized temperature-scaled 
cross-entropy (NT-Xent) (Zhu et al. 2020), Jensen-Shannon 
Divergence (JSD) (Nowozin, Cseke, and Tomioka 2016) 
and Triplet loss (Schroff, Kalenichenko, and Philbin 2015) 
to extract the common core information between different 
augmented views, according to the InfoMax (Linsker 1988) 
principle. Despite the prosperous development of GCL, 
there are some drawbacks in the standard paradigm, in terms 
of graph augmentations and contrastive objectives.  

The theoretical and empirical analysis in CL showed that 
good augmented views should be diverse while keeping the 
task-relevant information intact (Tian et al. 2020). However, 
the existing handcraft graph augmentation strategies, which 
randomly perturb graph topology, would fail to keep the 
task-relevant information intact. For example, dropping an 
important edge can heavily damage the graph topology that 
are highly related to downstream tasks and consequently 
cause the low quality of graph embeddings (Zhu et al. 2021). 
In addition, owing to the diverse nature of graph data, there 
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is no universal graph augmentation suitable for different da-
tasets (You et al. 2020; You et al. 2021). Thus, the existing 
ad-hoc graph augmentations have to be manually chosen for 
each graph dataset based on prior domain knowledge or 
trial-and-errors (You et al. 2020), which significantly limit 
both efficiency and general applicability of existing GCL 
methods.  

On the other hand, existing GCL methods directly apply 
the contrastive losses originally proposed in CV to graph 
data (Qiu et al. 2020; You et al. 2020; Zhu et al. 2020; Wan 
et al. 2021a; Wan et al. 2021b; Zhu et al. 2021), while pay-
ing no attention to the inherent distinction between images 
and graphs. The contrastive losses are utilized to guide the 
representation learning to pull positive pairs together and 
push negative pairs far apart. As shown in Figure 1(a) and 
1(b), in both InfoNCE and NT-Xent, a single positive pair is 
formed with each anchor, by creating different augmented 
views of the same node. Then, InfoNCE regards all the other 
different nodes from different view as negatives. While NT-
Xent introduces more negatives, where all different nodes 
within a view and from different view are regarded as nega-
tives. It is worth noting that in both InfoNCE and NT-Xent, 
the neighboring nodes are regarded as negatives and then 
pushed apart from the anchor. However, in GCL, the GNNs 
coupled with CL are generally based on the homophily as-
sumption that connected nodes often belong to the same 
class (McPherson, Smith-Lovin, and Cook 2001). In other 
words, connected nodes should be similar to each other ra-
ther than far apart. Due to the inherent distinction between 
images and graphs, directly applying the contrastive losses 
developed in CV to GCL would overlook the network topol-
ogy and result in the embeddings contradict with the ho-
mophily assumption of GNNs.  

To remedy the aforementioned limitations, in this work, 
we propose a new GCL method, named NCLA, which ap-
plies neighbor contrastive learning on learnable graph aug-
mentation. On one hand, NCLA adopts the multi-head graph 
attention network (GAT) (Veličković et al. 2018) to gener-
ate K learnable graph augmented views with adaptive topol-
ogy. Such learnable augmentation can be automatically 
compatible with various graph datasets without prior do-
main knowledge. In addition, in contrast to inappropriate 
handcraft graph augmentations which might heavily damage 
the original topology, the attention-based learnable aug-
mented views generated by NCLA would keep exactly the 
same nodes and edges as the original graph but with differ-
ent adaptive edge weights. Moreover, unlike the existing 
GCL methods which utilize exactly the same GNN encoder 
with the tied learnable parameters for different augmented 
views (You et al. 2020; Zhu et al. 2020; Zhu et al. 2021), in 
NCLA, each augmented view has its own learnable param-
eters. As a result, NCLA can generate safer graph augmen-
tation without improper modifications of original topology 
while still guaranteeing the diversity between different aug-
mented views. On the other hand, unlike previous GCL 
methods which directly utilize the contrastive losses origi-
nally proposed in CV (e.g., InfoNCE or NT-Xent), we de-
vise a new neighbor contrastive loss for node-node GCL. 
The proposed neighbor contrastive loss is a novel extension 
to the NT-Xent loss (Zhu et al. 2020), by taking network 
topology as the supervised signals to define positives and 
negatives in GCL. Specifically, instead of only forming a 
single positive pair per anchor as in NT-Xent, the proposed 
neighbor contrastive loss allows for multiple positives per 
anchor. Such multiple positives are drawn from the same 
node in different view and also the neighbors of the anchor 
within a view and from different view, as illustrated in Fig-
ure 1(c). Consequently, the non-neighbors of the anchor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  The comparisons of positive and negative pairs defined in the three node-node contrastive losses, i.e., InfoNCE, NT-
Xent and our proposed neighbor contrastive loss. The red nodes denote the anchor in view 1 and the same node in view 2. The 
full lines in black denote the original edges in the network. The dotted lines with arrows in different colors denote the positive 
and negative pairs formed with the anchor. 
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(b) NT-Xent (c) Neighbor Contrastive Loss (Ours)
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within a view and from different view would be regarded as 
the intra-view and inter-view negatives. The contributions 
of this work can be summarized as follows: 

1) As opposed to most existing GCL methods which have 
to manually pick handcraft graph augmentations per dataset, 
the proposed NCLA is the first to adopt the multi-head graph 
attention mechanism as the learnable graph augmentation 
function, where each head corresponds to one augmented 
view. Such attention-based learnable graph augmentation 
avoids improper modification of the original topology and 
can be automatically compatible with various graph datasets. 

