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Abstract

Survival analysis is the branch of statistics that studies the re-
lation between the characteristics of living entities and their
respective survival times, taking into account the partial infor-
mation held by censored cases. A good analysis can, for ex-
ample, determine whether one medical treatment for a group
of patients is better than another. With the rise of machine
learning, survival analysis can be modeled as learning a func-
tion that maps studied patients to their survival times. To suc-
ceed with that, there are three crucial issues to be tackled.
First, some patient data is censored: we do not know the true
survival times for all patients. Second, data is scarce, which
led past research to treat different illness types as domains in a
multi-task setup. Third, there is the need for adaptation to new
or extremely rare illness types, where little or no labels are
available. In contrast to previous multi-task setups, we want
to investigate how to efficiently adapt to a new survival target
domain from multiple survival source domains. For this, we
introduce a new survival metric and the corresponding dis-
crepancy measure between survival distributions. These al-
low us to define domain adaptation for survival analysis while
incorporating censored data, which would otherwise have to
be dropped. Our experiments on two cancer data sets reveal
a superb performance on target domains, a better treatment
recommendation, and a weight matrix with a plausible expla-
nation.

1 Introduction
The abundance of health records has massively increased
in the last few decades, mainly due to the advancement of
data collection methods and the increasing financial support
for medical trials and research. To determine the effects of
a specific environment or the success of a treatment, sur-
vival analysis can be used to study the relation between the
characteristics of living entities and their respective survival
times. This induced relation is often described by the sur-
vival function or the hazard function, which models the con-
ditional propensity for the event of death to happen.

A crucial challenging characteristic of learning with
health records is censoring, which is the case when only par-
tial information about the patient’s survival is known. This
could happen either due to losing track of the patient or the
termination of the study before observing the intended event
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on all patients. Simply discarding this data would lead to
losing all the partial information carried by the censored
cases, which would be particularly harmful when censor-
ing is prevalent. This, for example, occurs in the messen-
ger RNA data for breast adenocarcinoma, where censoring
exceeds 87%1.

While censoring makes the direct application of ma-
chine learning methods unfeasible, active research tries to
tackle this challenge. One essential line of work to tackle
this challenge adopts the proportional hazards assumption
(PH) (Cox 1972), instead of attempting to fully model the
survival function. More recently, traditional survival analy-
sis methods (Cox 1972) have been complemented and then
superseded by machine learning approaches; for a survey,
see Wang, Li, and Reddy (2019). For example, with the in-
creasing success of deep learning methods, DeepSurv (Katz-
man et al. 2018) has reported a significant increase in perfor-
mance by employing a neural network with a loss function
adapted to hold the assumed proportionality of hazards.

An additional challenge arises when there is insufficient
data for a particular problem of interest. This scenario is
quite relevant in the medical field, where some diseases are
more common than others, such as the varying incidence
rates of cancer types confirmed by The Cancer Genome At-
las (TCGA) data. The issue is also present for new illnesses
that arise, such as a significantly changed variant of a previ-
ous disease. In such a setup, a fitting machine learning tech-
nique would be multi-source domain adaptation (Mansour,
Mohri, and Rostamizadeh 2008), which tries to exploit the
knowledge-transfer from multiple source domains into the
target domain. To the best of our knowledge, there has not
been yet any work that tackles domain or multi-source do-
main adaptation for survival domains.

In this work, we introduce a first attempt to transfer
knowledge from multiple source survival domains to a target
survival domain. Our main contributions are summarized as
follows:

• We construct the symmetric discordance index (SDI) to
measure the distance between risk functions. We show
the utility of SDI in the survival domain adaptation
in which multiple survival source tasks are observed

1https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga
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(Section 3.1). Second, we introduce the survival domain
discrepancy distance DSDI−disc(Ps, Pt) to measure the
proximity between distributions (Ps, Pt) with respect to
hypothesis space H (Section 3.2).

• We derive an error generalization bound for survival tar-
get domains (Section 3.2) and we employ this bound in
an adversarial min-max optimization problem objective
(Section 3.3).

• We show empirically on two TCGA data sets the utility
of our method in both the unsupervised and the partially
supervised settings. We also show that our approach fa-
cilitates treatment recommendation that is in 66% of the
cases better than the administered treatment. Addition-
ally, we learn a weight matrix that discovers relations be-
tween the different cancer types (Section 4).

2 Background: Survival Analysis
2.1 Preliminaries
Survival analysis methods aim at learning the relation be-
tween features of individuals and their corresponding sur-
vival times (time-to-event). We use the term instance instead
of individual since studied subjects could be humans, ani-
mals, or even mechanical parts. Typically, survival data take
the form D = {(xi, ti, δi)|i ∈ {1, . . . , n}}, where n is the
number of instances, xi ∈ Rd is a vector of covariates, ti is
either the observation time of the event or the censoring time
and δi is an event indicator that reveals the status of censor-
ing, i.e., δi = 0 for censored cases and δi = 1 otherwise.
Censoring occurs when the target event is not observed be-
fore the termination of the study; thus, we acquire only the
partial information about surviving at least till ti. We con-
sider only right-censoring in which the actual survival time
of a censored instance is after the time of the last observa-
tion, i.e., censoring time.

