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Abstract

We present CrissCross, a self-supervised framework for
learning audio-visual representations. A novel notion is in-
troduced in our framework whereby in addition to learning
the intra-modal and standard ‘synchronous’ cross-modal re-
lations, CrissCross also learns ‘asynchronous’ cross-modal
relationships. We perform in-depth studies showing that by
relaxing the temporal synchronicity between the audio and
visual modalities, the network learns strong generalized rep-
resentations useful for a variety of downstream tasks. To
pretrain our proposed solution, we use 3 different datasets
with varying sizes, Kinetics-Sound, Kinetics400, and Au-
dioSet. The learned representations are evaluated on a num-
ber of downstream tasks namely action recognition, sound
classification, and action retrieval. Our experiments show that
CrissCross either outperforms or achieves performances on
par with the current state-of-the-art self-supervised methods
on action recognition and action retrieval with UCF101 and
HMDB51, as well as sound classification with ESC50 and
DCASE. Moreover, CrissCross outperforms fully-supervised
pretraining while pretrained on Kinetics-Sound.

1 Introduction
In recent years, self-supervised learning has shown great
promise in learning strong representations without human-
annotated labels (Chen et al. 2020; Chen and He 2021;
Caron et al. 2018), and emerged as a strong competitor for
fully-supervised pretraining. There are a number of benefits
to such methods. Firstly, they reduce the time and resources
required for expensive human annotations and allow re-
searchers to directly use large uncurated datasets for learning
meaningful representations. Moreover, the models trained
in a self-supervised fashion learn more abstract representa-
tions, which are useful for a variety of downstream tasks
without needing to train the models from scratch. Given
the abundance of videos, their spatio-temporal information-
rich nature, and the fact that in most cases they contain
both audio and visual streams, self-supervised approaches
are strong alternatives to fully-supervised methods for video
representation learning. Moreover, the high dimensionality
and multi-modal nature of videos make them difficult to an-
notate, further motivating the use of self-supervision.
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The common and standard practice in self-supervised
audio-visual representations learning is to learn intra-modal
and cross-modal relationships between the audio and vi-
sual streams by maintaining tight temporal synchronicity be-
tween the two modalities (Alayrac et al. 2020; Korbar, Tran,
and Torresani 2018; Alwassel et al. 2020; Asano et al. 2020).
Yet, the impact of learning temporally asynchronous cross-
modal relationships in the context of self-supervised learn-
ing has not been explored. This notion deserves deeper ex-
ploration as learning such temporally asynchronous cross-
modal relationships may in fact result in increased invari-
ance and distinctiveness in the learned representations.

In this study, in an attempt to explore the notion above,
we present CrissCross, a self-supervised framework to
learn robust generalized audio-visual representations from
videos. CrissCross is built upon SimSiam (Chen and He
2021) to jointly learn self-supervised audio-visual represen-
tations through a mixture of intra- and cross- modal op-
timizations. In addition to learning intra-modal and stan-
dard synchronous cross-modal relations, CrissCross intro-
duces the novel idea of learning cross-modal representations
through relaxing time-synchronicity between correspond-
ing audio and visual segments. We refer to this as ‘asyn-
chronous cross-modal’ optimization, a concept that has not
been explored in prior works. We use 3 datasets of different
sizes: Kinetics-Sound (Arandjelovic and Zisserman 2017),
Kinetics400 (Kay et al. 2017), and AudioSet (Gemmeke
et al. 2017), to pretrain CrissCross. We evaluate CrissCross
on different downstream tasks, namely action recognition,
sound classification, and action retrieval. We use 2 popular
benchmarks UCF101 (Soomro, Zamir, and Shah 2012) and
HMDB51 (Kuehne et al. 2011) to perform action recogni-
tion and retrieval, while ESC50 (Piczak 2015) and DCASE
(Stowell et al. 2015) are used for sound classification.
The key contributions of this work are as follows:
• We present a novel framework for multi-modal self-

supervised learning by relaxing the audio-visual tempo-
ral synchronicity to learn effective generalized represen-
tations. Our method is simple, data efficient and less re-
source intensive, yet learns robust multi-modal represen-
tations for a variety of downstream tasks.

• We perform an in-depth study to explore the performance
of the proposed framework and its major concepts. More-
over, we perform thorough analyses, both quantitatively
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and qualitatively, in different setups, showing the benefit
of learning asynchronous cross-modal relations.

• Comparing the performance of our method to prior
works, CrissCross achieves state-of-the-arts on UCF101,
HMDB, ESC50, and DCASE when pretrained on Kinet-
ics400. Moreover, when trained with AudioSet, Criss-
Cross achieves better or competitive performances versus
the current state-of-the-arts.

• Lastly, when pretrained on the small-scale Kinetics-
Sound (Arandjelovic and Zisserman 2017), CrissCross
outperforms fully-supervised pretraining (Ma et al. 2020)
by 1.4% and 7.4%, as well as prior self-supervised state-
of-the-art (Ma et al. 2020) by 11.1% and 19.9% on
UCF101 and HMDB51 respectively. To the best of our
knowledge, very few prior works have attempted to pre-
train on such small datasets, and in fact, this is the first
time where self-supervised pretraining outperforms full
supervision on action recognition in this setup.

