
Exploration via Epistemic Value Estimation

Simon Schmitt1,2, John Shawe-Taylor2, Hado van Hasselt1

1DeepMind
2University College London, UK

suschmitt@google.com

Abstract

How to efficiently explore in reinforcement learning is an open
problem. Many exploration algorithms employ the epistemic
uncertainty of their own value predictions – for instance to
compute an exploration bonus or upper confidence bound.
Unfortunately the required uncertainty is difficult to estimate
in general with function approximation.
We propose epistemic value estimation (EVE): a recipe that
is compatible with sequential decision making and with neu-
ral network function approximators. It equips agents with a
tractable posterior over all their parameters from which epis-
temic value uncertainty can be computed efficiently.
We use the recipe to derive an epistemic Q-Learning agent and
observe competitive performance on a series of benchmarks.
Experiments confirm that the EVE recipe facilitates efficient
exploration in hard exploration tasks.

1 Introduction
Reinforcement learning agents strive to maximize return in
sequential decision making problems. To learn about the
problem structure they take potentially costly exploratory ac-
tions. Ideally the price of exploration will be outweighed by
future gains afforded by the gained information. Balancing
those two conflicting objectives is called the exploration ver-
sus exploitation trade-off. It is at the heart of reinforcement
research and has been studied extensively (Bellman 1957;
Martin 1967; Duff 2002; Guez, Silver, and Dayan 2012).
Many proposed exploration algorithms are uncertainty based:
To explore efficiently the uncertainty of the value prediction
is used – for instance as an exploration bonus or upper con-
fidence interval (Auer, Cesa-Bianchi, and Fischer 2002), or
for Thomson Sampling (Thompson 1933).

A Recipe for Uncertainty Estimation How to measure
value uncertainty in deep reinforcement learning is actively
researched and so far no consensus has been reached. We
propose epistemic value estimation (EVE), a principled and
computationally efficient recipe for uncertainty estimation
with function approximation. It is compatible with neural
networks and specifically supports off-policy learning and
value-bootstrapping – key concepts distinguishing reinforce-
ment learning from supervised learning.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

EVE equips the agent with a tractable posterior over all
its agent parameters, from which epistemic value uncertainty
can be computed efficiently. Considering all agent parameters
distinguishes it from prior approaches that are Bayesian only
on the final network layer. The recipe reinterprets value pre-
diction as density estimation of returns. Drawing on insights
from parametric statistics it then approximates the posterior
over agent parameters using a specifically structured Gaus-
sian distribution. Besides being motivated in statistical theory
this approximation is efficient to sample from and convenient
to estimate using automatic differentiation frameworks. As a
result it obtains favourable computational performance com-
pared to ensemble methods that need to store and update
multiple models concurrently.

When applied to Q-Learning, it matches the exploration
performance of Bootstrapped DQN on the Deep Sea bench-
mark – providing encouraging evidence for our recipe.

What are Epistemic Values? As we are uncertain about
the true value (i.e. the expected return) we can treat it as a
random variable given the agents experience. We will call
the corresponding random variable the epistemic value to
emphasize that the value distribution differs from the return
distribution. On average the epistemic value uncertainty de-
creases with more observed data while the return uncertainty
is by definition invariant to it.

p(V |s,D)︸ ︷︷ ︸
Posterior of mean returns V

captures epistemic uncertainty.

̸= p(Z|s,D)︸ ︷︷ ︸
Density of Monte−Carlo returns Z

captures aleatoric uncertainty.

For example the near-optimal UCB algorithm for bandits
upper-bounds the uncertainty of the epistemic value V . If it
were to instead upper-bound the uncertainty of return Z it
would continually keep selecting the action with the noisiest
return and cease to be optimal. The EVE recipe provides
epistemic value estimates for sequential decision making
problems with function approximation.

2 Background
We investigate exploration in Markov Decision Pro-
cesses (Bellman 1957). We largely follow the notation
from Sutton and Barto (1998) denoting actions At taken at
states St yielding new states St+1 and rewards Rt+1. When

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9742

Figure 1: The Epistemic Value Estimation recipe (EVE) equips agents with a tractable posterior over all their parameters from
which epistemic uncertainty can be computed efficiently. The first step converts the agent into a distributional agent, that captures
the seemingly unrelated aleatoric return uncertainty. The second step approximates the posterior over all agent parameters from
which the third step can obtain the epistemic value uncertainty p(qθ(s, a)|D).

selecting actions At ∼ π(St) from a policy π the Monte-
Carlo return at state St is Zt :=

∑∞
i=0 γ

iRt+i+1 to be distin-
guished from bootstrapped returns Gt. The expected return is
called the value vπ(s) := Eπ [Zt | St = s]. Function approx-
imation is often used to represent value estimates in large
state spaces – typically by parametric functions vθ(s). Given
no prior knowledge about the MDP we strive to find a pol-
icy that selects actions to maximize the expected return. We
intend to estimate the uncertainty of predicted values vθ(s)
given limited data D comprised of n steps. In the process we
estimate the distribution of Monte-Carlo returns Z.

In general, consider some random variables Xi that
are sampled i.i.d. from a distribution fθTrue parameter-
ized by an unknown parameter θTrue. We can construct
a frequentist estimate of θTrue using the maximum like-
lihood estimator: θMLE

n := argmaxθ p(X1, . . . , Xn|θ) =
argmaxθ

∏
i fθ(Xi) . We can also adopt a Bayesian view,

and assume a prior belief about the likelihood of param-
eters p(θ) and use Bayes rule to compute the posterior:
p(θ|D) ∝ p(D|θ)p(θ). The maximum a posteriori solu-
tion is then typically considered the best parameter point-
estimate: θMAP

n := argmaxθ p(θ|D) For notational simplic-
ity we drop the n from θMLE

n , θMAP
n . One can show that

θMLE → θTrue and θMAP → θTrue when f and prior p(θ)
satisfy appropriate regularity conditions (see van der Vaart
1998; Nickl 2012, for details).