2.2 Survival Functions
The time-to-event t is a random variable that can be char-
acterized by three functions: (i) the probability density
function, (ii) the survival function, and (iii) the hazard
function. Knowing any of these functions leads to deriv-
ing the other two. Given the random variable T , time-to-
event, the density function models the probability for the
event to occur in infinitesimal interval [t, t + ∆t], i.e.,
f(t) = lim∆t→0

P {t<T≤t+∆t}
∆t . The survival function,

S(·), models the probability of surviving till time t: S(t) =
P {T > t} = 1 − F (t) =

∫∞
t

f(x) dx, where F (·) is the
cumulative distribution function. The conditional probabil-
ity for the event to occur in the interval [t, t+∆t], provided it
has not occurred before t, is called the hazard function, λ(·);
λ(t) = lim∆t→0

P {t<T≤t+∆t|T>t}
∆t = f(t)

S(t) . Both f(·) and
λ(·) can be derived from S(·) as f(t) = d

dt [1 − S(t)] =

−S′(t) and λ(t) = f(t)
S(t) =

−S′(t)
S(t) .

Since the interest of the three survival functions is
instance-wise, in the remaining of the paper, we extend the
notation by adding the vector of the instance’s covariates as
a parameter, i.e., f(t;x), F (t;x), S(t;x) and λ(t;x).

The proportional hazards (PH) assumption, which is first
introduced in the Cox proportional hazards model (Cox
1972), assumes constant proportionality of hazards be-
tween instances over time, i.e., the hazard ratio HR =
λ(t;x1)/λ(t;x2) between the instances x1 and x2 is con-
stant. Hence, for an instance x, the hazard is the product of
the baseline hazard λ0(t) and a time-independent function
r(x), i.e., λ(t;x) = λ0(t) · r(x). The Cox PH model as-
sumes that r(x) is a log-linear function of x:

λ(t;x) = λ0(t) · exp

(
n∑

i=1

βi · xi

)
, (1)

where λ0(t) is the hazard when all covariates are set to
zero (Lee 1992). The coefficients βi are found by maxi-
mizing the log of the so-called partial likelihood (PL); this
likelihood depends on ordering events instead of their joint
probabilities. PL computes the event’s conditional proba-
bility only for non-censored instances, given their risk set,
which contains the surviving instances so far.

2.3 Performance Measures
To estimate the performance of a fitted survival model, eval-
uation measures compute the agreement between the rank
of the predicted survivals and the actual survival times.
The concordance, also known as the C-index, (Harrell et al.
1982; Harrell Jr et al. 1984) measures how well a risk model
ranks instances according to their estimated hazards, sur-
vivals, or predicted death times. To this end, it considers
each pair of instances and checks if the model’s prediction
ranks the two instances in accordance with their true order
of events. Each non-censored instance is compared against
all instances that outlive it (having a larger event or censor-
ing time). Each correct ranking of pairs is counted as 1, and
the final score is normalized over the total number of valid
pairs. For example, if the Cox PH model, Eq. (1), is used,
the C-index takes the form

C-index(r;D) =
1

Z

∑
(xi,ti,δi)∈D

∧δi=1

∑
(xj ,tj ,δj)∈D

∧tj>ti

I[r(xi) > r(xj)], (2)

where Z =
∑

(xi,ti,δi)∈D
∧δi=1

∑
(xj ,tj ,δj)∈D

∧tj>ti

1, {(xj , tj , δj) ∈

D|tj > ti} is the risk set of the instance (xi, ti, δi), r(·) is
the time-independent risk function, and I[·] is the indicator
function. Eq. (2) becomes the area under the curve (AUC)
when the event times are replaced with the binary problem
(event, no event) with no censoring cases; see Haider et al.
(2020). Alternatively, the loss based on discordance can be
computed as in D-index(r;D) = 1− C-index(r;D).

3 Multi-Source Survival Domain Adaptation
For survival instances (xi, ti, δi), let X = Rd and Y =
R+ be the spaces of the input’s covariates and the event
time, as described earlier. Let {Di}Ki=1 be K survival
source domains characterized by the distributions Pi, and let
{(xj

i , y
j
i , δ

j
i )}

Ni
j=1 be the acquired instances for each domain

Di. Let Dt be the target survival domain for which samples
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are described only by their covariates xj
t and the event in-

dicators δjt , whereas the survival times remain missing, i.e.,
the instances {(xj

t , ?, δ
j
t )}

Nt
j=1 are observed from Pt.

Typically, multi-source domain adaptation aims at adapt-
ing a model fitted on the source domains to the target domain
while minimizing the expected loss on Dt. This work con-
siders multi-source survival domain adaptation (MSSDA)
where the true survival times tjt are unknown.

3.1 Discordance Loss for Survival Data
The D-index could serve as a loss for risk functions on sur-
vival domains; however, it does not enjoy symmetry when
the roles of the ground truth and the risk function are ex-
changed due to censoring cases. We aim to enforce sym-
metry because it is an essential property for bounding the
generalization loss on the target domain. To impose symme-
try, we define the symmetric discordance index (SDI) for
two risk functions r1 and r2, and prove that it is a metric
satisfying the triangular inequality.

SDI is composed of two parts (i) the disagreements in
ranking each pair of non-censored instances, and (ii) the dis-
agreements in ranking pairs of censored and non-censored
instances. The weights α1 and α2 transform SDI into a
convex combination of these two parts. Moreover, SDI’s
symmetry follows from counting the discordance with cen-
sored cases twice, once for each of the risk functions while
considering the other as the ground truth.

SDI(r1, r2;D) =
α1

α1 + α2

1

Z

∑
(xi,ti,δi),

(xj ,tj ,δj)∈Dev
i<j

I

[((
r1(xi) < r1(xj)

)
∧

(
r2(xi) > r2(xj)

))
∨
((

r1(xi) > r1(xj)
)
∧
(
r2(xi) < r2(xj)

))]
+

α2

α1 + α2

1

|Dce|

∑
(xi,ti,δi)∈Dce

|Cr1,xi
△ Cr2,xi

|
|Cr1,xi

∪ Cr2,xi
|

(3)

s.t. Cr,x =
{
(xj , tj , δj) ∈ Dev|r(xj) > r(x)

}
α1 =

(|Dev|
2

)
, α2 = |Dev|.|Dce|/2, Z =

∑
(xi,ti,δi),

(xj ,tj ,δj)∈Dev
i<j

1

Dev = {(xj , tj , δj) ∈ D|δj = 1}, Dce = {(xj , tj , δj) ∈ D|δj ̸= 1} ,

where Dev ⊆ D and Dce ⊆ D are the sets of non-censored
and censored instances, respectively. Cr,x is the set of in-
stances (from D) that are assumed to outlive x, according to
the risk function r. △ is the set symmetric difference (dis-
junctive union).