We hope our proposed self-supervised method can mo-
tivate researchers to further explore the notion of asyn-
chronous multi-modal representation learning. The codes,
pretrained models, and supplementary material are available
on the project website1.

2 Related Work
2.1 Self-supervised Learning
Self-supervised learning aims to learn generalized represen-
tations of data without any human annotated labels through
properly designed pseudo tasks (also known as pretext
tasks). Self-supervised learning has recently drawn signifi-
cant attention in different areas such as image (Chen et al.
2020; Chen and He 2021; Misra and Maaten 2020; Caron
et al. 2020; Grill et al. 2020; Caron et al. 2018), video (Mor-
gado, Vasconcelos, and Misra 2021; Morgado, Misra, and
Vasconcelos 2021; Alwassel et al. 2020; Asano et al. 2020;
Patrick et al. 2021a; Alayrac et al. 2020; Min et al. 2021),
and wearable data (Sarkar and Etemad 2020b,a; Sarkar et al.
2020) analysis among others.

In self-supervised learning, the main focus of interest
lies in designing novel pseudo-tasks to learn useful repre-
sentations. We briefly mention some of the popular cate-
gories in the context of self-supervised video representation
learning, namely, i) context-based, ii) generation-based, iii)
clustering-based, and iv) contrastive learning-based. Vari-
ous pretext tasks have been proposed in the literature ex-
ploring the spatio-temporal context of video frames, for ex-
ample, temporal order prediction (Lee et al. 2017), puz-
zle solving (Kim, Cho, and Kweon 2019; Misra, Zitnick,
and Hebert 2016; Ahsan, Madhok, and Essa 2019), rotation
prediction (Jing et al. 2018), and others. Generation-based
video feature learning methods refer to the process of learn-
ing feature representations through video generation (Von-
drick, Pirsiavash, and Torralba 2016; Tulyakov et al. 2018;
Saito, Matsumoto, and Saito 2017), video colorization (Tran
et al. 2016), and frame or clip prediction (Mathieu, Couprie,
and LeCun 2016; Reda et al. 2018; Babaeizadeh et al. 2018;

1https://pritamqu.github.io/CrissCross

Liang et al. 2017; Finn, Goodfellow, and Levine 2016),
among a few others. Clustering-based approaches (Alwassel
et al. 2020; Asano et al. 2020) rely on self-labeling where
data is fed to the network and the extracted feature em-
beddings are clustered using a classical clustering algorithm
such as k-means, followed by using the cluster assignments
as the pseudo-labels for training the neural network. The key
concept of contrastive learning (Chen and He 2021; Misra
and Maaten 2020; Grill et al. 2020; Caron et al. 2020; Mor-
gado, Vasconcelos, and Misra 2021; Patrick et al. 2021a) is
that in the embedding space, ‘positive’ samples should be
similar to each other, and ‘negative’ samples should have
discriminative properties. Using this concept, several prior
works (Morgado, Vasconcelos, and Misra 2021; Morgado,
Misra, and Vasconcelos 2021; Patrick et al. 2021a; Ma et al.
2020) have attempted to learn representations by minimiz-
ing the distance between positive pairs and maximizing the
distance between negative pairs.

2.2 Audio-Visual Representation Learning
Typically in multi-modal self-supervised learning, multi-
ple networks are jointly trained on the pseudo tasks to-
wards maximizing the mutual information between multi-
ple data streams (Alwassel et al. 2020; Morgado, Vascon-
celos, and Misra 2021; Korbar, Tran, and Torresani 2018;
Xu et al. 2019; Wang et al. 2021; Khare, Parthasarathy, and
Sundaram 2021; Siriwardhana et al. 2020). Following, we
briefly discuss some of the prior works (Korbar, Tran, and
Torresani 2018; Alwassel et al. 2020; Morgado, Vasconce-
los, and Misra 2021; Ma et al. 2020) on audio-visual rep-
resentation learning. A multi-modal self-supervised task is
introduced in AVTS (Korbar, Tran, and Torresani 2018),
leveraging the natural synergy between audio-visual data.
The network is trained to distinguish whether the given au-
dio and visual sequences are ‘in sync’ or ‘out of sync’. In
XDC (Alwassel et al. 2020), the authors introduce a frame-
work to learn cross-modal representations through a self-
labeling process. Specifically, cross-modal pseudo-labeling
is performed where the pseudo-labels computed from au-
dio embeddings are used to train the visual backbone, while
the pseudo-labels computed using visual embeddings are
used to train the audio network. A self-supervised learn-
ing framework based on contrastive learning is proposed
in AVID (Morgado, Vasconcelos, and Misra 2021) to learn
audio-visual representations from videos. AVID performs
instance discrimination as the pretext task by maximizing
the cross-modal agreement of the audio-visual segments in
addition to visual similarity. Though earlier works focus on
learning cross-modal relations while maintaining a tight syn-
chronicity between the audio and visual data, our proposed
framework also considers asynchronous cross-modal rela-
tionships in addition to the standard synchronous relations.