2) Existing GCL methods directly apply the contrastive 
losses in CV to graph data which overlooks network topol-
ogy. To the best of our knowledge, our work makes one of 
the pioneering attempts to study neighbor contrastive learn-
ing in node-node GCL, which allows for multiple positives 
per anchor by taking network topology as the supervised sig-
nals. 

3) In the standard GCL paradigm, graph augmentation 
and embedding learning are conducted in two stages which 
might require bi-level optimization. In contrast, in NCLA, 
graph augmentation is learned along with embeddings end-
to-end, which yields high flexibility and ease of use. 

4) The extensive experiments on various graph datasets 
demonstrate that NCLA consistently outperforms the state-
of-the-art GCL methods or even some supervised GNNs on 
semi-supervised node classification with scarce labels. 

Related Work 
In line with the focus of our work, we briefly review existing 
GCL methods from two aspects, i.e., graph augmentation 
and contrastive objective.  

Graph Augmentation  
In the typical GCL framework, the first step is to generate 
graph augmented views with discrepancy by various graph 
augmentations (Ding et al. 2022). For example, DGI 
(Velickovic et al. 2019) augments the original graph by row-
wise shuffling node attributes. GRACE (Zhu et al. 2020) 
corrupts graph by removing edges and masking attributes 
uniformly. To improve GRACE, GCA (Zhu et al. 2021) re-
moves edges and masks attributes adaptively, by assigning 
different probabilities based on the centrality heuristics. 
MVGRL (Hassani and Khasahmadi 2020) augments the in-
put graph by graph diffusion and generates both local and 
global structural views. GraphCL (You et al. 2020) proposes 
four types of graph augmentations, including node dropping, 
edge perturbation, attribute masking and subgraph. How-
ever, the aforementioned handcraft augmentations have 
been shown to be sensitive to different graph datasets, owing 
to the diverse nature of graphs, thus limiting the efficiency 
and generalizability of the GCL methods (You et al. 2020; 

Lee, Lee, and Park 2022). To avoid manually tuning dataset-
specific graph augmentations, the concurrent work (Lee, 
Lee, and Park 2022; Mo et al. 2022; Wang et al. 2022; Xia 
et al. 2022a) propose to remove augmentations in GCL.  

The proposed NCLA generates thoroughly learnable 
graph augmentation by the multi-head graph attention 
mechanism. Such attention-based learnable augmentation 
can be automatically compatible with various graph datasets, 
and also avoid improper modification of the original graph 
topology. 

Contrastive Objective 
Two common contrastive modes in GCL are node-graph and 
node-node (Liu et al. 2022). The node-graph GCL methods 
contrast node-level representations with graph-level repre-
sentation. For example, DGI (Velickovic et al. 2019) con-
trasts the node representations of the original and corrupted 
graph with the original graph representation. MVGRL 
(Hassani and Khasahmadi 2020) contrasts node representa-
tions of one view with graph representation of the other view. 
On the other hand, the node-node GCL methods contrast 
node-level representations between positive and negative 
node pairs. For example, GMI (Peng et al. 2020) contrasts 
the input neighborhood feature and hidden representation of 
each node. SUGRL (Mo et al. 2022) designs a multiplet con-
trastive loss to guide positive pairs close while negative 
pairs far apart. In addition, the NT-Xent loss (Zhu et al. 2020) 
has been widely adopted by the state-of-the-art node-node 
GCL methods (You et al. 2020; Zhu et al. 2020; Wan et al. 
2021a; Wan et al. 2021b; Zhu et al. 2021). Although the NT-
Xent loss has been shown to be effective in CV, we argue 
that the definitions of positives and negatives might be in-
appropriate for GCL, since the graph data is not similar to 
image data. According to NT-Xent, the neighbors would be 
regarded as negatives and then pushed away from the anchor. 
However, this is undesirable in graph domain, as connected 
nodes are likely to share the same label and should not be 
far apart.  

In NCLA, we propose a new neighbor contrastive loss for 
node-node GCL. Unlike NT-Xent, the proposed neighbor 
contrastive loss allows for multiple positives per anchor, 
which is similar to the supervised contrastive loss (Khosla 
et al. 2020). However, the supervised contrastive loss de-
fines positives according to the observed class labels. While 
the proposed neighbor contrastive loss is designed for unsu-
pervised GCL without access to class labels, instead, we 
take network topology as the supervised signals to define 
positives and negatives.  

Methodology 
In this section, we present the proposed NCLA in details, 
including how to generate learnable graph augmentation, 
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how to define positives and negatives, and how to design the 
neighbor contrastive loss. Figure 2 shows the model archi-
tecture of NCLA.  