Notice that the SDI is equivalent to Kendall’s tau dis-
tance between two rankings when (i) counting 0.5 as a score
for ties on the survival times, and (ii) no censoring.

Next, we present the formal definition of Kendall tau as
a rank distance; thereafter, Theorem 2 proves that SDI is a
metric by presenting it as a weighted sum of the Kendall tau
and the Jaccard metric.
Definition 1. Kendall tau (Cicirello 2019): Let S =
{s1, . . . , sn} be the set of n ordered instances, and let τ1
and τ2 be two different permutations of instances in S, such
that for each si ∈ S, τ(si) gives the ranking of si in the

permutation τ . Kendall tau distance (Kendall 1948) mea-
sures the number of pair-wise interventions needed to make
two permutations become the same. Kendall tau between the
permutations τ1 and τ2 is defined as:

κ(τ1,τ2) =
2Kd

n ∗ (n− 1)
(4)

Kd =|{(si, sj) ∈ S × S| i < j ∧
(((τ1(si) < τ1(sj)) ∧ (τ2(si) < τ2(sj)))∨
((τ1(si) > τ1(sj)) ∧ (τ2(si) > τ2(sj))))}| , (5)

where Kd is the number of discordance pairs.
Theorem 2. Given the survival data D = {(xi, ti, δi)|i ∈
{1, . . . , n}} and the risk estimators r1, r2 : Rd → R+, the
symmetric discordance index SDI (Eq. 3) is a metric.

The proof of Theorem 2 follows from demonstrating that
the SDI is a weighted average of two metrics, Kendall tau,
and the Jaccard index. The first term, Kendall tau, is mea-
sured over the set of non-censored instances. The second
term is the sum of the Jaccard index, for each censored in-
stance, on the two risk sets induced by the ranking function
r1 and r2, see the proof in the supplementary material. Es-
tablishing SDI as a metric implies that it enjoys the triangu-
lar inequality. This in turn is a necessary criterion that will
allow us to derive a generalization bound for the target do-
main.

3.2 Generalization Bound for Target Domain
To derive the bound of the loss on the target domain by that
of the source domains, we follow Cortes and Mohri (2014).
We first define a discordance-based distance DSDI−disc to
quantify the discrepancy of two distributions Ps and Pt, over
sets from X , based on the loss SDI : H × H × XN →
[0, 1], where N is the size of the sets over which the distance
between two rankings is measured, and H is the hypothesis
space.
Definition 3. DSDI−disc: The discordance-based distance
(DSDI−disc) is the largest distance between two domains
(concerning the hypothesis space H) in a metric space
equipped with the metric SDI as a distance function. Let
Ds and Dt be two survival domains with their correspond-
ing distributions Ps and Pt. In survival domains, some sam-
ples undergo censoring independent of their features, where
the censoring time is bound by the survival time. Each hy-
pothesis in H is a scoring function that acts as a ranking or
a risk function. For the distributions Ps and Pt, and N ∈ N,
DSDI−disc takes the form:
DSDI−disc(Ps, Pt) =

max
h,h′∈H

EMs={x1,...,xN∼Ps}
Mt={x1,...,xN∼Pt}

∣∣SDI(h, h′;Ms)− SDI(h, h′;Mt)
∣∣ ,
(6)

where Ms and Mt are the sets of size N from the source and
target domains, respectively.

The discordance distance, DSDI−disc reaches its maxi-
mum when two ranking functions h, h′ ∈ H rank the in-
stances of the survival source domain similarly (high con-
cordance) and differently rank the samples of the target do-
main (high discordance), or vice-versa. Theorem 4 utilizes
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ID Cancer name Acr. Instances
# δ = 1

1 Breast Adenocarcinoma BRCA 707 90
2 Glioblastoma Multiforme GBM 275 176
3 Head-Neck Squa. Cell Carci. HNSC 298 119
4 Kidney Renal Clear Cell Carci. KIRC 415 136
5 Acute Myeloid Leukaemia LAML 172 105
6 Lung Adenocarcinoma LUAD 148 49
7 Lung Squamous Cell Carci. LUSC 163 68
8 Ovarian Serous Carcinoma OV 315 181

Table 1: Properties of the mRNA data.

DSDI−disc as a distance between distributions to bound the
discordance loss on the target survival domain.

Theorem 4. Let S be a set of K source survival domains
S = {Ds1 , . . . , DsK} with distributions Psi , and denote the
ground truth mapping (risk) function in Dsi as fsi . Simi-
larly, let Dt be a target survival domain with the corre-
sponding distribution Pt and the true risk function ft. As-
sume the following sets: Msi = {x1, . . . , xN |xj ∼ Psi}
and Mt = {x1, . . . , xN |xj ∼ Pt} to be sampled, of size
N , from the source domains DSi

in S and the target domain
Dt, respectively. Also, assume a weighting scheme wi for
the source domain Dsi s.t.