3 Method
3.1 Approach
Let be given v, a sequence of visual frames, and a, the cor-
responding audio waveform. We can obtain n augmented
views of v as {vi}ni=0, and equal number of augmented
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views of a as {ai}ni=0. A common way to learn individ-
ual representations from v and a is to minimize the em-
bedding distances (D) between the augmented views of the
each modality as Lvv =

∑n
i,j=0,i ̸=j D(vi, vj) and Laa =∑n

i,j=0,i̸=j D(ai, aj) respectively in a self-supervised set-
ting (Caron et al. 2020; Bardes, Ponce, and LeCun 2021;
Chen and He 2021; Grill et al. 2020; Niizumi et al. 2021).
Further, to learn multi-modal representations from {v, a},
a standard technique is to simply optimize a joint intra-
modal loss Lintra = Lvv + Laa. Prior works (Alwassel
et al. 2020; Morgado, Vasconcelos, and Misra 2021; Mor-
gado, Misra, and Vasconcelos 2021) have demonstrated that
in addition to Lintra, a cross-modal optimization can be per-
formed directly across visual and audio segments to further
learn strong joint representations as Lav=

∑n
i=0 D(ai, vi).

All of these learning procedures maintain a tight syn-
chronicity between the two modalities, given that both ai
and vi are segmented from the same timestamps. We con-
jecture, however, that relaxing the synchronicity between
modalities by a reasonable margin will enable more gener-
alized representations to be learned across time, to achieve
better and more robust performance. Accordingly, we intro-
duce asynchronous cross-modal loss Lasync, which exploits
the relationship between audio and visual segments sam-
pled at different timestamps. We define the final objective as
LCrissCross which exploits the combination of Lintra, syn-
chronous Lav (which we refer to as Lsync), and Lasync in
an attempt to learn more generalized representations. While
we present the detailed experiments and analysis of our pro-
posed approach in the subsequent sections of the paper, here
we perform a quick visualization to demonstrate the ben-
efits of this concept. Figure 1 depicts the distributions of
representations learned with and without Lasync, demon-
strating that indeed relaxing the tight synchronicity helps
in widening the distribution of the learned representations
which could result in improved performance in a wide vari-
ety of downstream tasks.

3.2 Training Objective
To accomplish the notion above, let’s define two neural net-
works, a visual encoder fv and an audio encoder fa. Here, fv
and fa are composed of convolutional backbones and MLP
projection heads. Moreover, we adopt a Siamese (Bromley
et al. 1993) representation learning setup, where the net-
works share weights on two or more inputs. Next, We ob-
tain two augmented views of v={vt}T

t=0, denoted by v1 and
v2, defined as {vt}t1+tv

t=t1 and {vt}t2+tv
t=t2 respectively. Here, v1

and v2 have a duration of tv , and are sampled at times t1
and t2 respectively. Note that v1 and v2 are augmented dif-
ferently. Similarly, two augmented views of a={at}T

t=0 can
be obtained as a1 and a2 as {at}t1+ta

t=t1 and {at}t2+ta
t=t2 , respec-

tively. Next, to learn intra-modal representations, the dis-
tance between fv(v1) and fv(v2), as well as, fa(a1) and
fa(a2) can be minimized to train fv and fa respectively.
However, such a naive approach would lead to mode col-
lapse as pointed out in (Grill et al. 2020; Niizumi et al. 2021;
Chen and He 2021; Caron et al. 2020). To tackle this, we
follow the technique proposed in (Chen and He 2021). In
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Figure 1: Distribution of the learned representations with
and without the asynchronous cross-modal optimization.
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Figure 2: Our proposed framework. CrissCross learns strong
audio-visual representations by exploiting intra-modal, as
well as, sync. and async. cross-modal relations.

particular, we minimize the cosine embedding distance D of
two output vectors p and S(z), where p is the output vector
obtained from the predictor head and z represents the out-
put vector obtained from the feature encoder followed by
the stop-gradient operation. Here, the predictor head
consists of an MLP head, which is used as an identity map-
ping, while the stop-gradient operation prevents the
model from collapsing to a degenerated solution (Chen and
He 2021). Here, D is defined as:

D(p, z) = − p

||p||2
· z

||z||2
. (1)

We use hv and ha as the predictor heads corresponding to vi-
sual and audio representations. Next, we obtain pv1

and zv2

as hv(fv(v1)) and S(fv(v2)). Similarly, pa1
and za2

are ob-
tained as ha(fa(a1)) and S(fa(a2)). To calculate the sym-
metrized loss, we further obtain pv2

and zv1
, as well as, pa2

and za1
. Therefore, to learn the intra-modal relations, we op-
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timize the intra-modal loss Lintra defined as:

Lintra = (
1

2
D(pv1

,S(zv2
)) +

1

2
D(pv2

,S(zv1
))

+
1

2
D(pa1

,S(za2
)) +

1

2
D(pa2

,S(za1
)))/2 .

(2)

Next, to learn synchronous cross-modal relations, we opti-
mize the synchronous cross-modal loss Lsync, defined as:

Lsync = (
1

2
D(pv1

,S(za1
)) +

1

2
D(pa1

,S(zv1
))

+
1

2
D(pv2

,S(za2
)) +

1

2
D(pa2

,S(zv2
)))/2 .