3 A Scalable Recipe for Epistemic
Uncertainty in RL

Our goal is to formalize a recipe that can provide deep RL
agents with epistemic value uncertainty and posterior sam-
pling capabilities in a way compatible with their large neural
networks. Our recipe supports off-policy Q-Learning and
k-step TD learning where an agent bootstraps on its own pre-
dictions – a requirement that differentiates it from supervised
learning. We first state the three major steps in the recipe, and
then explain each step in turn in the remainder of this section.

Intuition For an intuitive summary of the three steps con-
sider Figure 1.

Steps
1. Use a suitable parametric density model fθ to predict the

distribution of returns: fθ(Z|s) ≈ p(Z|s).
2. Using fθ, approximate the corresponding posterior of pa-

rameters p(θ|D) with a specifically constructed Gaussian
distribution.

3. Finally, compute p(vθ(s)|D) from p(θ|D).

3.1 Step 1: Model & Log-Likelihood
This step aims at setting up a parametric agent model that pre-
dicts the entire distribution of Monte-Carlo returns p(Z|s, a).
We require its log-likelihood gradient for model fitting and
for the posterior approximation in Step 2.

Modelling Monte-Carlo Returns In reinforcement learn-
ing the Monte-Carlo return is not always available or de-
sirable due to its high variance and on-policy nature. In
fact many agents use k-step bootstrapped returns Gk

t :=∑k
i=1 γ

i−1Rt+i + γk−1vθ(St+k). This is an important dif-
ference to supervised learning with fixed-outputs pairs. For
us this poses a challenge as they are differently distributed

p(Z|s) ̸= p(Gk|s)

and predicting k-step returns would only capture the epis-
temic uncertainty of the first k steps and disregard the un-
certainty of the bootstrap value vθ(St+k). A similar prob-
lem occurs with value iteration where returns are off-policy
and differ from the observed Monte-Carlo return: GQ

t :=
Rt+1 + γmaxa Q(St+1, a).

A solution is to make the agent distributional (Dearden,
Friedman, and Russell 1998; Bellemare, Dabney, and Munos
2017): We sample hypothetical Monte-Carlo returns Z ′ such
that p(Z ′) = p(Z) and use them instead of Gk or GQ. Rather

9743

than bootstrapping Gk
t with the value vθ(St+k) we bootstrap

using a Monte-Carlo return sample from our model:

Z̃t+k ∼ fθ(Z|St+k) (1)
and define a modelled return Z ′

t that preserves the distribu-
tions p(Z ′

t|St) ≈ p(Zt|St):

Z ′
t :=

k∑
i=1

γi−1Rt+i + γkZ̃t+k (2)

Sampling from f induces an approximation error, however
Bellemare, Dabney, and Munos (2017) have observed strong
empirical performance and provided a theoretical analysis
for learning distributional value functions.

Log-Likelihood Estimation Given the density model fθ
and modelled or actual Monte-Carlo returns Z ′ at state S
we can estimate the maximum likelihood solution θMLE.
Typically this is achieved through stochastic gradient decent
on∇θ log fθ(Z

′|S). The same gradient will also be used in
Step 2 to approximate the posterior.

3.2 Step 2: Posterior Approximation
We will now derive and approximate the posterior of the
parametric density model of returns fθ(Z|s) corresponding to
the distributional agent from Step 1. Combining the standard
Bayesian approach with the Bernstein-von Mises theorem,
we will obtain a Gaussian posterior with a scaled inverse
Fisher information as a covariance matrix. Finally we will
observe that the posterior is efficient to approximate using
log-likelihood gradients.

Bayesian Posterior Derivation The derivation follows the
typical Bayesian approach where p(θ|D) ∝ p(D|θ)p(θ). Our
data D is comprised of n state-return pairs (Zi, Si) origi-
nating from a policy µ. We denote the set of all n observed
returns as Zn and states as Sn. Akin to Bayesian regression
we estimate the distribution of returns given input states:

p(θ|Zn,Sn) ∝ p(Zn|Sn, θ)p(θ)

≈
∏
i

fθ(Zi|Si)p(θ) (3)

In Bayesian regression the last step would be exact be-
cause the likelihood can be factorized p(Zn|Sn, θ) =∏

i fθ(Zi|Si). This is only possible if the Zi are conditionally
independent given states, which is not the case for Monte-
Carlo returns that are computed from overlapping reward
sequences. Independence can be achieved when modelled
k-step returns are used because all Z ′

i ∼ fθ(Z|Si) are con-
ditionally independent given Sn. Return overlap is then re-
duced to k-steps, enabling two approaches: (a) sub-sampling
the data to each (k + 1)th state will yield full independence
and make Equation (3) exact (b) treating the factorization as
an approximation that becomes more and more exact with
smaller k. In the theoretical derivations we will assume in-
dependence e.g. achieved via (a). Incidentally such decor-
relation via sub-sampling improves asymptotic agent per-
formance in model based RL (Schrittwieser et al. 2020). In
Algorithm 2 we chose (b) for simplicity and counter the po-
tential overconfidence by rescaling the number of effective
samples n in our posterior approximation by a factor ω.

Approach to Posterior Approximation For large models
the exact posterior is intractable and needs to be approxi-
mated. Following the Bernstein-von Mises theorem (which
is explained below) we represent it as a Gaussian centered
around θMLE

p(θ|D) ≈ N
(
θMLE,

1

n
I(θTrue)−1

)
(4)

with covariance proportional to the inverse Fisher information
matrix (which can be approximated as explained below):

I(θTrue) := EX∼fθTrue

[
∇θ log fθTrue(X)∇θ log fθTrue(X)

⊤
]

A similar representation can be derived using the Laplace ap-
proximation (see appendix). The Gaussian structure permits
efficient sampling.