∑K
i=1 wi = 1. For any hypothe-

sis h ∈ H, the SDI on the target domain Dt is bound in the
following way:

SDI(rh, ft;Mt) ≤ ηD(fS , ft)+

k∑
i=1

wi ·
(
SDI(rh, fsi ;Msi ) +DSDI−disc(Psi , Pt)

)
(7)

where rh is the risk (or ranking) function induced by h and

ηD(fS , ft) = min
h∗∈H

SDI(rh∗ , ft;Mt)+

k∑
i=1

wi ·SDI(rh∗ , fsi ;Msi )

is the minimum joint empirical SDI losses on the sources S
and the target Dt, achieved by an optimal hypothesis h∗.

The supplementary material provides the complete proof
of Theorem 4. This proof starts by deriving the er-
ror bound for a single source domain Dsi . Thanks
to the metric properties of SDI , we prove at first
that SDI(rh, ft;Mt) ≤ SDI(rh, fsi ;Msi )+ SDI(rh∗ , ft;Mt)+

SDI(rh∗ , fsi ;Msi )+DSDI−disc(Psi , Pt). The proof concludes
by reweighing and aggregating this inequality for each
source domain. The main outcome of Theorem 4 is bound-
ing the symmetric discordance on the target domain by the
quantities i) the weighted average of the SDI on the survival
source domains, ii) the weighted mismatch between the tar-
get Dt and each of DSi

in terms of the discordance-based
distance (DSDI−disc), and iii) the minimum joint empirical
SDI losses on the source and target domains. Based on this
result, next, we design an optimization objective for survival
domain adaptation.

feature 
extractor 𝜙𝜃

𝜙𝜃(𝑥)

h′hpredictor

…, 𝐷𝑆𝑖, … 𝐷𝑇

𝐷SDI−disc𝒘 𝐿𝑠

max
ℎ∈𝐻

min
ℎ′∈𝐻

−
𝑆𝐷𝐼(𝑟ℎ , 𝑟ℎ′ ; 𝑀𝑡)

−σ𝑖=1
𝐾 𝑤𝑖𝑆𝐷𝐼 𝑟ℎ , 𝑟ℎ′ ;𝑀𝑠𝑖

𝑋𝑠𝑖 , 𝛿𝑠𝑖 , 𝑌𝑠𝑖 𝑋𝑡, 𝛿𝑡

max
𝜙𝜃,ℎ∈𝐻, 𝒘 1

=1
σ𝑖=1
𝐾 𝑤𝑖𝐶𝑖𝑛𝑑𝑒𝑥 𝑟ℎ;𝑀𝑠𝑖

− 𝒘
2

Figure 1: An illustration of how symmetric discordance in-
dex (SDI) is employed in our multi-source survival do-
main adaptation method, MSSDA. The objective includes
three terms: 1) the first term enforces the ranking func-
tion rh, to be a good ranker, in terms of C-index, on
all source domains; and 2) the second term is an ex-
plicit realization of the weighted discordance-based distance
(wiDSDI−disc(Pt, PSi

)); and 3) the third term is a regular-
ization on the learned weights vector, w, that specifies the
weight for each source domain concerning the target do-
main.

3.3 Optimization Problem of Multi-Source
Survival Domain Adaptation

We exploit the bound derived in Theorem 4 to enforce
distribution matching through an adversarial min-max op-
timization objective, following domain-adversarial neural
networks (DANN) (Ganin, Ustinova et al. 2016). To this end,
we search in the hypothesis space H, where each h ∈ H
defines a risk function rh, the time-independent function in
the hazard Eq. (1). Thus, keeping the proportional hazards
assumption. Formally, the hypotheses in H take the form
h : V → R, where V is the feature space. We also search for
the feature extractor ϕθ : X → V , and the weighting w of
the source domains, such that:

max
ϕθ,h∈H
||w||1=1

min
h′∈H

(
K∑

i=1

wiC-index(rh;Msi
)−

λ1

∣∣∣∣∣SDI(rh, rh′ ;Mt) −
K∑

i=1

wiSDI(rh, rh′ ;Msi
)

∣∣∣∣∣− λ2||w||2

)
,

(8)

where rh and rh′ are the ranking functions induced by the
hypotheses h and h′ respectively. The first term of Eq. (8)
enforces the ranking function rh, to be a good ranker, in
terms of C-index, on all source domains; this term is re-
alized by minimizing the negative log-partial likelihood.
The second term is an explicit realization of the weighted
discordance-based distance (wiDSDI−disc(Pt, PSi

)). The
third term is a regularization on the learned weights vector,
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ID Acr. Instances Pharma. Rad. TR
# δ = 1 # δ = 1 # δ = 1

1 ACC 80 29 34 13 2 0
2 BLCA 407 178 111 40 25 15 X
3 BRCA 754 105 238 15 31 2 X
4 CESC 307 72 4 2 35 9
5 CHOL 36 18 13 7 1 1
6 ESCA 184 77 12 5 22 5 X
7 HNSC 484 203 6 2 134 46
8 KIRC 254 76 24 16 7 3
9 KIRP 290 44 18 13 4 4
10 LGG 510 124 50 10 70 16 X
11 LIHC 371 128 39 18 12 4 X
12 LUAD 441 157 103 36 34 24 X
13 LUSC 338 137 72 20 19 13 X
14 MESO 86 73 29 26 2 1
15 PAAD 178 93 75 41 - -
16 SARC 259 98 46 22 48 15 X
17 SKCM 97 26 22 9 1 0
18 STAD 382 147 106 42 1 0
19 UCEC 410 72 55 18 82 10 X
20 UCS 56 34 15 12 5 5
21 UVM 80 23 11 6 4 2

Table 2: Properties of the miRNA data. The treatment
columns (Pharmaceutical and Radiation) are collected by
matching the data with The Cancer Genome Atlas (TCGA).
The TR column indicates whether or not the cancer type is
used for evaluating the treatment recommendation.

w, that specifies the weight for each source domain con-
cerning the target domain. This adversarial min-max game
aims at finding, for the survival source and target domains,
a feature extractor ϕθ and a ranker rh such that for any
other ranker rh′ , the weighted distance is minimized, i.e.,
achieving feature invariance of the target domain and each
of the source domains (in a weighted manner). We term
our method the multi-source survival domain adaptation as
(MSSDA), and acknowledge that comparable min-max ob-
jectives were used in (Pei et al. 2018; Saito, Kim et al. 2019;
Richard et al. 2020; Shaker, Yu, and Onoro-Rubio 2022) out-
side of survival analysis. Notice that this algorithm does not
optimize for ηD since this term is constant for a single source
domain and for the mixture of sources in ηD(fS , ft) given
the weighting w.