Preliminaries 
Let 𝒢 = (𝒱, ℇ, 𝑿, 𝑨) denote a graph, where 𝒱 = {𝑣1, 𝑣2,···
, 𝑣𝑁} and ℇ ⊆  𝒱 × 𝒱 represent the node set and edge set re-
spectively. 𝜲 ∈ ℝ𝑁×𝐹  and 𝜜 ∈ {0,1}𝑁×𝑁  denote the node 
feature matrix and the adjacency matrix, where 𝒙𝑖 ∈ ℝ𝐹 is 
the feature vector of 𝑣𝑖  and 𝛢𝑖𝑗 = 1 iff (𝑣𝑖 , 𝑣𝑗) ∈ ℰ . 𝒩𝑖 =
{𝑣𝑗|𝑗 ≠ 𝑖, 𝛢𝑖𝑗 = 1} represents a set of first-order neighbors 
of 𝑣𝑖. Given 𝜲 and 𝜜 as the inputs, the proposed NCLA ap-
plies the augmentation function 𝑡(∙ ; 𝝋(𝑘)) to generate the k-
th learnable augmented view with adaptive topology 𝒢 (𝑘) =
𝑡(𝒢 ; 𝝋(𝑘)) = (𝑿, �̃�(𝑘)), 𝑘 = 1,⋯ , 𝐾 , where �̃�(𝑘)  is the 
adaptive adjacency matrix of the k-th augmented view and 
𝐾 is the number of augmented views. Then, for each k-th 
augmented view 𝒢 (𝑘) , NCLA employs the GNN encoder 
𝑓(∙ ;𝑾(𝑘))  to learn the embeddings 𝑯(𝑘) =

𝑓(𝒢(𝑘);𝑾(𝑘)) ∈ ℝ𝑁×𝐹
′
, 𝐹′ ≪ 𝐹 . The embeddings are 

learned by optimizing the graph contrastive loss, without ac-
cess to the labels of downstream tasks. 

Learnable Graph Augmentation  
In NCLA, we opt for multi-head GAT (Veličković et al. 
2018) to generate K learnable graph augmented views with 
adaptive topology {�̃�(𝑘)}

𝑘=1

𝐾
. Each k-th head, corresponding 

to the k-th augmentation function 𝑡(∙ ; 𝝋(𝑘)), is constructed 
as a single-layer feedforward neural network. Specifically, 
the adaptive edge coefficient between two connected nodes, 
say 𝑣𝑖 and 𝑣𝑗, in the k-th augmented view can be learned as: 

 �̃�𝑖𝑗
(𝑘)
=

𝑒
LeakyReLU(𝝋(𝑘)[𝑾(𝑘)𝒙𝑖‖𝑾

(𝑘)𝒙𝑗])

∑ 𝑒
LeakyReLU(𝝋(𝑘)[𝑾(𝑘)𝒙𝑖‖𝑾

(𝑘)𝒙𝑝])
𝑣𝑝∈𝒩𝑖∪{𝑣𝑖}

 (1) 

where �̃�𝑖𝑗
(𝑘) is set to 0 if 𝛢𝑖𝑗 = 0, 𝑾(𝑘) ∈ ℝ𝐹

′×𝐹  is the learn-
able weight matrix to transform input features into the em-
bedding space of the k-th augmented view, 𝝋(𝑘) ∈ ℝ1×2𝐹′  is 
the learnable weight vector of k-th head, || is the concatena-
tion operation, and LeakyReLU(·) is a nonlinear activation 
function.  

Then, for each k-th view, a GNN encoder  𝑓(∙ ;𝑾(𝑘)) 
learns the embedding of each node by aggregating the neigh-
bors’ embeddings with adaptive edge coefficients and then 
applying the ELU nonlinearity, as:  

 𝒉𝑖
(𝑘)
= ELU (∑ �̃�𝑖𝑗

(𝑘)
𝑾(𝑘)𝒙𝑗𝑣𝑗∈𝒩𝑖∪{𝑣𝑖}

) (2) 

where 𝒉𝑖
(𝑘)
∈ ℝ𝐹

′ is the embedding of 𝑣𝑖  in the 𝑘-th view. 
Finally, the embeddings of each view are concatenated to 
generate the output embedding, as:  

 𝒉𝑖 = ||𝑘=1
𝐾 𝒉𝑖

(𝑘) (3) 
Compared to existing graph augmentations, the proposed 

attention-based learnable graph augmentation in NCLA has 
three advantages, as follows: 

1) The hyper-parameters of handcraft graph augmenta-
tions have to be manually selected either randomly or by 
heuristics, which are sensitive to different graph datasets. In 
contrast, the end-to-end learnable graph augmentation in 
NCLA can be automatically adaptive to different graph da-
tasets without human choices or prior domain knowledge.  

2) The existing GCL methods usually adopt a shared-
weight GNN encoder to learn the embeddings of different 
augmented views (You et al. 2020; Zhu et al. 2020; Zhu et 
al. 2021), which inevitably harms the diversity. In contrast, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  The model architecture of NCLA. It generates 𝐾 learnable augmented views with adaptive topology by multi-head 
GAT, where each 𝑘-th view has its own learnable parameters 𝝋(𝑘), 𝑾(𝑘) which are not shared with other views. Then, it applies 
the neighbor contrastive loss to maximize the agreement between the embeddings of positive pairs and minimize that of nega-
tive pairs. Both augmentations and embeddings are learned end-to-end in NCLA. 