Bernstein-von Mises Theorem The Bernstein-von Mises
theorem states that the Bayesian posterior of a parametric
density model fθ(X) inferred from samples Xi ∼ fθTrue(X)
from the true distribution becomes a Gaussian distribution:

p(θ|X1, ..., Xn)→ N (θMLE
n ,

1

n
I(θTrue)−1) (5)

Note that the Gaussian distribution is centered at the maxi-
mum likelihood solution θMLE

n . The covariance depends on
the Fisher at the unknown true distribution parameters θTrue.
Observe that the covariance shrinks with the number n of
observed samples i.e. that the posterior gets narrower with
1/
√
n – a property resembling the central limit theorem. Note

that we slightly abuse notation since both sides in the limit
depend on n. More precisely stated the total variation norm
between both distributions converges in probability to zero
∥p(θ|X1,Xn)−N(θMLE

n , 1
nI(θ

True)−1)∥TV → 0. For a
short summary please consider Schmitt, Shawe-Taylor, and
van Hasselt (2023); for a detailed exposition consider van der
Vaart (1998); Le Cam (1986); Nickl (2012) – who date the
theorem’s origins to Laplace (1810) work on the central limit
theorem, work by von Mises (1931) and Bernstein (1917).

The Bernstein-von Mises theorem relates Bayesian and
frequentist statistics and is typically used to show that
||θMAP

n − θMLE
n || → 0 and to argue that the prior distribution

does not matter in the limit (van der Vaart 1998). While not
all theoretical assumptions can be satisfied in reinforcement
learning with neural networks we observe favourable empiri-
cal results when employing it within the EVE recipe for value
uncertainty estimation and exploration in Section 6.

Fisher Approximation We have θMLE from Step 1, but
we are missing the Fisher information matrix I(θTrue) to
employ the Bernstein-von Mises theorem. Its expectation
can be computed using the observed samples Xi ∼ fθTrue :
I(θTrue) ≈ 1

n

∑n
i=1∇θ log fθTrue(Xi)∇θ log fθTrue(Xi)

⊤

However it needs a further approximation because we can
not compute gradients at the unknown θTrue.

Î(θMLE) :=
1

n

n∑
i=1

∇θ log fθMLE(Xi)∇θ log fθMLE(Xi)
⊤

Now the gradients can be computed using automatic dif-
ferentiation frameworks. Unfortunately estimating the full

9744

Algorithm 1: Standard Q-Learning with ϵ-greedy explo-
ration.
Exploration Parameters: Epsilon-greedy ϵ.
Regular Parameters: Learning rate α, neural network qθ,
discount γ.
Initialization: Vector θ random.
Acting:

1: Play each action as argmaxa qθ(s, a) with probability
1− ϵ or uniformly random otherwise.

2: Add resulting trajectory τ into experience replay D.
Q-Learning Update with θ:

1: Sample one transition St, At, Rt+1, St+1 from D
2: G = Rt+1 + γmaxa qθ(St+1, a)
3: θ ← θ − α∇θ(G− qθ(St, At))

2

empirical Fisher information matrix Î(θMLE) is infeasible
with large-scale function approximation due to its quadratic
memory requirements. However it can be efficiently approxi-
mated and inverted using a diagonal or Kronecker-factored
representation (Martens 2014).

3.3 Step 3: Epistemic Value Uncertainty
Using Step 2 we can now efficiently sample parameters θ′
from our approximation to the posterior p(θ|D). We can
use them for Thomson Sampling in parameter space, or to
estimate the epistemic uncertainty of values. While p(θ|D)
has a convenient Gaussian shape the nonlinearities in the
model prevent us from deriving a similar analytic repre-
sentation for p(vθ(s)|D). Sampling epistemic values via
v′(s) ∼ p(vθ(s)|D) is however easy and can for instance
be used to estimate V [vθ(s)|D] numerically. Sampling of
v′(s) can be achieved though sampling θ′ and evaluating
v′(s) := vθ′(s) which is the mean of the predicted return
distribution fθ′(Z|s): vθ′(s) =

∫
Z
Zfθ′(Z|s)dZ. For Gaus-

sian return models the predicted mean is the output of the
networks forward pass and does not require integration.

4 Epistemic Q-Learning
The EVE recipe strives to provide deep RL agents with epis-
temic uncertainty estimates to improve their exploration. To
provide a concrete example we use the recipe to convert a
standard Q-Learning agent from Algorithm 1 into an illustra-
tive epistemic Q-Learning agent (Algorithm 2).

In this section we strive for clarity over performance, hence
where possible we prefer conceptually simpler approxima-
tions. As a result we managed to keep the difference minimal:
the Q-Learning update is modified slightly and the Fisher
estimation is added, implemented by an exponential average
of squared gradients from a noisy Q-Learning loss. The re-
sulting computational overhead (one additional gradient pass)
that is moderate compared to ensemble methods that store
and update multiple model copies. We discuss advanced tech-
niques for EVE such as distributional value functions, K-FAC
approximations and variance reduction in the appendix of
Schmitt, Shawe-Taylor, and van Hasselt (2023). Nevertheless
in Section 6 we already observe competitive results with this
illustrative agent on common benchmarks.