Figure 1 depicts a graphical illustration of the proposed
optimization problem; it shows the details of our method,
MSSDA. Xsi , δsi and Ysi are the input samples, the cen-
soring indicators, and the survival times from the source
domain Dsi ; Xt and δt are the input samples and the
censoring indicators of the target domain without survival
times. The hypothesis h is trained to produce a good ranker
rh in terms of the weighted C-index on the sources. The
hypothesis h′ tries to increase the discordance-based dis-
tance (DSDI−disc) between the target distribution and the
weighted combination of source domains (i.e., DSDI−disc).

4 Empirical Evaluation
To investigate the usefulness of our proposed method to
adapt to a target survival domain, we address the following
three questions:

• Does the multi-source domain adaption work on survival
target domains? How does it perform if the labels for a
portion of the target data were used? (Section 4.1.)

• Can we recommend treatment better than what was of-
fered to the patients? (Section 4.2.)

• Do the learned weights on the source domains reveal any
useful information about the underlying cancer types?
(Section 4.3.)

• How essential is the proposed symmetric discordance
index (SDI) for aligning the conditional distributions
compared to other domain-invariant regularisation ap-
proaches? (Section 4.4.)

Datasets. We utilize two data sets from The Cancer
Genome Atlas project (TCGA)2. This project analyzes the
molecular profiles and the clinical data of 33 cancer types. (i)
The Messenger RNA data (mRNA) (Li et al. 2016b), which
includes eight cancer types. Each patient is represented by
19171 binary features; see Table 1. (ii) The micro-RNA data
(miRNA) that includes 21 cancer types (Wang et al. 2017);
each has a varying number of patients. Table 2 depicts the
total number of patients for each cancer and the number of
patients that experienced the event (died) during the time of
the clinical study (δ = 1). We also extract the treatment per-
formed for each cancer type (if available).

Baselines. For the evaluation, we compare with 1) the Cox
proportional hazards model fitted by maximizing the log of
the partial likelihood, 2) DeepSurv (Katzman et al. 2018)
that introduces the proportional hazards to neural networks,
and 3) the survival random forests (RSF) (Ishwaran and
Kogalur 2007)3. These methods deal with single domains;
therefore, we perform separate training on each source do-
main and use the trained model as a ranking function for the
target domain. Each ranker orders the target’s instances; we
average these orders over all rankers, hence, the abbreviation
“average order” (AO). To answer the second part of the first
question, we compare with 4) TransferCox (Li et al. 2016b),
a transfer learning method that employs multi-task learning
on survival domains and requires labels in all domains with-
out prioritizing the target domain.

For both MSSDA4 and DeepSurv, we use the same ar-
chitecture, a two-layered feature extractor with 200 and 20
units in the first and second hidden layers, respectively. The
detailed architecture and the hyper-parameters search are ex-
plained in the supplementary material. We model the log-
risk function as the non-linear function h ◦ ϕθ(x) learned
by the fitted network architecture, i.e., r(x) = eh◦ϕθ(x).
MSSDA and DeepSurv are trained for 20 epochs.

2https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga

3https://square.github.io/pysurvival/
4https://github.com/shaker82/MSSDA
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Figure 2: Performance comparison and ranking, on the miRNA and mRNA data, in terms of the C-index.

In the supervised target case, we allow a small portion of
the target domain to be labeled and used for training. We
use these percentages, 5%, 10%, 15%, 20%, and 25%. Ex-
cept for the TransferCox, the target samples are appended to
each source domain’s samples. For TransferCox, the target
samples are added as a new domain, which is why Transfer-
Cox can not be tested when the target domain contains very
few samples (less than 20%).

Evaluation. To measure the performance of each method,
we employ the C-index, Eq.(2), to measure the concordance
between the inversely ordered predicted risks and the ac-
tual lifetime. For the unsupervised and supervised cases, we
measure the C-index on the target domain’s samples after re-
moving the ones used for the supervision. We also propose
C-index′ that measures the concordance on the whole target
domain, including the samples used for supervision. Notice
that C-index′ includes only a tiny portion of the pairs used
for the training. In the case of 25% supervision, we show in
the supplementary material the advantage of measuring the
C-index′ and that the ratio of reused pairs is only 6.25%. All
results are averaged over five folds.

Optimizing the SDI The counting-based comparison
in the SDI is implemented using the MarginRankingLoss
MRS5: MRS(x1, x2, y) = max(0,−y(x1 − x2) +
m), where m is the margin. For example, we imple-
ment I

(
(r(xi) < r(xj)

)
in Eq. (3) using the surrogate

MRS(exp(r(xi)− r(xj)), 0, 1) with m = 1.

4.1 Evaluation of Survival Prediction
Table 3 depicts the performance in terms of the C-index on
the mRNA data; it shows that MSSDA outperforms all other

5https://pytorch.org/docs/stable/generated/torch.nn.
MarginRankingLoss.html

methods in both the unsupervised and the partially super-
vised (5%) cases while always achieving the first rank (the
last row). In the supplementary material, results show that
MSSDA still dominates the remaining supervision settings
at 10%, 15%, 20%, and 25%; these results are graphically
depicted in Figures 2a and 2c and confirm the superiority of
MSSDA performance and its first rank. In general, MSSDA
performs best on five of seven cancer types, achieving the
best rank, followed by RSF in low supervision and Trans-
ferCox in high supervision settings. A similar performance
is evident when considering the C-index′, as confirmed in
tables shown in the supplementary material.