(3)

Additionally, based on our earlier intuition, to relax the tem-
poral synchronicity, we minimize the distance between the
audio and visual segments originated from different times-
tamps. We define asynchronous cross-modal loss Lasync as:

Lasync = (
1

2
D(pv1

,S(za2
)) +

1

2
D(pa2

,S(zv1
))

+
1

2
D(pv2

,S(za1
)) +

1

2
D(pa1

,S(zv2
)))/2 .

(4)

Finally, to exploit intra-modal, as well as, synchronous and
asynchronous cross-modal relations we define the final ob-
jective function as:

LCrissCross =
1

3
(Lintra + Lsync + Lasync) . (5)

We present the proposed CrissCross framework in Figure 2.
Please note, for the sake of simplicity, we omit showing the
stop-grad and predictor head connections in Figure 2. We
present the pseudocode in Appendix A.

4 Experiments and Results
The details of the experiment setup and the findings of our
thorough ablation studies investigating the major concepts
of our proposed framework are presented here. Addition-
ally, we extensively investigate a wide range of audio-visual
augmentation techniques capable of learning strong audio-
visual representations within our framework, the details are
as follows.

4.1 Experiment Setup
Following the standard practice among the prior works
(Morgado, Vasconcelos, and Misra 2021; Alwassel et al.
2020; Asano et al. 2020; Patrick et al. 2021a; Ma et al. 2020),
we use Kinetics-Sound, Kinetics400, and AudioSet for pre-
training. Additionally, Kinetics400, UCF101, HMDB51,
ESC50 and DCASE are used for downstream evaluation.
We use R(2+1)D (Tran et al. 2018) and ResNet (He et al.
2016) as the visual and audio backbones. To pretrain the net-
work in a self-supervised fashion with audio-visual inputs,
we downsample the visual streams to 16 frames per second
and feed 8 frames of resolution 1122 to the visual encoder.
Next, we downsample the audio signals to 16kHz, and seg-
ment them into 2-second segments. We transform the seg-
mented raw audio waveforms to mel-spectrograms using 80
mel filters, we set the hop size as 10 milliseconds and FFT

Method UCF101 ESC50

Lv1v2 69.1 -
La1a2 - 62.0
Lintra 69.7 71.8
Lsync 70.1 75.8
Lasync 69.1 74.8
Lsync + Lintra 73.8 78.0
Lsync + Lasync 69.1 74.8
Lasync + Lintra 72.4 75.3
Lv1v2 + Lsync + Lasync 71.3 78.5
La1a2 + Lsync + Lasync 70.8 75.3
LCrissCross 74.8 79.0

Table 1: We present the top-1 accuracy of CrissCross and its
ablation variants, pretrained on Kinetics-Sound.

Pretrain Downstream w/o Lasync w/ Lasync

KS UCF101 73.8(↓ 1.0) 74.8
KS ESC50 78.0(↓ 1.0) 79.0

K400 UCF101 75.8(↓ 4.1) 79.9
K400 ESC50 78.5(↓ 3.5) 82.0

K400 KS (a) 43.2(↓ 3.9) 47.1
K400 KS (v) 53.3(↓ 2.4) 55.7
K400 KS (a+v) 65.0(↓ 1.7) 66.7

Table 2: Impact of Lasync optimization in different pretrain-
ing and evaluation setups. Here, K400: Kinetics400, KS:
Kinetics-Sound.

window length as 1024. Finally, we feed spectrograms of
shape 80×200 to the audio encoder. We use Adam (Kingma
and Ba 2015) optimizer with a cosine learning rate sched-
uler (Loshchilov and Hutter 2017) to pretrain the encoders
and use a fixed learning rate to train the predictors. Please
note that during the design exploration, we use Kinetics-
Sound for pretraining, while the downstream evaluations are
performed on UCF101 and ESC50 unless stated otherwise.
We perform linear evaluations using 8 frames of visual input
and 2 seconds of audio input. Next, a linear SVM classifier
is trained using the extracted features, and report the top-1
accuracy for sample-level predictions. We provide the addi-
tional details of the experiment setup, datasets, architectures,
and evaluation protocols in the Appendix.

4.2 Ablation Study
We present the ablation results in Tables 1 and 2 to show
the improvements made by optimizing asynchronous cross-
modal loss in addition to intra-modal and synchronous
cross-modal losses. First, using Kinetics-Sound, we train
the framework in uni-modal setups, denoted as Lv1v2 and
La1a2 . We report the top-1 accuracy of UCF101 and ESC50
as 69.1% and 62.0% respectively. Next, we train the network
in a multi-modal setup, where we find that Lsync outper-
forms the other multi-modal variants including Lintra and
Lasync, as well as, uni-modal baselines Lv1v2

and La1a2
.

Further study shows that combining all the multi-modal
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losses improves the model performance. LCrissCross out-
performs Lsync by 4.7% and 3.2% on action recognition and
sound classification, respectively.