Algorithm 2: Epistemic Q-Learning using EVE with diago-
nal Fisher approximation.
Exploration Parameters: Exploration scale ω, return vari-
ance σReturn2, Fisher learning rate β, Fisher regularization
ϵ.
Regular Parameters: Learning rate α, neural network qθ,
discount γ.
Initialization: Vectors θ random, fdiagonal zero. Scalar n
one.
Acting:

1: Sample θ′ from posterior.
2: Play one episode with argmaxa qθ′(s, a).
3: Add resulting trajectory τ into experience replay D.
4: n← n+ |τ |

Learning Step:
1: Sample θ′ from posterior.
2: Q-Learning Update with θ′:
3: Sample one transition St, At, Rt+1, St+1 from D.
4: G = Rt+1 + γmaxa qθ′(St+1, a)
5: θ ← θ − α∇θ(G− qθ(St, At))

2

6: Fisher Update:
7: η′ ∼ N (0, σReturn)
8: Z ′ = G+ γη′

9: gLogL = ∇θ(Z
′ − qθ(St, At))

2

10: fdiagonal ← (1− β)fdiagonal + βgLogL ⊙ gLogL

Posterior Sampling:
1: Define the vectors σ, z such that for all i:
2: σi =

1√
(fdiagonal)i+ϵ

3: Sample z such that zi ∼ N (0, 1).
4: Return θ + 1√

nω
σ ⊙ z

Standard Q-Learning Baseline The standard deep Q-
Learning in Algorithm 1 uses a neural network qθ to pre-
dict Q-values. The parameters θ are updated to minimize
the squared prediction error towards targets Gt = Rt+1 +
γmaxa qθ(St+1, a):

LQ−Prediction(θ) := (Gt − qθ(St, At))
2 (6)

Note that the targets Gt are fixed and∇θGt = 0 (sometimes
this is referred to as stop gradient). Q-Learning then acts with
ϵ-greedy.

Introducing Thomson Sampling The first difference in
Algorithm 2 is the introduction of Thomson Sampling at act-
ing time. Furthermore we Thomson-sample at bootstrapping
time by changing the target in line 4 of the learning step to:

GTS
t := Rt+1 + γmax

a
qθ′(St+1, a) (7)

θ′ ∼ p(θ|D)

4.1 Applying Step 1: Model & Log-Likelihood
In this step we need to make the agent distributional and
obtain the corresponding log-likelihood gradient. Rather
than predicting the expected return qθ(s, a) ≈ E [G|s, a] it
needs to predict the entire distribution of Monte-Carlo returns

9745

fθ(Z|s, a) ≈ p(Z|s, a). Furthermore we require the ability
to sample Monte-Carlo returns from the model: Z ′ ∼ fθ.

A Distributional Interpretation for Standard Q-Learning
To make the example agent distributional and at the same
time minimize algorithmic differences we simply reinterpret
Q-Learning as a Gaussian density model which represents
the Monte-Carlo return distribution as a Gaussian with fixed
variance centered around the predicted Q-values qθ:

fθ(Z|s, a) = N (Z|µ = qθ(s, a), σ = 1) (8)
enabling us to use the same powerful neural network ar-
chitecture qθ as the Q-Learning baseline. This algorithmi-
cally convenient choice of fθ yields a powerful predictor of
mean values but a crude return density model as it disregards
state-dependent differences in the return variance. While this
leaves room for future work, we will see in Figure 5 that
it is able to capture state dependent epistemic value uncer-
tainty and exhibits favourable exploration performance in our
experiments in Section 6.

Computing the Log-Likelihood Gradient The Gaussian
model choice from Equation (8) implies that sampling
bootstrap returns from fθ(·|St+1, a) simplifies to Z ′ =
qθ(St+1, a) + η′ with η′ ∼ N (0, 1). We can use that to
derive the log-likelihood gradient for the model fθ when it
aims to predict the modelled return samples Z ′ of following
the Thomson Sampling policy:

gLogLt (θ) := ∇θ log fθ(Z
′
t|St, At) (9)

= ∇θ
1

2
(Z ′

t − qθ(St, At))
2

with a fθ-modelled Monte-Carlo return sample
Z ′
t = Rt+1 + γmax

a
qθ′(St+1, a)︸ ︷︷ ︸

GTS
t

+γη′

θ′ ∼ p(θ|D) , η′ ∼ N (0, 1)

4.2 Applying Step 2: Posterior Approximation
According to the recipe we approximate the posterior as
p(θ|D) ≈ N (θMLE, 1

n Î(θ
MLE)−1) with

Î(θMLE) :=
1

n

n∑
t=1

Eη

[
∇θ log fθMLE(Z ′

t)∇θ log fθMLE(Z ′
t)

⊤
]

:=
1

n

n∑
t=1

Eη

[
gLogLt gLogLt

⊤]
where gLogLt is short notation for the log-likelihood gradient
from Equation (9) at the MLE estimate gLogLt (θMLE).

Unfortunately estimating the full empirical Fisher infor-
mation matrix is infeasible with large-scale function approxi-
mation due to its quadratic memory requirements. However
it be efficiently approximated and inverted using diagonal
or K-FAC representation (Martens 2014). Striving again for
the most simple example agent in this section we use the
diagonal approximation:

ÎDiag(θMLE) :=
1

n

n∑
i=1

Eη

[
gLogL ⊙ gLogL

]

4.3 Applying Step 3: Epistemic Value Uncertainty
Now estimation, inversion and sampling are efficiently pos-
sible using element-wise operations. Given a vector from a
standard Normal z ∼ N (0, I) we can obtain a sample from:

θ′ ∼ N (θMLE,
1

n
ÎDiag(θMLE)) ≈ p(θ|D)

by computing each component in the vector as θ′i :=
(θMLE)i +

zi√
nÎDiag(θMLE)i

.

4.4 Optional Variance Reduction
The gradient gLogLt (θ) = ∇θ

1
2 (Z

′
t − qθ(St, At))

2 is stochas-
tic because of the random variable η′ in Z ′

t = Rt+1 +
γmaxa qθ′(St+1, a) + γη′. We can make our updates more
sample-efficient by considering the corresponding expected
updates. This is straightforward for the θMLE maximum like-
lihood parameter estimation where we recover the classic
Q-Learning update:

gMLE
t (θ) := Eη

[
gLogLt (θ)

]
(10)

= (Eη [Z
′
t]− qθ(St, At))∇θqθ(St, At)

= (GTS
t − qθ(St, At))∇θqθ(St, At)

= ∇θ
1

2
(GTS

t − qθ(St, At))
2

The variance of the Fisher update from line 10 in Algorithm 2
could also be reduced, but this is non-trivial (see appendix).