Similarly, MSSDA achieves a superb performance on
miRNA on supervision and no supervision settings, as con-
firmed by the dominating C-index in Figure 2b, and the
best rank in Figure 2d. These figures summarize tables and
figures that are kept in the supplementary material. Again
MSSDA performs best on 17, 18, 18, 15, 15, 16 out of 21
cancer types for the 0%, 5%, 10% 15%, 20% and 25% super-
vision settings, respectively. Hence, MSSDA always ranks
first.

The supplementary material includes figures that depict
the rank when using C-index′, and a deeper discussion on
the discrepancy between the result of C-index and C-index′.

We compute the p-value for the upper-tailed Wilcoxon
signed-ranks test between each method and MDSSA in each
setting on both data sets. The null hypothesis can be rejected
on all mRNA data at the significance level of α = 0.05 for
both performance measures. On the miRNA, the null hy-
pothesis can be rejected in all cases at α = 0.1 except for
the two cases (RSF, 20% supervision, C-index) and (Trans-
ferCox, 25% supervision, C-index′).
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KIRC .604 .435 .480 .466 .618 .444 .521 .479
± .028 .008 .002 .007 .019 .007 .004 .004

OV .539 .537 .497 .538 .563 .523 .490 .552
± .023 .008 .002 .002 .015 .013 .006 .002

GBM .516 .428 .436 .511 .493 .443 .494 .515
± .016 .004 .002 .006 .017 .009 .008 .007

LUAD .646 .536 .466 .530 .661 .556 .466 .507
± .018 .020 .008 .006 .014 .020 .015 .005

LUSC .659 .471 .515 .520 .658 .533 .494 .508
± .013 .012 .005 .005 .024 .007 .029 .006

BRCA .597 .474 .602 .437 .599 .492 .536 .418
± .029 .009 .004 .007 .033 .019 .017 .009

HNSC .617 .513 .514 .458 .646 .430 .504 .441
± .022 .013 .003 .003 .017 .009 .016 .005

LAML .476 .456 .486 .570 .533 .451 .514 .551
± .033 .010 .002 .010 .024 .003 .014 .008

P-value .005 .02 .02 .003 .009 .009

Rank 1.38 3.38 2.63 2.63 1.38 3.25 2.88 2.50

Table 3: The performance comparison on the eight cancer
types in the mRNA data in terms of C-index. The following
settings were used: no supervision and 5% supervision. The
numbers in brackets depict the standard error. The last row
shows the rank in each supervision group. The p-value row
depicts the p-value for the upper-tailed Wilcoxon signed-
ranks test between each method and MDSSA. The null hy-
pothesis can be rejected at the significance level of 0.05.

4.2 Treatment Recommendation
For the treatment recommendation experiments, we collect
the type of treatment (either pharmaceutical (P) or radiation
(R)) given for each of the patients (if available). Table 2 de-
picts the number of cases for each treatment type. We fi-
nally select only those cancer types with at least two non-
censored and one censored patient for each treatment type,
as indicated in column “TR”; see Table 2. Following the pro-
cedure proposed in DeepSurv (Katzman et al. 2018), we an-
notate each instance from the source domains by a dummy
binary attribute identifying the type of treatment (P or R).
After learning on the source domains, for each sample x
from the target domain, we measure the recommendation
rec(x)PR = log r(xP )

r(xR)
= h ◦ ϕθ(x

P ) − h ◦ ϕθ(x
R), where

xP and xR are the same target domain sample once consid-
ered to be treated by pharmaceutical and once by radiation,
respectively. A positive rec(x)PR means that the patient has
a higher risk when treated by “P” than when treated by “R”.
Hence, it is recommended to prescribe “R”. By comparing
with the ground truth treatments, we group the patients into
the Υrecom group when the recommended treatment aligns
with the true treatment and the Υanti group containing pa-
tients that received a recommendation contradicting the ac-
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Figure 3: Heatmap of the matrix computed from the learned
weights’ distances on the miRNA data.

tual treatment. Thereafter, the median survival times of the
two groups are compared.

A smaller median survival time of the Υanti indicates that
the patients could have had a potentially longer survival time
had they been given the model’s recommended treatment.
MSSDA is employed as in the previous experiments using
the labeled multi-source domains and an unlabelled target
domain. For DeepSurv, we train a different model for each
source domain and then compute the average order (rank)
of each sample of the target domain for each treatment. On
DeepSurv, the groups Υrecom and Υanti are computed us-
ing the difference in the predicted patients’ ranks for the two
treatments. Cox model is omitted since it recommends the
same treatment for all instances, as proven in (Katzman
et al. 2018). TransferCox is also omitted since it requires
labeled target data.