 

 

Augmentation Learning Embedding Learning

Neighbor Contrastive 
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Attention 2

Attention K

GNN 2

GNN K
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in NCLA, each k-th augmented view has its own learnable 
parameters of graph augmentation 𝝋(𝑘)  and embedding 
learning 𝑾(𝑘), which are distinct from other views. Thus, 
the diversity between different augmented views can be en-
hanced in NCLA.  

3) The handcraft graph augmentations typically drop 
nodes or edges to generate different views, while dropping 
some sensitive elements can heavily damage the original 
graph topology which might be highly related to down-
stream tasks and consequently deteriorate the embedding 
quality (Zhu et al. 2021; Xia et al. 2022a). In contrast, 
NCLA learns adaptive coefficients of the original edges for 
different augmented views, thus yielding safer graph aug-
mentation which enhances the diversity between different 
augmented views while avoiding improper modifications of 
original topology. 

Neighbor Contrastive Learning 
GCL aims to maximize the mutual information (MI) be-
tween different augmented views, by contrasting positive 
pairs with negative counterparts. Two self-supervised con-
trastive losses, i.e., InfoNCE (Van den Oord, Li, and Vinyals 
2018) and NT-Xent (Zhu et al. 2020), have been widely uti-
lized in the latest node-node GCL methods (You et al. 2020; 
Zhu et al. 2020; Wan et al. 2021a; Wan et al. 2021b; Zhu et 
al. 2021). Both InfoNCE and NT-Xent only allow a single 
positive pair per anchor. Specifically, the embeddings of the 
same node in two views are defined as a positive pair, on the 
contrary, the embeddings of all different nodes are defined 
as negative pairs. In such definitions, the neighbors of an 
anchor would be treated as negatives, and then be pushed 
away from the anchor. 

However, most GNNs are designed based on the homoph-
ily assumption which suggests that connected nodes tend to 
share similar labels and should be close to each other. Thus, 
we argue that the neighbors of the anchor should not be 
treated as negatives in GCL. To address this, we propose the 
concept of neighbor contrastive learning, which takes net-
work topology as the supervised signals to define positives 
and negatives in node-node GCL. Specifically, not only the 
same node of the anchor in different views is treated as a 
positive, but also the neighbors of the anchor within a view 
and across different views would be treated as the extra pos-
itives. Besides, the non-neighbors of the anchor within a 
view and across different views would be treated as the neg-
atives. The definitions of positive and negative pairs in 
NCLA are illustrated in Figure 1(c). 

Let 𝒉𝑖
(1) and 𝒉𝑖

(2) denote the 𝐿2-normalized embeddings 
of 𝑣𝑖 learned by view 1 and view 2 respectively. Selecting 
𝒉𝑖
(1) as the anchor, in NCLA, the positives come from three 

disjoint sources: 1) inter-view same node, i.e., the embed-
ding of the same node in different view 𝒉𝑖

(2); 2) intra-view 

neighbors, i.e., the embeddings of neighbors within a view 
{𝒉𝑗

(1)
|𝑣𝑗 ∈ 𝒩𝑖} ; and 3) inter-view neighbors, i.e., the em-

beddings of neighbors in different view {𝒉𝑗
(2)
|𝑣𝑗 ∈ 𝒩𝑖} . 

That is, the number of positive pairs associated with the an-
chor 𝒉𝑖

(1) should be 2|𝒩𝑖| + 1, where |𝒩𝑖| is the number of 
neighbors of 𝑣𝑖. The neighbor contrastive loss between view 
1 and view 2 associated with the anchor 𝒉𝑖

(1) is formulated 
as: 

ℓ(𝒉𝑖
(1)
) = 

−𝑙𝑜𝑔
(𝑒
𝜃(𝒉

𝑖
(1)
,𝒉
𝑖
(2)
)/𝜏
+∑ (𝑒

𝜃(𝒉
𝑖
(1)
,𝒉
𝑗
(1)
)/𝜏
+𝑒

𝜃(𝒉
𝑖
(1)
,𝒉
𝑗
(2)
)/𝜏
)𝑣𝑗∈𝒩𝑖
) (2|𝒩𝑖|+1)⁄

𝑒
𝜃(𝒉

𝑖
(1)
,𝒉
𝑖
(2)
)/𝜏
+∑ (𝑒

𝜃(𝒉
𝑖
(1)
,𝒉
𝑗
(1)
)/𝜏
+𝑒

𝜃(𝒉
𝑖
(1)
,𝒉
𝑗
(2)
)/𝜏
)𝑗≠𝑖

 

(4) 
where 𝜏 is a temperature parameter, and 𝜃(·) denotes a sim-
ilarity measure (here we use inner product). The last two 
terms in the denominator of Eq. (4) can be decomposed as: 

∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(1)
)/𝜏

𝑗≠𝑖 = ∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(1)
)/𝜏

𝑣𝑗∈𝒩𝑖⏟            
intra−view pos

+ ∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(1)
)/𝜏

𝑣𝑗∉𝒩𝑖⏟            
intra−view neg

  

∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(2)
)/𝜏

𝑗≠𝑖 = ∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(2)
)/𝜏

𝑣𝑗∈𝒩𝑖⏟            
inter−view pos

+ ∑ 𝑒
𝜃(𝒉𝑖

(1)
,𝒉𝑗
(2)
)/𝜏

𝑣𝑗∉𝒩𝑖⏟            
inter−view neg

  

where non-neighbors of 𝑣𝑖  in view 1 and view 2 are re-
garded as the intra-view and inter-view negatives respec-
tively. Minimizing Eq. (4) would maximize the agreement 
between positive pairs and minimize that of negative pairs. 
Specifically, the embedding of each node would be forced 
to agree with itself in another view and its neighbors’ em-
beddings within a view and across views. Oppositely, the 
embedding of each node can be distinguished from that of 
its non-neighbors within a view and across views. In addi-
tion, it is worth noting that the NT-Xent loss is a special case 
of the proposed neighbor contrastive loss, when only the in-
ter-view same node is selected as a single positive, while the 
intra-view and inter-view neighbors are changed from posi-
tives to negatives. 

 Since two views are symmetric, given the embedding of 
𝑣𝑖 in view 2, i.e., 𝒉𝑖

(2) as the anchor, the neighbor contras-
tive loss ℓ(𝒉𝑖

(2)
) can be similarly defined according to Eq. 

(4). The final neighbor contrastive loss between view 1 and 
view 2, averaged over all nodes is defined as: 

 ℓ(𝑯(1), 𝑯(2)) =
1

2𝑁
∑ [ℓ(𝒉𝑖

(1)
) + ℓ(𝒉𝑖

(2)
)]𝑁

𝑖=1  (5) 

The proposed NCLA is flexible to generate arbitrary mul-
tiple learnable augmented views. When having more than 
two augmented views, we randomly choose one view as the 
pivot view, say 𝑯(𝑙), and then sum up the neighbor contras-
tive loss between each other view and 𝑯(𝑙)  as the total 
neighbor contrastive loss, which is given by: 

 ℒ =
1

𝐾
∑ ℓ(𝑯(𝑘), 𝑯(𝑙))𝐾
𝑘=1,𝑘≠𝑙  (6) 
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Note that both augmentations and embeddings are learned 
end-to-end in NCLA, which yields high level of flexibility 
and ease of use. The detailed description of NCLA is pro-
vided in Algorithm 1.  

The time complexity of generating K learnable aug-
mented views by multi-head GAT is 𝑂((𝑁𝐹𝐹′ + |ℇ|𝐹′)𝐾), 
where 𝑁 and |ℇ| are the number of nodes and edges in 𝒢 re-
spectively, 𝐹 is the number of input features and 𝐹′ is the 
embedding dimension. The time complexity of neighbor 
contrastive learning is 𝑂(𝑁2𝐹′(𝐾 − 1)) . Thus, the time 
complexity of NCLA is 𝑂((𝑁𝐹𝐹′ + |ℇ|𝐹′)𝐾 + 𝑁2𝐹′(𝐾 −
1)). Since |ℇ| ≪ 𝑁2, the overall time complexity of NCLA 
is 𝑂((𝑁𝐹𝐹′ + 𝑁2𝐹′)𝐾). Note that in practice, 𝐾 is very 
small (e.g., 2 or 4) in our experiments, so the time 
complexity of NCLA is comparable to the representative 
node-node GCL methods, e.g. GRACE (Zhu et al. 2020) and 
GCA (Zhu et al. 2021). 

Experiments 

Datasets 
To demonstrate the effectiveness of the proposed NCLA, 
extensive experiments have been conducted on five bench-

mark datasets for semi-supervised node classification, in-
cluding three widely-used citation networks, i.e., Cora, 
Citeseer, Pubmed (Sen et al. 2008), a co-authorship network, 
i.e., Coauthor-CS (Shchur et al. 2018), and a product co-pur-
chase network, i.e., Amazon-Photo (Shchur et al. 2018). The 
statistics of the datasets are summarized in Table 1. 

Baselines  
NCLA is compared with 11 state-of-the-art methods for  
semi-supervised node classification, including 2 semi-su-
pervised GNNs, i.e., GCN (Kipf and Welling 2017) and 
GAT (Veličković et al. 2018), 2 semi-supervised GCL 
methods, i.e., CGPN (Wan et al. 2021b) and CG3 (Wan et 
al. 2021a), and 7 self-supervised GCL methods, i.e., DGI 
(Velickovic et al. 2019), GMI (Peng et al. 2020), MVGRL 
(Hassani and Khasahmadi 2020), GRACE (Zhu et al. 2020), 
GCA (Zhu et al. 2021), SUGRL (Mo et al. 2022) and AF-
GRL (Lee, Lee, and Park 2022). 