5 Related work
How to measure epistemic uncertainty in deep reinforcement
learning is actively researched. Popular methods involve en-
sembles consisting of multiple independent neural networks
or sharing parts of them (Osband et al. 2016) resulting in
increased memory and computational requirements. Heuris-
tics, like used by Burda et al. (2019), use the prediction error
of an unknown random function target as an exploration
bonus. Ostrovski et al. (2017) employed a generative model
of states to compute pseudo-counts for exploration. Dearden,
Friedman, and Russell (1998) approximated the posterior of
state-action values for exploration in tabular MDPs. In non-
tabular MDPs Deisenroth and Rasmussen (2011) employed
techniques from kernel methods resulting in increased data-
efficiency but also being limited by the large computational
cost of kernel regression. Similarly Chua et al. (2018); Curi,
Berkenkamp, and Krause (2020) approximate the environ-
ment dynamics with an ensemble of neural networks each
parameterizing the next states probability with a Gaussian. In
the field of Bayesian deep learning (cf. MacKay 1992; Hin-
ton and van Camp 1993; Neal 1995, for early discussions of
the principles) a series of innovations were proposed (Graves
2011; Blundell et al. 2015; Gal and Ghahramani 2016; Korat-
tikara Balan et al. 2015; Lakshminarayanan, Pritzel, and Blun-
dell 2017; Osband, Aslanides, and Cassirer 2018; Zhang et al.
2018; Ritter, Botev, and Barber 2018; Daxberger et al. 2021)
(see Murphy 2023, for an overview). However there is no con-
sensus of how to adapt from supervised learning to sequential
decision-making processes, where value-bootstrapping and

9746

Figure 2: Performance breakdown of selected agents along
the Bsuite capabilities. Observe that Epistemic Q-Learning
and Bootstrapped DQN achieve high exploration scores while
regular DQN barely exceeds a random agent. The score break-
down is aggregated from 468 Bsuite task variations averaged
over 30 holdout seeds.

off-policy learning need to be considered. Tang and Agrawal
(2018) use distributional reinforcement learning (Bellemare,
Dabney, and Munos 2017) for exploration and provide a vari-
ational interpretation for Plappert et al. (2018) and Fortunato
et al. (2018) that perturb the parameters of reinforcement
learning agents with heuristically scaled Gaussian noise. In
our work we derive an explicit approximation to the posterior
that is motivated by the Bernstein von-Mises theorem from
statistical theory. The posterior considers all agent parameters
distinguishing it from last-layer methods such as Azizzade-
nesheli, Brunskill, and Anandkumar (2018). In particular it
is compatible with neural network function approximation,
efficient to estimate (using automatic differentiation methods)
and efficient to evaluate. Compared to ensembles that main-
tain and update multiple models it requires fewer parameters
and typically less compute. Furthermore it supports unlimited
sampling of values, where ensembles only provide a constant
number of values (one sample per parameter copy).

6 Experiments
We have proposed a general recipe for epistemic value esti-
mation (EVE), derived a simple example agent from it in Sec-
tion 4 and empirically evaluate it here. In Figure 2 we observe
competitive performance on the Bsuite benchmarks (Osband
et al. 2020), where our agent matches the state-of-the-art
results from Osband, Aslanides, and Cassirer (2018) that em-
ploys an ensemble of 20 independent neural network copies
each with their own copy of a random prior function, tar-
get network and optimizer state. In comparison epistemic
Q-Learning with EVE requires only a single copy of network,
target network, diagonal fisher and optimizer state – resulting
in 20× fewer parameters. Furthermore we present ablations
(Figure 7) and parameter studies (Figure 6) showing that our
agent is robust to the choice of hyper-parameters.

6.1 Benchmark Environments

We use the behaviour suite benchmark (Bsuite) with special
focus on the Deep Sea environment to empirically analyze
our epistemic Q-Learning example agent from Section 4.

Figure 3: The Deep Sea MDP is given by an L by L sized
grid, where a diver starts in the top left corner and may move
down right or down left at each step. A treasure is on the far
right side, but the agent can only reach it by moving right at
all steps. Hence only a single among 2L−1 possible action
sequences is successful. Trivial solutions are prevented by
randomizing the action mapping. To discourage the correct
sequence there is a penalty for each movement to the right.

0 2000 4000 6000 8000 10000
Episodes

0%

25%

50%

75%

100%

Fa
ile

d
Ep

is
od

es
 /

Ep
is

od
es 30x30 Deep Sea: % Failed Episodes

DQN Epistemic Q-Learning

Figure 4: Epistemic Q-Learning solves the Deep Sea (30×30)
exploration benchmark: the failures among the total number
of episodes diminish. DQN fails to solve it.

Behaviour Suite Bsuite was introduced by Osband et al.
(2020) to facilitate the comparison of agents not just in terms
of total score but across meaningful capabilities (such as
exploration, credit assignment, memory, and generalization
with function approximators). The standardized evaluation
protocol facilitates direct comparisons between research pa-
pers. Bsuite consists of 13 environments (including versions
of Deep Sea, Mountaincar, Cartpole, contextual bandits with
MNIST images and T-maze environments) which are then
varied in difficulty (such as problem size, reward sparsity, or
stochasticity of transitions or reward) resulting in 468 task
variations. Each agent is evaluated on all 468 tasks and the
performance is grouped into 7 categories (called capabilities).
We are most interested in the exploration capability score
which considers the sparse reward tasks (Deep Sea, Stochas-
tic Deep Sea and Cartpole Swingup) with various difficulty
levels resulting in 62 task variations. The aggregate explo-
ration score is the fraction of those 62 tasks where the sparse
reward is consistently1 obtained by the agent.