Further, to study the effect of Lasync in particular, we per-
form ablation studies using small-scale Kinetics-Sound and
large-scale Kinetics400. We present the results in Table 2,
where we observe that Lasync improves the performance on
both the pretraining datasets. In particular, while pretrained
on Kinetics400, optimizing Lasync in addition to Lsync and
Lintra improves the performances by 4.1% and 3.5% on ac-
tion recognition and sound classification respectively, show-
ing the significance of asynchronous cross-modal optimiza-
tion in a multi-modal setup. While pretrained on Kinetics-
Sound, adding Lasync improves the performances by 1%
on both the UCF101 and ESC50. We interestingly find that
learning asynchronous cross-modal loss significantly im-
proves the model performance when pretrained on large-
scale Kinetics400. Our intuition is that as Kinetics-Sound
consists of a few hand-picked classes which are prominently
manifested in both audio and visual modalities, the per-
formance gain due to Lasync is less prominent. However,
Kinetics400 is considerably larger in scale and comprises
highly diverse action classes which are not always very
prominent both audibly and visually. It therefore benefits
more from the generalized representations learned by asyn-
chronous cross-modal optimization. Moreover, to demon-
strate the benefit of optimizing Lasync throughout the pre-
training process, we present the top-1 accuracy vs. pretrain-
ing epoch in Figure 4. It shows that Lasync significantly im-
proves the model performance throughout the pretraining.

Multi-modal fusion. Next, we investigate if learning
asynchronous cross-modal relations helps in multi-modal
fusion. To test this, we use Kinetics-Sound as the down-
stream dataset and Kinetics400 as the pretraining dataset.
We choose Kinetics-Sound for downstream evaluation as it
consists of action classes that are represented prominently in
both audio and visual domains. The results are presented in
Table 2, where it is shown that learning asynchronous cross-
modal relations improves multi-modal fusion by 1.7%. Ad-
ditionally, we show the linear evaluation results obtained
from the uni-modal feature representations for reference. It
shows that optimizing Lasync improves the action classifi-
cation accuracy by 2.4% and 3.9% using visual and audio
representations, respectively.

Qualitative analysis. Lastly, to perform a qualitative anal-
ysis on the impact of Lasync we visualize the saliency maps
obtained from the models when pretrained with and with-
out the presence of the asynchronous loss. In this experi-
ment, we directly use the models pretrained on Kinetics400
and use Grad-CAM (Omeiza et al. 2019) to visualize ran-
domly selected samples from Kinetics400. A few examples
are presented in Figure 3, where we observe that learning
asynchronous relations helps the model focus better on the
salient information. Specifically, we notice that optimizing
Lasync helps in correctly locating the sound sources on the
visual streams, as shown by the examples of ‘dribbling bas-
ketball’, ‘laughing’, ‘tapping guitar’, etc.

without asynchronous loss with asynchronous loss

A

B

C

D

E

F

A: blowing nose, B: dribbling basketball, C: singing, D: tapping
pen, E: laughing, F: tapping guitar

Figure 3: Visualization of saliency maps while pretrained
without (left) and with (right) asynchronous loss.
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Figure 4: Left: Linear eval. top-1 acc. vs. pretraining epochs.
Right: Exploring different temporal relaxation techniques.

4.3 Exploring Relaxed Time-synchronicity
Audio and visual modalities from the same source clip
generally maintain a very strong correlation, which makes
them suitable for multi-modal representation learning as one
modality can be used as a supervisory signal for the other in
a self-supervised setup. However, our intuition behind Criss-
Cross is that these cross-modal temporal correlations do not
necessarily need to follow a strict frame-wise coupling. In-
stead, we hypothesize that relaxing cross-modal temporal
synchronicity to some extent can help in learning more gen-
eralized representations.

To facilitate this idea within CrissCross, we exploit 5
different temporal sampling methods to explore varying
amounts of temporal synchronicity when learning cross-
modal relationships. (i) None: where both the audio and vi-
sual segments are sampled from the exact same time win-
dow. (ii) Mild: where the two views of the audio-visual
segments share 50% overlap amongst them. (iii) Medium:
where adjacent frame sequences and audio segments are
sampled. (iv) Extreme: in which we sample one view from
the first half of the source clip, while the other view is sam-
pled from the second half of the source clip. (v) Mixed:
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lrp= lrb comm. pred. 2 layers proj. default

UCF101 59.0 73.6 72.4 74.8
ESC50 62.3 75.3 75.0 79.0

Table 3: A comparative study of different predictor and pro-
jector setups. Here, lrb: base LR and lrp: pred LR

Figure 5: Loss curves of predictor head design exploration.

where the two audio-visual segments are sampled in a tem-
porally random manner. The results presented in Figure 4
show that the mild relaxation works best for both action
recognition and sound classification. Interestingly, we find
that medium relaxation shows worse performance in com-
parison to others, whereas, extreme relaxation works some-
what well in our setup.

4.4 Exploring Design Choices
Predictor. Our empirical study shows that the predictor
head plays an important role in effectively training the au-
dio and visual encoders to learn good representations. The
predictor architecture is similar to (Chen and He 2021). For
the sake of completeness, we provide the details of the pre-
dictor head in Appendix F. We explore (i) different learning
rates, and (ii) using a common vs. a separate predictor in the
multi-modal setup. It should be noted that none of the vari-
ants cause a collapse, even though we notice considerable
differences in performance. We present the findings below.