Experimental Settings 
The proposed NCLA was implemented in PyTorch 1.10.1 
(Paszke et al. 2019) and Deep Graph Library 0.6.1 (Wang et 
al. 2019). NCLA was trained by the Adam optimizer. The 
hyperparameters of NCLA on the five datasets are specified 
in Table 2. For the self-supervised GCL baselines and 
NCLA, the embeddings are learned in an unsupervised man-
ner, and then used to train and test a 𝐿2-regularized logistic 
regression (LR) classifier for semi-supervised node classifi-
cation. On one hand, we conducted experiments in the set-
ting with extremely scarce labels, where the number of train-
ing nodes per class 𝒸 was chosen in {1, 2, 3, 4}. In such a la-
bel-deficient setting, we followed (Li, Han, and Wu 2018; 
Li et al. 2019) to do not use a validation set with extra labels 
for model selection. On the other hand, we conducted exper-
iments given relatively sufficient labels. For Cora, Citeseer 
and Pubmed, we followed (Yang, Cohen, and Salakhudinov 
2016) to randomly select 20 nodes per class for training, 500 
nodes for validation and the remaining nodes for test. For 
Coauthor CS and Amazon Photo, we followed (Liu, Gao, 
and Ji 2020) to randomly select 20 nodes per class for train-
ing, 30 nodes per class for validation, and the remaining 
nodes for test. Note that for the self-supervised GCL base-
lines and NCLA which learn embeddings from unlabeled 
data, the validation set was just used to tune the hyperpa-
rameters of the LR classifier, rather than the GCL models. 
For each dataset, we conducted 20 random splits of train-
ing/validation/test, and reported the averaged performance 
of all algorithms on the same random splits.  

Node Classification Results  
Table 3 shows the node classification accuracy on five 
benchmark graph datasets. We have the following observa-
tions:  

Algorithm 1: NCLA 
Input: The adjacency matrix 𝜜, feature matrix 𝜲, num-
ber of augmented views K, number of training epochs 𝒯. 
1 for epoch in 1 to 𝒯 do 
2 for k in 1 to K do 
3 Generate the k-th learnable augmented views 

with Eq. (1); 
4 Generate embeddings of the k-th view with 

Eq. (2); 
5 end for 
6 Concatenate embeddings of K views to generate 

final embeddings with Eq. (3); 
7 Compute neighbor contrastive loss ℒ  with Eq. 

(6); 
8 Update parameters by applying gradient descent 

to minimize ℒ; 
9 end for 
10 Generate embeddings with optimal parameters 

with Eqs. (1), (2) and (3). 
Output: Embeddings 𝑯 

 

Datasets # Nodes # Edges # Features # Labels 
Cora 2708 10556 1433 7 

CiteSeer 3327 9228 3703 6 
PubMed 19717 88651 500 3 

Coauthor-CS 18333 163788 6805 15 
Amazon-Photo 7650 238162 745 8 

Table 1: Statistics of the datasets. 
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Firstly, NCLA substantially outperforms GAT by a large 
margin, e.g., NCLA improves on GAT by 21%, when 1 la-
beled node per class is used for training on Cora. Recall that 
NCLA utilizes multi-head GAT as the backbone to generate 
the attention-based learnable graph augmentation. The sig-
nificant improvement of NCLA over multi-head GAT re-
flects that more robust representations can be learned with 
the help of GCL, especially when the labels are extremely 
limited.  

Moreover, NCLA consistently outperforms the state-of-
the-art GCL baselines on all datasets when the labels are ex-
tremely limited (i.e., only 1, 2, 3 and 4 labeled nodes per 
class). When more labels are given, i.e., 20 labeled nodes 
per class, NCLA achieves the best or second-best results, 

which are comparable to previous state-of-the-art. The out-
performance of NCLA is mainly attributed to two folds. On 
one hand, unlike the GCL baselines which have to manually 
tune handcraft augmentations per dataset, NCLA generates 
the attention-based learnable augmentation along with em-
beddings end-to-end. The inappropriate handcraft augmen-
tations might heavily damage the network topology and lead 
to ineffective embeddings. In contrast, NCLA brings safer 
learnable graph augmentation which avoids inappropriate 
modification of the original topology. On the other hand, the 
GCL baselines generally adopt the contrastive losses in CV, 
without considering the network topology. As a result, the 
neighbors would be treated as negatives and then pushed 
away from the anchor. In contrast, the proposed neighbor 

Datasets # Augmented Views  
K 

# Hidden  
Layers 

# Embedding Dimension 
 𝐹′ 

Temperature 
 𝜏 

Learning  
Rate 

Weight  
Decay 

# Epochs 
 𝒯 

Cora 4 1 32 1 1e-2 1e-4 2000 
CiteSeer 4 1 32 5 1e-2 1e-4 2000 
PubMed 2 1 32 5 1e-3 5e-5 2000 

Coauthor-CS 4 1 32 1 5e-2 1e-4 2000 
Amazon-Photo 2 1 32 1 1e-3 1e-4 2000 

Table 2: Hyperparameter Settings of NCLA. 