Deep Sea Osband, Aslanides, and Cassirer (2018) propose
the Deep Sea environment (see Figure 3) to measure ex-
ploration performance. It is a ‘needle in the haystack’-style
problem where ϵ-greedy requires an exponential number of

1In line with prior publications we use a harder evaluation metric
than originally described in Osband et al. (2020) – see Appendix F.

9747

Algorithm 3: Epistemic Q-Learning using EVE with di-
agonal Fisher approximation, burn-in, target networks, and
ADAM optimization (omitting mini-batching details).
Exploration Parameters: Exploration scale ω, return vari-
ance σReturn2, Fisher learning rate β, Fisher regularization ϵ,
burn-in steps Kburnin.
Regular Parameters: Learning rate α, target network period
Ktarget, neural network qθ, discount γ.
Initialization: Vectors θ, θ̄ random, fdiagonal zero. Scalars
m,n one.
Acting:

1: Act uniformly for the first Kburnin episodes; otherwise:
2: Sample θ′ from posterior.
3: Play one episode with argmaxa qθ′(s, a).
4: Add resulting trajectory τ into experience replay D.
5: n← n+ |τ |

Learning Step:
1: Sample θ′ from posterior.
2: Q-Learning Update with θ′:
3: Sample one transition St, At, Rt+1, St+1 from D.
4: G = Rt+1 + γmaxa qθ′(St+1, a)
5: gMLE = ∇θ(G− qθ(St, At))

2

6: θ ← θ − αADAM(gMLE)
7: Fisher Update:
8: η′ ∼ N (0, σReturn)
9: Z ′ = G+ γη′

10: gLogL = ∇θ(Z
′ − qθ(St, At))

2

11: fdiagonal ← (1− β)fdiagonal + gLogL ⊙ gLogL

12: m← (1− β)m+ 1
13: Every Ktarget steps update the target network θ̄ ← θ.
Posterior Sampling:

1: Define the vectors funbiased, σ, z such that for all i:
2: (funbiased)i = (fdiagonal)i/m
3: σi =

1√
(funbiased)i+ϵ

4: Sample z such that zi ∼ N (0, 1).
5: Return θ̄ + 1√

nω
σ ⊙ z

environment steps because it over-explores. It was proposed
to motivate the the need for ‘deep’ or ‘directed’ exploration
with polynomial exploration time. Figure 4 shows that DQN
with its ϵ-greedy exploration is unable to find the treasure,
while Epistemic Q-Learning obtains the treasure in more than
70% of the given 10000 episodes and 30 seeds.

6.2 Methodology
We build our agent on the reference agent implementations
from Bsuite and strive to minimize all unrelated differences
(e.g. neural network architecture, optimizer, target networks)
to permit a clear comparison – see appendix for algorithmic
details. Most notably we replace ReLU with Leaky-ReLU ac-
tivations as they yield non-zero gradients almost everywhere
while maintaining the ReLU benefits and confirm that the
choice of activation does not change the DQN baseline per-
formance. Exploration hyper-parameters were tuned among
possible powers of 10 in the range [10−15, 1010]. We then

0 1 2 [3, 5] [6, 10] [11,)
State-Action Visitation Count (Range)

10 2

10 1

100

101

102

103

ST
D

[Q
(s

,a
)|
D
at
a

]

Posterior Uncertainty vs. Visit Counts

Figure 5: As desired, the predicted epistemic uncertainty√
V [qθ(s, a)|D] is lower at frequently visited and hence

better explored states. Evaluated on a 30× 30 Deep Sea.

sampled new holdout seeds for all figures (10 holdout seeds
for the parameter studies and 30 for epistemic Q-Learning,
all baselines and ablations). Hence a complete Bsuite eval-
uation in Figure 2 evaluates all 468 tasks 30 times with the
exploration score aggregating 62× 30 separate RL runs. Fig-
ures 6 and 7 summarize 468× 10× 7× 4 and respectively
62× 30× 5 separate RL runs.

6.3 Experimental Study on Bsuite
In Figure 2 we compare to the DQN and Bootstrapped DQN
reference implementations from Bsuite. The latter uses an
ensemble of 20 agents combined with random prior func-
tions (Osband, Aslanides, and Cassirer 2018). Our agent
matches Bootstrapped DQN in important parameters such
as network capacity, number of training steps and optimizer
settings. We strive to minimize changes for better compara-
bility – see Algorithm 3 and appendix for implementation
details. However note that Bootstrapped DQN maintains 20
separate agent copies in an ensemble increasing the number
of parameters and computational requirements significantly.

Empirically we observe on-par performance of Epistemic
Q-Learning and Bootstrapped DQN: Both score nearly equal
across all dimensions. In particular they score high in the
exploration dimension, where regular DQN is barely better
than the random agent. On the other hand they are both a
bit worse than DQN in the scale dimension. Epistemic Q-
Learning can however trade off the performance on scale vs.
exploration by hyper parameter selection (see Figure 6).

6.4 Probing for Epistemic Uncertainty
In Figure 5 we ask the fundamental question whether our
predicted epistemic uncertainty makes sense empirically: i.e.
if uncertainty is high at unknown states and low at frequently
visited states. We observe affirmative evidence from the fol-
lowing sanity check: we consider a 30×30 Deep Sea and col-
lect 100 episodes with a uniformly random policy, while esti-
mating epistemic Q-values using the Epistemic Q-Learning
algorithm. In Figure 5 we compare the actual number of visits
(x-axis) with the posterior standard deviation of the Q-values
at each state (y-axis). To simplify the plot we group states

9748

10 12 10 10 10 8

Fisher Regularization

0.00
0.25
0.50
0.75
1.00

Sc
or

e
Fisher Regularization Study

basic
credit_assignment
exploration
generalization
memory
noise
scale

10 12 10 10 10 8

Fisher Learning Rate

0.00
0.25
0.50
0.75
1.00

Sc
or

e

Fisher Learning Rate Study
basic
credit_assignment
exploration
generalization
memory
noise
scale