Following (Chen and He 2021), we use a constant learn-
ing rate for the predictors. However, unlike (Chen and He
2021), where the predictor learning rate is the same as the
base learning rate of the encoder, we find that a higher pre-
dictor learning rate helps the network to learn better repre-
sentations. In particular, setting the predictor learning rate
to be the same as the base learning rate results in unstable
training, and the loss curve shows oscillating behavior. We
empirically find that setting the predictor learning rate to 10
times the base learning rate works well. We present the re-
sults in Table 3 and training curves in Figure 5.

Next, we evaluate whether the framework can be trained
with a common predictor head instead of separate predictor
heads (default setup). In simple terms, one predictor head
would work towards identity mapping for both audio and vi-
sual feature vectors. To test this, l2-normalized feature vec-
tors fv(v) and fa(a) are fed to the predictor, which are then

Pretraining Dataset

KS (22K) K400 (240K) AS (1.8M)

HMDB51 45.7 50.0 56.2
UCF101 78.1 83.9 87.7
Kinetics400 39.0 44.5 50.1
ESC50 82.8 86.8 90.5
DCASE 93.0 96.0 97.0

Table 4: We present the top-1 acc. of linear evaluation on
action recognition and sound classification.

used in a usual manner to optimize the cost function. The re-
sults are presented in Table 3. We observe that though such
a setup works somewhat well, having separate predictors is
beneficial for learning better representations. We present the
training curves in Figure 5, it shows using common predic-
tor head results in training losses saturate very quickly ulti-
mately yielding worse performance compared to the use of
separate predictor heads.

Projector. We present a comparative study of projection
heads with 2 layers vs. 3 layers (default setup). We notice
2.4% and 4% improvements in top-1 accuracies when using
3 layers instead of 2 on action recognition and sound clas-
sification respectively (please see Table 3). The architecture
details are presented in Appendix F.

4.5 Exploring Audio-Visual Augmentations
We perform an in-depth study to explore the impact of dif-
ferent audio and visual augmentations.
Visual Augmentations. We explore a wide range of visual
augmentations. As a starting point, we adopt the basic spatial
augmentations used in (Morgado, Vasconcelos, and Misra
2021), which consists of Multi-Scale Crop (MSC), Hori-
zontal Flip (HF), and Color Jitter (CJ). Additionally, we ex-
plore other augmentations, namely Gray Scale (GS), Gaus-
sian Blur (GB) (Chen et al. 2020), and Cutout (C) (DeVries
and Taylor 2017), which show great performance in image-
based self-supervised learning (Chen et al. 2020; Van Gans-
beke et al. 2020). We explore almost all the possible com-
binations of different visual augmentations in a uni-modal
setup and present the results in Table 5. The results show that
strong augmentations improve the top-1 accuracy by 6.8% in
comparison to basic augmentations used in (Morgado, Vas-
concelos, and Misra 2021).
Temporal Consistency of Spatial Augmentations. While
investigating different spatial augmentations, we are also in-
terested to know if the spatial augmentations should be con-
sistent at the frame level or whether they should be random
(i.e., vary among consecutive frames within a sequence).
We refer to these concepts as temporarily consistent or tem-
porarily random. We perform an experiment where we apply
MSC-HF-CJ-GS randomly at the frame level and compare
the results to applying the same augmentations consistently
across all the frames of a sequence. Our results show that
maintaining temporal consistency in spatial augmentations
across consecutive frames is beneficial, which is in line with
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Visual UCF101 Audio ESC50
U

ni

MSC-HF-CJ 62.3 VJ 44.8
MSC-HF-CJ-GS 68.1 VJ-M 49.5
MSC-HF-CJ-GS-C 68.3 VJ-M-TW 49.5
MSC-HF-CJ-GS-GB 68.7 VJ-M-RC 62.0
MSC-HF-CJ-GS-GB-C 69.1

Visual + Audio UCF101 ESC50

M
ul

ti MSC-HF-CJ-GS-C + VJ-M-RC 73.9 79.0
MSC-HF-CJ-GS-GB + VJ-M-RC 73.5 79.0
MSC-HF-CJ-GS-GB-C + VJ-M-RC 74.8 79.0

Table 5: Exploring audio-visual augmentations.

the findings in (Qian et al. 2021). Specifically, Temporally
random augmentations, results in top-1 accuracy of 53.69%,
whereas, the same augmentations applied in a temporally
consistent manner results in 68.09%.
Audio Augmentations. Similar to visual augmentations, we
thoroughly investigate a variety of audio augmentations. Our
audio augmentations include, Volume Jitter (VJ), Time and
Frequency Masking (Mask) (Park et al. 2019), Random Crop
(RC) (Niizumi et al. 2021), and Time Warping (TW) (Park
et al. 2019). We also explore almost all the possible combi-
nations of these augmentations and present the results in Ta-
ble 5. Our findings show that time-frequency masking and
random crop improve the top-1 accuracy by 17.25% com-
pared to the base variant. We also notice that time warping
doesn’t improve performance and is also quite computation-
ally expensive. Hence, going forward we do not use time
warping during pretraining.
Audio-Visual Augmentations. We conduct further experi-
ments on a few combinations of augmentations in a multi-
modal setup. We pick the top-performing augmentations ob-
tained from the uni-modal variants and apply them con-
currently. The results are presented in Table 5 where we
find that the results are consistent with the uni-modal se-
tups, as the combination of MSC-HF-CJ-GS-GB-C and
VJ-M-RC performs the best in comparison to the other
combinations. Finally, We summarize the augmentation
schemes used for pretraining and evaluation in Tables S3
and S4 in the Appendix.