Da-
tasets 𝒸 

Methods 

GCN GAT CGPN CG3 DGI GMI MVGRL GRACE GCA SUGRL AFGRL NCLA 

Cora 

1 42.6±11.6  42.1±9.5 58.6±10.6 55.4±14.3 55.4±11.4 55.9±9.6 59.1±10.9 51.0±9.8 58.4±10.9 55.2±8.9 47.7±7.8 63.1±11.2 
2 55.0±7.5 53.2±9.0 67.4±7.1 66.4±7.7 64.9±9.0 65.2±7.6 67.8±8.6 59.7±7.9 66.0±7.8 65.3±6.2 57.8±6.8 71.8±6.9 
3 63.1±6.8 63.2±5.3 70.7±4.0 71.5±4.2 71.1±5.6 70.7±5.2 74.5±4.1 64.0±6.6 71.5±4.6 70.5±3.5 64.6±4.7 75.7±5.0 
4 66.4±6.4 66.3±5.9 70.7±2.9 72.7±2.4 72.9±4.5 73.3±4.3 76.1±3.2 66.1±5.4 72.9±4.3 73.5±2.9 67.5±4.2 77.3±3.8 

20 79.6±1.8 81.2±1.6 74.0±1.7 80.6±1.6 82.1±1.3 79.4±1.2 82.4±1.5 79.6±1.4 79.0±1.4 81.3±1.2 78.6±1.3 82.2±1.6 

Cite 
seer 

1 33.8±5.9 31.0±7.2 48.6±11.3 48.4±12.8 47.2±9.2 40.8±6.8 32.8±8.4 40.3±7.2 38.7±9.0 46.7±8.4 42.1±7.2 52.2±13.5 
2 44.8±5.5 41.1±7.2 58.0±5.1 60.2±6.8 58.6±4.3 50.2±4.1 47.8±7.5 48.5±6.0 49.6±5.3 57.7±4.6 53.3±5.4 62.2±6.4 
3 49.2±5.1 48.6±6.7 59.4±5.4 62.1±7.3 63.3±4.3 55.1±2.7 55.2±6.7 52.7±4.6 54.2±4.7 61.8±5.1 58.0±4.4 65.5±3.5 
4 51.7±4.5 52.8±6.6 60.6±3.4 65.1±2.5 65.8±2.1 57.9±3.0 59.3±5.5 56.0±3.9 57.3±3.3 65.0±2.6 61.5±2.5 67.6±2.1 

20 66.0±1.2 68.9±1.8 63.7±1.6 70.9±1.5 71.6±1.2 66.9±2.2 71.1±1.4 67.0±1.7 65.6±2.4 71.0±1.8 70.8±2.1 71.7±0.9 

Pub-
Med 

1 48.6±7.1 47.9±8.5 53.5±13.4 54.7±8.6 50.0±9.5 53.5±11.9 55.3±9.3 46.5±7.0 57.7±10.5 56.7±8.8 49.7±8.3 60.2±12.4 
2 55.8±7.1  54.5±7.7 59.7±10.3 58.9±7.2 58.5±8.7 60.7±9.9 62.7±7.0 53.8±6.9 66.3±7.6 62.9±6.3 56.4±6.4 66.9±9.7 
3 62.1±7.3 61.5±6.8 61.8±10.4 65.1±6.5 62.4±7.2 65.5±8.9 68.5±5.8 55.6±7.9 71.9±5.4 67.9±5.7 60.6±5.5 72.3±6.2 
4 65.1±5.9 64.2±6.1 62.7±10.3 66.0±5.7 64.1±6.2 67.2±8.1 70.6±6.0 57.7±6.8 73.6±5.4 69.9±5.1 62.4±5.1 73.8±4.9 

20 79.0±2.5 78.5±1.8 73.3±2.5 78.9±2.6 78.3±2.4 76.8±2.3 79.5±2.2 74.6±3.5 81.5±2.5 80.5±1.6 76.4±2.5 82.0±1.4 

Co-
au-
thor  
CS 

1 64.8±8.8 64.2±9.0 68.4±8.9 79.8±8.0 71.4±6.3 68.3±7.2 75.4±7.2 60.0±7.7 59.9±7.6 76.9±6.2 75.2±7.6 83.0±6.2 
2 79.2±4.2 80.2±4.1 77.7±5.3 85.3±4.0 79.6±5.3 78.1±4.5 84.7±2.7 71.3±4.5 72.5±4.6 85.4±3.1 85.3±2.7 87.4±4.1 
3 83.3±4.0 85.0±2.7 80.4±4.4 87.5±3.9 82.3±3.6 80.9±4.4 87.5±2.2 74.8±3.8 77.9±4.1 87.4±2.9 87.7±2.3 88.3±3.1 
4 84.2±3.1 86.6±2.1 80.9±3.6 87.1±4.6 84.8±2.8 82.8±2.8 88.5±1.8 77.6±2.8 80.3±3.1 88.2±2.1 88.4±1.9 88.8±2.4 

20 90.0±0.6 90.9±0.7 83.5±1.4 90.6±1.0 92.0±0.5 88.5±0.8 91.5±0.6 90.0±0.7 90.9±1.1 91.2±0.9 91.4±0.6 91.5±0.7 

Ama-
zon 

Photo 

1 60.7±9.3 59.0±11.5 70.4±7.2 69.3±5.8 53.8±10.7 58.2±8.1 59.7±9.0 67.0±9.0 55.3±6.7 71.6±6.2 54.4±9.9 75.6±6.0 
2 75.2±7.2 71.7±6.4 75.7±4.3 77.2±3.6 62.7±8.5 68.8±6.2 73.4±6.8 76.6±5.2 68.0±5.6 80.7±3.6 71.3±7.2 81.6±3.7 
3 76.9±5.1 75.6±6.3 77.0±4.0 79.4±3.9 66.6±7.7 71.9±5.4 76.8±6.1 78.6±4.8 74.4±5.9 82.2±2.7 75.9±5.7 83.3±3.8 
4 81.0±4.6 79.3±5.9 80.1±2.6 81.9±2.9 70.8±6.0 76.2±1.8 82.0±2.3 81.8±1.4 78.8±3.9 84.3±1.6 81.5±2.5 85.3±2.0 