Part[A] of Table 4 shows that in the case of contradiction
with the administered treatment, our method in 64.4% and
66% of the cases gives a better recommendation for the radi-
ation and pharmaceutical treatments, compared to 50% and
46.6% achieved by DeepSurv. This result is computed over
five folds for each treatment and each cancer type. Part[B] of
Table 4 shows a detailed comparison of the median survival
time for each treatment and cancer pair when merging the
samples of all folds. The medians are struck through upon
equality and compared otherwise. Again, the results show a
median survival time in the Υanti group smaller than that of
the Υrecom group in 5/5 and 5/8 of the cases when MSSDA
is employed. Whereas, Deepsurv achieves this only on 2/5
and 3/8 of the cases. RSF fails experimentally to identify
and employ the treatment indicator, which has led to failing
to induce two different risk models for the different treat-
ments. Therefore, RSF is omitted in the experiment.
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BLCA 2/5 2 / 5 4/5 2/5 370 370 536.5 ⩾̸ 547 651 ≥ 324 539 ⩾̸ 544
BRCA 1/2 4 / 5 3/3 3/5 1330.5 1330.5 1032 1032 2296 ≥ 365 1032 1032
ESCA 2/4 4 / 4 3/5 3/5 283 283 496 ≥ 480 283 283 496 ≥ 480
LGG 4/5 3 / 5 1/5 4/5 1368 ≥ 794 1106 ≥ 933 1011 ⩾̸ 1335 1106 ≥ 758
LIHC 5/5 4 / 5 1/4 1/5 643 ≥ 432 639 ≥ 633 432 ⩾̸ 643 612 ⩾̸ 639
LUAD 4/5 3 / 5 2/5 2/5 677 ≥ 561 574 ⩾̸ 594 633 633 503 ⩾̸ 594
LUSC 2/5 2 / 5 2/5 1/5 387 ≥ 345 559 ⩾̸ 562 387 387 559 ⩾̸ 573
SARC 3/5 5 / 5 3/5 2/5 695 695 1013.5 ≥ 550 695 695 591 ⩾̸ 599
UCEC 4/5 2 / 5 1/5 3/5 1279 ≥ 1127 666 ≥ 610 1016 ⩾̸ 1317 670 ≥ 610∑

5.8/9 6/9 4.5/9 4.2/9 5/5 5/8 2/5 3/8

Table 4: Results of the treatment recommendation experiments on the miRNA data. Table A, on five folds, depicts the ratios
of better-recommended treatments over the valid folds. Table B presents the median survival times of the recommendation and
anti-recommendation groups across all folds after removing the censored patients.
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ACC .784 .729 .690 .688 .682 .702
BLCA .538 .507 .505 .513 .507 .520
BRCA .614 .560 .538 .542 .534 .562
CESC .671 .620 .615 .606 .617 .632
CHOL .639 .553 .579 .598 .582 .582
ESCA .600 .557 .555 .561 .553 .589
HNSC .599 .579 .561 .564 .560 .576
KIRC .606 .571 .575 .583 .576 .588
KIRP .782 .707 .677 .669 .676 .691
LGG .635 .566 .553 .542 .554 .565
LIHC .595 .554 .546 .554 .542 .561
LUAD .604 .566 .547 .544 .545 .559
LUSC .569 .554 .539 .538 .537 .554
MESO .621 .632 .600 .588 .595 .610
PAAD .582 .568 .555 .553 .553 .570
SARC .601 .573 .571 .573 .571 .583
SKCM .663 .595 .551 .533 .545 .566
STAD .539 .515 .527 .531 .526 .543
UCEC .657 .547 .529 .531 .526 .548
UCS .524 .496 .496 .493 .494 .504
UVM .696 .537 .551 .534 .553 .586
Rank 1.1 3.19 4.57 4.62 5.1 2.43

Table 5: The performance comparison in the ablation anal-
ysis on the miRNA data in terms of C-index. The numbers
in brackets depict the standard error. The last row shows the
rank of each method.

4.3 Explanation of Learned Weights

Finally, we would like to investigate if our method has
learned any meaningful relations between the different can-
cer types. Therefore, we compute the matrix of pair-wise Eu-
clidean distance between each pair of cancer types i and j by
removing the i-th and j-th entries from their learned weight
vectors. After that, we perform hierarchical clustering on the
computed matrix, as shown in Figure 3. We notice two major
groups of cancer types in the resulting clustering. Following
the classification of the solid tumor types in Hoadley et al.
(2018), the figure shows closeness in the hierarchical clus-
tering between cancers from the same solid tumor types. For
example, for the urologic type, we find that BLCA and KIRC
are clustered together, and KIRP also belongs to the same
major group that contains BLCA and KIRC. We observe the
same for the thoracic type (LUSC and MESO). ESCA and
STAD, from the core gastrointestinal type, are within a small
distance. The same applies to the types: cancers affecting
melanocytes in skin and eye (UVM and SKCM) and soft
tissues (SARC and UCS). We find a weaker confirmation
for the gynecologic types where BRCA and CESC are in the
same major cluster. The same can be observed for cancers in
the developmental gastrointestinal type (LICH and PAAD).

Moreover, we found overlaps and similarities when
comparing with the unsupervised clustering performed
in Hoadley et al. on the DNA methylation. For example,
HNSC, CESC, and ESCA were clustered within small prox-
imity by MSSDA and belong to the same clusters (METH2
and MET3) by Hoadley et al. (2018). The same observation
can be made for ESCA and STAD that we find to be within
a small distance and belong to the same branch of clusters.

Our observations are of high importance since our system
learned the relations between the cancer types by only fitting
the risk functions of unlabeled targets and not directly from
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the data as in (Hoadley et al. 2018).

4.4 Ablation Analysis
In this section, we perform an ablation study by replacing the
proposed (SDI) with the following domain-invariant dis-
tances and regularizers: (i) MDAN, a domain classifier as
proposed in (Fernandez and Gretton 2019), (ii) KuiperUB-
KM which tightens the upper bound of the p-value of the
two-sample Kuiper test (Kuiper 1960) that is applied on
the Kaplan–Meier (KM) curve (Kaplan and Meier 1958a),
(iii) MMD, the maximum mean discrepancy (Gretton et al.
2006) (which does not take censoring into consideration),
(iv) MMD-KM, the maximum mean discrepancy on the KM
curve, and (v) the D-index. Fernandez and Gretton (2019)
propose an adaptation to the maximum mean discrepancy
(MMD) for data with censored cases. We couldn’t compare
with this distance since it is a one-sample test against the
uniform distribution.