4.6 Linear Evaluation and Scalability
To evaluate the quality of the self-supervised representa-
tions, we perform linear evaluations on action recognition
(HMDB51, UCF101, and Kinetics400) and sound classifica-
tion (ESC50 and DCASE). We use 3 different-sized datasets,
i.e., Kinetics-Sound, Kinetics400, and AudioSet for pre-
training. In Table 4 we report the top-1 accuracies averaged
over all the splits. We notice a steady improvement in perfor-
mance as the pertaining dataset size increases, which shows
CrissCross can likely be scaled on even larger datasets like
IG65M (Ghadiyaram, Tran, and Mahajan 2019). Please note
that in order to evaluate scalability we choose linear eval-
uation accuracy instead of full-finetuning as it gives more
accurate measurements of learned representations obtained
through self-supervised pretraining.

Method Compute Backbone U101 H51

Pretrained Dataset: Kinetics-Sound (Finetune input 32×2242)

CM-ACC(2020) 40 GPUs 3D-ResNet-18 77.2 40.6
CrissCross 4 GPUs R(2+1)D-18 88.3 60.5
Supervised (2020) - 3D-ResNet-18 86.9 53.1

Pretrained Dataset: Kinetics400 (Finetune input 8×2242)

XDC (2020) 64 GPUs R(2+1)D-18 74.2 39.0
AVID (2021) 64 GPUs R(2+1)D-18 83.7 49.5
Robust-xID (2021) 8 GPUs R(2+1)D-18 81.9 49.5
CrissCross 8 GPUs R(2+1)D-18 86.9 54.3

Pretrained Dataset: Kinetics400 (Finetune input 32×2242)

SeLaVi (2020) 64 GPUs R(2+1)D-18 83.1 47.1
XDC (2020) 64 GPUs R(2+1)D-18 86.8 52.6
CM-ACC∗ (2020) 40 GPUs 3D-ResNet18 90.2 61.8
AVID (2021) 64 GPUs R(2+1)D-18 87.5 60.8
GDT (2021a) 64 GPUs R(2+1)D-18 90.9 62.3
CMAC (2021) 8 GPUs R(2+1)D-18 90.3 61.1
Robust-xID (2021) 8 GPUs R(2+1)D-18 85.6 55.0
CrissCross 8 GPUs R(2+1)D-18 91.5 64.7
Supervised (2021a) - R(2+1)D-18 95.0 74.0
Pretrained Dataset: AudioSet (Finetune input 8×2242)

XDC (2020) 64 GPUs R(2+1)D-18 84.9 48.8
AVID (2021) 64 GPUs R(2+1)D-18 88.6 57.6
CrissCross 8 GPUs R(2+1)D-18 89.4 58.3

Pretrained Dataset: AudioSet (Finetune input 32×2242)

XDC (2020) 64 GPUs R(2+1)D-18 93.0 63.7
MMV (2020) 32 TPUs R(2+1)D-18 91.5 70.1
CM-ACC (2020) 40 GPUs R(2+1)D-18 93.5 67.2
BraVe∗∗ (2021) 16 TPUs R(2+1)D-18 93.6 70.8
AVID (2021) 64 GPUs R(2+1)D-18 91.5 64.7
CrissCross 8 GPUs R(2+1)D-18 92.4 67.4
Supervised (2021) - R(2+1)D-18 96.8 75.9
∗ refers to 240K samples from Kinetics700. ∗∗ pretrained with
very high temporal resolutions (2 views of 32 & 128 frames)
compared to others (8/16/32).

Table 6: SOTA comparison on action recognition.

4.7 Comparison to the State-of-the-Arts
Action Recognition. In line with (Alwassel et al. 2020;
Asano et al. 2020; Morgado, Vasconcelos, and Misra 2021;
Patrick et al. 2021a; Ma et al. 2020), we benchmark Criss-
Cross using UCF101 and HMDB51 on action recognition.
For a fair comparison to earlier works, we adopt 2 setups
for finetuning, once with 8 frames, and the other with 32
frames. In both these setups, we use a spatial resolution of
2242. We tune the model using the split-1 of both datasets
and report the top-1 accuracy averaged over all the splits.
We notice large variability in experimental setups in the lit-
erature in terms of different backbones (e.g., deeper Con-
vNets, Transformer-based architectures, etc.) (Piergiovanni,
Angelova, and Ryoo 2020; Qian et al. 2021; Patrick et al.
2021b), pretraining inputs (e.g., the addition of optical flow
or text in addition to audio-visual data, etc.) (Piergiovanni,
Angelova, and Ryoo 2020; Qian et al. 2021; Alayrac et al.
2020), and pretraining datasets, making it impractical to
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Method UCF101 HMDB51

R@1 R@5 R@20 R@1 R@5 R@20

ST Order (2018) 25.7 36.2 49.2 - - -
SpeedNet (2020) 13.0 28.1 49.5 - - -
Clip Order (2019) 14.1 30.3 51.1 7.6 22.9 48.8
VCP (2020) 18.6 33.6 53.5 7.6 24.4 53.6
VSP (2020) 24.6 41.9 76.9 10.3 26.6 54.6
CoCLR (2020) 55.9 70.8 82.5 26.1 45.8 69.7
SeLaVi (2020) 52.0 68.6 84.5 24.8 47.6 75.5
Robust-xID (2021) 60.9 79.4 90.8 30.8 55.8 79.7
GDT (2021a) 57.4 73.4 88.1 25.4 51.4 75.0

CrissCross 63.8 78.7 89.9 26.4 50.5 77.7

Table 7: SOTA comparison on action retrieval.