20 86.3±1.6 86.5±2.1 84.1±1.5 89.4±1.9 83.5±1.2 86.7±1.5 89.7±1.2 87.9±1.4 87.0±1.9 90.5±1.9 89.2±1.1 90.2±1.3 

Table 3: Classification accuracy with different label rates on five datasets. The best and second-best results are highlighted in 
boldface and underlined respectively. 
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contrastive loss in NCLA employs the neighbors of the an-
chor within a view and from different views as two extra 
sources of positives, thus making each node not only agree 
with itself in different augmented views, but also agree with 
its intra-view and inter-view neighbors. Under the label-de-
ficient setting, taking full advantage of network topology 
can propagate the scarce labeled information through the 
neighborhood to effectively boost the node classification 
performance (Li et al. 2019). Thus, the proposed neighbor 
contrastive loss which takes network topology as the super-
vised signals to define positives and negatives in GCL can 
demonstrate more effectiveness, especially when the labels 
are extremely limited.  

Ablation Study 
Next, we investigate the variants of the proposed neighbor 
contrastive loss. As illustrated in Figure 1, NT-Xent is a spe-
cial case of the proposed neighbor contrastive loss by chang-
ing the intra-view neighbors and inter-view neighbors from 
positives to negatives. InfoNCE is a special case of NT-Xent 
by removing intra-view different nodes from negatives. Ad-
ditionally, we study two more variants of the proposed 
neighbor contrastive loss, by changing either intra-view 
neighbors (i.e. Pos 2) or inter-view neighbors (i.e. Pos 3) 
from positives to negatives. As shown in Table 4, the pro-
posed neighbor contrastive loss consistently yields the high-
est accuracy among all the loss variants on the five datasets. 
Compared to InfoNCE and NT-Xent, the proposed neighbor 

contrastive loss achieves significant gains on Cora, Citeseer 
and Coauthor CS, and comparable performance on PubMed 
and Amazon Photo. In addition, without either intra-view or 
inter-view neighbors as positives would lead to worse re-
sults. This reflects that selecting the neighbors within a view 
and from different views as positives are both useful for 
neighbor contrastive learning in NCLA. 

Hyperparameter Analysis  
Figure 3 shows sensitivity analysis on the hyperparameters 
K, 𝐹′ and 𝜏 of NCLA on two various datasets, i.e., Cora (ci-
tation network) and Amazon Photo (e-commerce network). 
We observe that the number of augmented views K=2 yields 
the best performance, while K=6 leads to the worst results 
on both datasets. Actually, more augmented views lead to 
higher complexity, thus, it is suggested to generate 2 or 4 
views in NCLA. The performance of NCLA is stable on var-
ious embedding dimensions 𝐹′ in {8, 16, 32} on Cora, while  
𝐹′=16 leads to the worst result on Amazon Photo. The tem-
perature parameter 𝜏  of 1 achieves the best performance 
while larger 𝜏 leads to lower accuracy on both datasets.  

Conclusion 
Despite the prosperous development of GCL, how to gener-
ate learnable graph augmentation and devise the contrastive 
loss more suitable for GCL remains rarely explored. To fill 
in this gap, we propose an end-to-end automatic GCL 
method, named NCLA. On one hand, NCLA employs multi-
head GAT to generate the attention-based learnable graph 
augmentation, which can be automatically adaptive to vari-
ous graph datasets. Each augmented view consists of exactly 
the same nodes and edges as the original graph but with dif-
ferent adaptive edge weights. In addition, each view has its 
own learnable parameters for both graph augmentation and 
embedding learning. As a result, the diversity between dif-
ferent augmented views can be enhanced, while avoiding 
improper modification of the original topology. On the other 
hand, instead of directly utilizing the contrastive losses in 
CV which overlook network topology, NCLA proposes a 
new neighbor contrastive loss to allow for multiple positives 
per anchor, by taking network topology as the supervised 
signals. Specifically, each anchor forms positive pairs with 
not only the same node in different view, but also its neigh-
bors within a view and across different views. Both augmen-
tations and embeddings are learned end-to-end in NCLA. 
The extensive node classification experiments demonstrate 
that NCLA can consistently gain the superior results com-
pared to the state-of-the-art GCL methods or even some su-
pervised GNNs, when the labels are extremely limited.  

Variants Cora CiteSeer PubMed CS Photo 
NCL* 63.1 52.2 60.2 83.0 75.6 

InfoNCE 60.9 48.5 59.7 80.4 75.3 
NT-Xent 60.1 51.6 60.0 80.5 75.2 

NCL* w/o Pos 
2 62.4 51.0 59.6 82.7 72.5 

NCL* w/o Pos 
3 62.3 49.5 59.4 81.4 71.2 

*NCL is short for neighbor contrastive loss. 

Table 4. Variants of neighbor contrastive loss in NCLA. 

 

Figure 3. Sensitivity analysis of the hyperparameters 𝐾, 𝐹′ 
and 𝜏 on NCLA. 
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