10 1 101 103

Exploration Scale

0.00
0.25
0.50
0.75
1.00

Sc
or

e

Exploration Scale Study
basic
credit_assignment
exploration
generalization
memory
noise
scale

101 103 105

Return Variance

0.00
0.25
0.50
0.75
1.00

Sc
or

e

Return Variance Study
basic
credit_assignment
exploration
generalization
memory
noise
scale

Figure 6: Parameter sensitivity study of Epistemic Q-
Learning broken down by Bsuite capability using 10 holdout
seeds. Centered values on the x-axis are the default param-
eters. Observe that parameters are robust across multiple
orders of magnitude.

into visit count ranges. One can observe a clear correlation
where uncertainty roughly decreases the more often a state
is visited. In particular unknown states with zero visitations
exhibit a significantly larger uncertainty than visited states.

6.5 Parameter Stability
An ideal algorithm should be robust to hyper-parameters and
consequently require minimal tuning. In Figure 6 we observe
that Epistemic Q-Learning is robust with respect to all param-
eters: to both the Fisher regularization and Fisher learning
rate across 5 orders of magnitude (from 10−13 to 10−8). The
exploration scale and return variance parameters trade-off ex-
ploration and exploitation i.e. too large values seem to hinder
exploration while improving the scale capability. Good trade-
offs are achieved in the range of 1 to 102 for the exploration
scale and 102 to 106 for the return variance.

6.6 Ablations
In Figure 7 we ablate key components of the Epistemic Q-
Learning agent (Algorithm 3) and evaluate the corresponding
Bsuite exploration score to answer the following questions:

• What happens if we replace the Thomson Sampling
acting? We replace it by ϵ-greedy as in DQN. Note that
we keep the Thomson-Sampling inspired bootstrapping
as is. We observe a drop in performance.

• What happens if we replace the Thomson-Sampling
inspired value-bootstrapping? We replace line 4 in

0.0 0.2 0.4 0.6 0.8
Exploration Score

Epistemic Q-Learning

No Distributional Update

No TS Acting

No TS Bootstrapping

ReLU Activation

Epistemic Q-Learning Ablations

Figure 7: Various ablations of Epistemic Q-Learning applied
to Bsuite with 30 seeds (experimental details in Section 6.6).

the learning step of Algorithm 3 by a distributional up-
date with the Q-function at θMLE by setting: Zt =
Rt+1+γmaxa qθMLE(St+1, a)+γη′. We observe a large
drop in performance indicating that bootstrapping from a
posterior sampled qθ′ is important for exploration.

• What happens if we remove the distributional update?
When estimating the Fisher in Algorithm 3 line 11 with
a regular non-distributional Q-Learning update gMLE

t we
observe a drop in performance and increased variance.

• What happens if we use ReLU activations? We use
Leaky-ReLU activations (Maas, Hannun, and Ng 2013;
Xu et al. 2015) as they have a non-zero gradient almost
everywhere. We observe a dramatic drop in performance if
we use ReLU activations instead and hypothesize that this
is due to the zero gradient it exhibits on all negative input
values interacting with the posterior estimation. Note that
the DQN-baseline performance does not improve with
Leaky-ReLUs. Hence Leaky-ReLUs are a prerequisite for
efficient exploration using EVE, but not its cause.

7 Conclusion
Motivated by statistical theory we introduced a principled
recipe for posterior approximation (EVE) that is compatible
with sequential decision making and with neural network
function approximation. In practice it requires moderate com-
putational and memory overhead and no architecture changes
besides introducing Leaky-ReLU activations. We applied
the recipe to compute epistemic value uncertainty in a Q-
Learning agent and used it for Thomson-Sampling inspired
exploration. The proposed epistemic Q-Learning agent ex-
hibits competitive performance on a series of general rein-
forcement learning and dedicated exploration benchmarks. It
is robust to hyper-parameters and matches the performance
of Bootstrapped DQN on Bsuite with 20× fewer agent pa-
rameters.

To facilitate understanding and analysis, the presented
Epistemic Q-Learning agent was designed with a focus on
simplicity. It can be extended in many ways: with more
expressive distributional representations (Bellemare, Dab-
ney, and Munos 2017), more-sophisticated Fisher approxima-
tions (Martens 2014), or better use of epistemic uncertainty
in the policy construction (Nikolov et al. 2019). While we
employed the approximate posterior for exploration, future
work may evaluate its benefits for other applications such as
safety in reinforcement learning or robust offline learning.

9749

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47(2-3): 235–256.
Azizzadenesheli, K.; Brunskill, E.; and Anandkumar, A.
2018. Efficient Exploration Through Bayesian Deep Q-
Networks. In 2018 Information Theory and Applications
Workshop (ITA), 1–9.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A
Distributional Perspective on Reinforcement Learning. In
Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, 449–458.
PMLR.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bernstein, S. N. 1917. The Theory of Probabilities.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight Uncertainty in Neural Network. In Bach,
F.; and Blei, D., eds., Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, 1613–1622. Lille, France:
PMLR.
Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2019.
Exploration by random network distillation. In International
Conference on Learning Representations.
Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.
Curi, S.; Berkenkamp, F.; and Krause, A. 2020. Efficient
Model-Based Reinforcement Learning through Optimistic
Policy Search and Planning. In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural
Information Processing Systems, volume 33, 14156–14170.
Curran Associates, Inc.
Daxberger, E.; Kristiadi, A.; Immer, A.; Eschenhagen, R.;
Bauer, M.; and Hennig, P. 2021. Laplace Redux - Effortless
Bayesian Deep Learning. In Beygelzimer, A.; Dauphin, Y.;
Liang, P.; and Vaughan, J. W., eds., Advances in Neural
Information Processing Systems.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
Q-learning. In Proceedings of the fifteenth national/tenth
conference on Artificial intelligence/Innovative applications
of artificial intelligence, 761–768. American Association for
Artificial Intelligence. ISBN 0262510987.
Deisenroth, M.; and Rasmussen, C. 2011. PILCO: A model-
based and data-efficient approach to policy search. In Pro-
ceedings of the 28th International Conference on Machine
Learning, 465–473.
Duff, M. 2002. Optimal Learning: Computational procedures
for Bayes-adaptive Markov decision processes. Ph.D. thesis,
University of Massachusetts Amherst.

Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Hessel,
M.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis,
D.; Pietquin, O.; Blundell, C.; and Legg, S. 2018. Noisy
Networks For Exploration. In International Conference on
Learning Representations.
Gal, Y.; and Ghahramani, Z. 2016. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep
Learning. In Balcan, M. F.; and Weinberger, K. Q., eds., Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning
Research, 1050–1059. New York, New York, USA: PMLR.
Graves, A. 2011. Practical Variational Inference for Neural
Networks. In Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira,
F.; and Weinberger, K., eds., Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient Bayes-
Adaptive Reinforcement Learning using Sample-Based
Search. In Pereira, F.; Burges, C.; Bottou, L.; and Wein-
berger, K., eds., Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc.
Hinton, G. E.; and van Camp, D. 1993. Keeping the Neural
Networks Simple by Minimizing the Description Length of
the Weights. In Proceedings of the Sixth Annual Confer-
ence on Computational Learning Theory, COLT ’93, 5–13.
New York, NY, USA: Association for Computing Machinery.
ISBN 0897916115.
Korattikara Balan, A.; Rathod, V.; Murphy, K. P.; and Welling,
M. 2015. Bayesian dark knowledge. In Cortes, C.; Lawrence,
N.; Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 28. Curran
Associates, Inc.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles. In Guyon, I.; Luxburg, U. V.; Bengio, S.;
Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Laplace, P. S. 1810. Mémoire sur les approximations des
formules qui sont fonctions de très grands nombres et sur
leur application aux probabilités. Mémoires de l’Académie
Royale des Sciences de Paris, 10: 301–347.
Le Cam, L. 1986. Asymptotic Methods in Statistical Decision
Theory. Springer.
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
ICML Workshop on Deep Learning for Audio, Speech and
Language Processing.
MacKay, D. J. C. 1992. A Practical Bayesian Framework for
Backprop Networks. Neural Computation, 4: 448–472.
Martens, J. 2014. New perspectives on the natural gradient
method. CoRR, abs/1412.1193.
Martin, J. 1967. Bayesian decision problems and Markov
chains. Wiley.
Murphy, K. P. 2023. Probabilistic Machine Learning: Ad-
vanced Topics. MIT Press.

9750

Neal, R. M. 1995. Bayesian Learning for Neural Networks.
Ph.D. diss., University of Toronto.

Nickl, R. 2012. Statistical Theory. Lecture Notes, Statistical
Laboratory, Department of Pure Mathematics and Mathemat-
ical Statistics, University of Cambridge.

Nikolov, N.; Kirschner, J.; Berkenkamp, F.; and Krause, A.
2019. Information-Directed Exploration for Deep Reinforce-
ment Learning. In International Conference on Learning
Representations.

Osband, I.; Aslanides, J.; and Cassirer, A. 2018. Randomized
Prior Functions for Deep Reinforcement Learning. In Bengio,
S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi,
N.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B.
2016. Deep Exploration via Bootstrapped DQN. CoRR,
abs/1602.04621.

Osband, I.; Doron, Y.; Hessel, M.; Aslanides, J.; Sezener,
E.; Saraiva, A.; McKinney, K.; Lattimore, T.; Szepesvari, C.;
Singh, S.; Roy, B. V.; Sutton, R.; Silver, D.; and Hasselt,
H. V. 2020. Behaviour Suite for Reinforcement Learning. In
International Conference on Learning Representations.

Ostrovski, G.; Bellemare, M. G.; van den Oord, A.; and
Munos, R. 2017. Count-Based Exploration with Neural Den-
sity Models. In Precup, D.; and Teh, Y. W., eds., Proceedings
of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
2721–2730. PMLR.

Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen,
R. Y.; Chen, X.; Asfour, T.; Abbeel, P.; and Andrychowicz,
M. 2018. Parameter Space Noise for Exploration. In Interna-
tional Conference on Learning Representations.

Ritter, H.; Botev, A.; and Barber, D. 2018. A Scalable Laplace
Approximation for Neural Networks. In International Con-
ference on Learning Representations.

Schmitt, S.; Shawe-Taylor, J.; and van Hasselt, H. 2023. Ex-
ploration via Epistemic Value Estimation. CoRR.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model.
Nature, 588(7839): 604—-609.

Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. The MIT press, Cambridge MA.

Tang, Y.; and Agrawal, S. 2018. Exploration by Distribu-
tional Reinforcement Learning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18, 2710–2716. International Joint Conferences
on Artificial Intelligence Organization.

Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrica, 25(3/4): 285—-294.

van der Vaart, A. W. 1998. Asymptotic Statistics. Cambridge
University Press.

von Mises, R. 1931. Wahrscheinlichkeitsrechnung und ihre
Anwendung in der Statistik und theoretischen Physik, vol-
ume 1. Franz Deuticke.
Xu, B.; Wang, N.; Chen, T.; and Li, M. 2015. Empirical Eval-
uation of Rectified Activations in Convolutional Network. In
ICML Workshop on Deep Learning.
Zhang, G.; Sun, S.; Duvenaud, D.; and Grosse, R. 2018.
Noisy Natural Gradient as Variational Inference. In Dy, J.;
and Krause, A., eds., Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, 5852–5861. PMLR.

9751