Method ESC50 DCASE

K400 AS K400 AS

AVTS (2018) 76.7 80.6 91 93
XDC (2020) 78.0 84.8 91 95
AVID (2021) 79.1 89.1 93 96
MMV (2020) - 85.6 - -
BraVe (2021) - 90.4 - -
CrissCross 86.8 90.5 96 97

Table 8: SOTA comparison on sound classification.

compare to all the prior works. Following the inclusion cri-
teria of earlier works (Patrick et al. 2021a; Alwassel et al.
2020; Morgado, Vasconcelos, and Misra 2021), we compare
CrissCross with methods that use similar backbones, inputs,
and pretraining datasets.

The comparison of CrissCross with recent works is pre-
sented in Table 6. When pretrained with Kinetics400, Criss-
Cross outperforms all the prior works by considerable mar-
gins on UCF101 and HMDB51 in both the fine-tuning se-
tups. Moreover, CrissCross outperforms the current state-
of-the-art AVID (Morgado, Vasconcelos, and Misra 2021),
when pretrained on AudioSet and fine-tuned with 8-frame
inputs, on both the UCF101 and HMDB51. When fine-tuned
with 32-frame inputs, CrissCross achieves competitive re-
sults amongst the leading methods. We note that some of
the prior works show slightly better performance compared
to ours in some settings. We conjecture this to be due to
the use of higher spatio-temporal resolution pretraining in-
puts in these models. E.g., BraVe (Recasens et al. 2021) is
pretrained with 2 views of 32×1122 and 128×1122, and
the input size for MMV (Alayrac et al. 2020) and CM-ACC
(Ma et al. 2020) are 32×2242 and 16×2242, respectively.
In comparison, CrissCross is pretrained with visual inputs
of size 8×1122. However, we expect the performance of our
model to improve further by using such higher resolutions,
given the trend shown in (Recasens et al. 2021).

In addition to the commonly used Kinectis400 and Au-
dioSet, we further evaluate CrissCross while pretrained on
the small-scale Kinetics-Sound. Here, we observe signifi-
cant improvements compared to the current state-of-the-art

CM-ACC (Ma et al. 2020) on both UCF101 (88.3 vs. 77.2)
and HMDB51 (60.5 vs. 40.6). Additionally, CrissCross out-
performs fully-supervised pretraining by 1.4% and 7.4% on
UCF101 and HMDB51 respectively when both the fully-
supervised and self-supervised methods are pretrained on
Kinetics-Sound. To the best of our knowledge, this is the
first time that self-supervision outperforms full-supervised
pretraining on action recognition using the same small-scale
pretraining dataset, showing that our method performs well
on limited pretraining data.

Action Retrieval. In addition to full finetuning, we also
compare the performance of CrissCross in an unsupervised
setup. Following prior works (Morgado, Misra, and Vascon-
celos 2021; Patrick et al. 2021a; Asano et al. 2020), we
perform action retrieval using the split-1 of both UCF101
and HMDB51. The results are presented in Table 7 shows
that CrissCross outperforms the current state-of-the-arts on
UCF101 while achieving competitive results for HMDB51.

Sound Classification. We use two popular benchmarks
ESC50 and DCASE to perform sound classification. We
find large variability of experimental setups in the literature
for evaluating audio representations. For instance, different
backbones, input lengths, datasets, and evaluation protocols
(linear evaluation, full-finetuning) have been used, making it
impractical to compare to all the prior works. Following (Re-
casens et al. 2021; Alayrac et al. 2020), we perform linear
evaluations using 5-second inputs on ESC50 and 1-second
input for DCASE. As presented in Table 8, CrissCross out-
performs current state-of-the-art AVID (Morgado, Vascon-
celos, and Misra 2021) and BraVe (Recasens et al. 2021)
on ESC50, while pretrained on Kinetics400 and AudioSet
respectively. Additionally, CrissCross sets new state-of-the-
art by outperforming all the prior works on DCASE when
pretrained on both Kinetics400 and AudioSet.

5 Summary
We propose a novel self-supervised framework to learn
audio-visual representations by exploiting intra-modal, as
well as, synchronous and asynchronous cross-modal rela-
tionships. We conduct a thorough study investigating the
major concepts of our framework. Our findings show that re-
laxation of cross-modal temporal synchronicity is beneficial
for learning effective audio-visual representations. These
representations can then be used for a variety of downstream
tasks including action recognition, sound classification, and
action retrieval.
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