Results in Table 5 show the superiority and benefit of
SDI over the other methods in forcing the representation’s
conditional invariance. This is mainly because SDI takes
censoring into consideration (which is ignored by MDAN
and MMD), aligns the conditional distributions (which is
ignored also by MDAN and MMD), and guarantees sym-
metry (symmetry is not guaranteed in KuiperUB-KM and
D-index).

5 Related Work
Multi-Source Domain Adaptation (MSDA) Ben-David
et al. (2007) define the distance dA between two distribu-
tions and prove a VC dimension-based generalization bound
for domain adaptation in binary tasks. Mansour, Mohri, and
Rostamizadeh (2009) generalized this bound further to a
broader set of problems and used it in a tighter bound with
the Rademacher complexity. Ben-David et al. (2010) intro-
duce the H∆H as a discrepancy measure between distribu-
tions and show how to approximate it merely from a finite
sample of unlabeled target data. Cortes and Mohri (2014)
define the discrepancy measure Ddisc between distribu-
tions regardless of the true labeling function and present an
algorithm for adaptation using Discrepancy minimization.
Most MSDA methods employ bounds based on these semi-
nal works; for example, domain adversarial neural network
(DANN) (Ganin, Ustinova et al. 2016) performs distribution
matching by a min-max game; this work was extended to
the multiple domains in MDAN (Zhao et al. 2017). Li et al.
(2016b) show a tighter bound using a Wasserstein-like dis-
tance extending the H∆H divergence. Richard et al. (2020)
employ the Ddisc for regression target domains. Shaker, Yu,
and Onoro-Rubio (2022) propose to align the conditional
distributions in the multi-source domain adaptation setting
using a symmetric form of the conditional von Neumann di-
vergence (Yu et al. 2020). Our proposed method can be in-
terpreted as aligning the conditional distributions in the fea-
ture space while conditioning on the rankings in the output
space.

Machine Learning for Survival Analysis While the
non-parametric methods, such as the Kaplan-Meier (KM)

estimator (Kaplan and Meier 1958b), can be efficient for
moderate data volumes, they have a major limitation in re-
lating the survival function to the covariates. Cox propor-
tional hazards models (Cox 1972; Cox and Oakes 1984) as-
sume the proportionality of hazards between instances and
model the risk by a log-linear function of the instance’s co-
variates. A broad spectrum of machine learning methods
has been adapted to deal with the challenge of censoring.
Ridge-Cox (Tibshirani 1997) and lasso-Cox (Verweij and
Van Houwelingen 1994) add l1 and l2 regularization terms to
the original Cox model, respectively. Wang, Li, and Reddy
(2019) reveal a recent survey on the intersection between
survival analysis and machine learning research. Survival
random forest (RSF) adopts ensemble learning to cope with
censored cases (Ishwaran and Kogalur 2007; Ishwaran et al.
2008), and Khan and Zubek (2008) introduce support vec-
tor regression for censored data (SVRC). In (Shaker and
Hüllermeier 2014; Krempl et al. 2014), the authors pro-
pose the continuous and adaptive learning of parallel haz-
ard functions in non-stationary environments under the in-
stantaneous PH assumption, whereas, Lee et al. (2018) deal
with learning time-variant survival functions while allow-
ing multiple events and risks per patient, thus, relaxing the
PH assumption. Knowledge-transfer between survival mod-
els has been the focus of transfer (Li et al. 2016b) and multi-
task learning (Li et al. 2016a; Wang et al. 2017) for sur-
vival analysis. DeepSurv (Katzman et al. 2018) implement
the PH assumption using a deep neural network. The work
in (Mouli et al. 2019) defines a clustering objective over sur-
vival distributions of samples by tightening the upper bound
of the p-value of the two-sample Kuiper test (Kuiper 1960).
In (Nagpal et al. 2021), individual survival distributions are
fit as a mixture of Cox regression functions. Despite these
advancements in research, there is still the need for meth-
ods that perform adaptation between survival domains. This
work is the first attempt to fill this gap.

6 Conclusion
We presented multi-source survival domain adaptation
(MSSDA), which is, to the best of our knowledge, the first
multi-source domain adaptation work for survival domains.
Adapting to a particular target survival domain is essential
for rare or new illness types. In survival analysis, we are
faced with the additional difficulty of censored data. To not
lose this partial information about survival, we define a new
symmetric index for survival data that can handle censored
data, show that it is a metric, and use it to bound the general-
ization error on target domains. This bound is explicitly em-
ployed in our method MSSDA. We confirm in experimental
results that: (1) our method outperforms existing methods
on target survival domains in terms of survival ranking; (2)
it can offer better treatment recommendations; (3) it allows
us to inspect how different domains relate, offering medi-
cal professionals additional insights. We hope our method
can aid in identifying better treatments for rare or new ill-
nesses. In the future, we hope to extend our method so that
medical professionals can better understand its predictions
to improve precision medicine for individuals.
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Ethics Statement
Our work aims to introduce domain adaptation to the field
of survival data. This line of work can have a positive im-
pact on saving human life by providing precision medicine
in the form of personalized treatment recommendations and
a better understanding of how diseases could be related and
correlated with each other. However, our method is still in
the research stage. Therefore, we do not recommend its use
in a medical setting without first extensively verifying that
a learned model performs as expected. Ultimately all med-
ical decisions should remain in the hands of a medical pro-
fessional, who is better qualified to judge whether an AI
model’s prediction should be followed or not.

In addition, domain adaptation, with knowledge transfer,
helps learn from fewer data. This positively affects the en-
vironment by reducing computational power and run-time
to train models, hence, less electricity consumption and less
CO2 emissions.
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