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Abstract

Efficient continual learning in humans is enabled by a rich set
of neurophysiological mechanisms and interactions between
multiple memory systems. The brain efficiently encodes in-
formation in non-overlapping sparse codes, which facilitates
the learning of new associations faster with controlled in-
terference with previous associations. To mimic sparse cod-
ing in DNNs, we enforce activation sparsity along with a
dropout mechanism which encourages the model to activate
similar units for semantically similar inputs and have less
overlap with activation patterns of semantically dissimilar in-
puts. This provides us with an efficient mechanism for bal-
ancing the reusability and interference of features, depend-
ing on the similarity of classes across tasks. Furthermore, we
employ sparse coding in a multiple-memory replay mech-
anism. Our method maintains an additional long-term se-
mantic memory that aggregates and consolidates informa-
tion encoded in the synaptic weights of the working model.
Our extensive evaluation and characteristics analysis show
that equipped with these biologically inspired mechanisms,
the model can further mitigate forgetting. Code available at
https://github.com/NeurAI-Lab/SCoMMER.

Introduction
The ability to continually acquire, consolidate, and retain
knowledge is a hallmark of intelligence. Particularly, as we
look to deploy deep neural networks (DNNs) in the real
world, it is essential that learning agents continuously inter-
act and adapt to the ever-changing environment. However,
standard DNNs are not designed for lifelong learning and
exhibit catastrophic forgetting of previously learned knowl-
edge when required to learn tasks sequentially from a stream
of data (McCloskey and Cohen 1989).

The core challenge in continual learning (CL) in DNNs
is maintaining an optimal balance between plasticity and
the stability of the model. Ideally, the model should be sta-
ble enough to retain previous knowledge while also plastic
enough to acquire and consolidate new knowledge. Catas-
trophic forgetting in DNNs can be attributed to the lack of
stability, and multiple approaches have been proposed to ad-
dress it. Among them, Rehearsal-based methods, (Riemer
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et al. 2018; Aljundi et al. 2019b) which aim to reduce for-
getting by continual rehearsal of previously seen tasks, have
proven to be an effective approach in challenging CL tasks
(Farquhar and Gal 2018). They attempt to approximate the
joint distribution of all the observed tasks by saving samples
from previous tasks in a memory buffer and intertwine the
training of the new task with samples from memory. How-
ever, due to the limited buffer size, it is difficult to approx-
imate the joint distribution with the samples alone. There
is an inherent imbalance between the samples of previous
tasks and the current task. This results in the network update
being biased towards the current task, leading to forgetting
and recency bias in predictions. Therefore, more informa-
tion from the previous state of the model is needed to better
approximate the joint distribution and constrain the update
of the model to preserve the learned knowledge. However, it
is still an open question what the optimal information is for
replay and how to extract and preserve it.

The human brain provides an existence proof for success-
ful CL in complex dynamic environments without intransi-
gence or forgetting. Therefore, it can provide insight into
the design principles and mechanisms that can enable CL
in DNNs. The human brain maintains a delicate balance
between stability and plasticity through a complex set of
neurophysiological mechanisms (Parisi et al. 2019; Zenke,
Poole, and Ganguli 2017) and the effective use of mul-
tiple memory systems (Hassabis et al. 2017). In particu-
lar, evidence suggests that the brain employs Sparse Cod-
ing, whereby the neural code is characterized by strong
activations of a relatively small set of neurons. The effi-
cient utilization of sparsity for information representation
enables learning new associations faster with controlled in-
terference with previous associations while maintaining suf-
ficient representation capacity. In addition, complementary
learning systems (CLS) theory posits that effective learn-
ing requires two complementary learning systems. The hip-
pocampus rapidly encodes episodic information into non-
overlapping representations, which are then gradually con-
solidated into the structural knowledge representation in the
neocortex through the replay of neural activities.

Inspired by these mechanisms in the brain, we hypothe-
size that employing a mechanism to encourage sparse cod-
ing in DNNs and mimic the interplay of multiple memory
systems can be effective in maintaining a balance between
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Figure 1: SCoMMER employs sparse coding in a multi-memory experience replay mechanism. In addition to the instance-based
episodic memory, we maintain a long-term memory that consolidates the learned knowledge in the working memory throughout
training. The long-term memory interacts with the episodic memory to enforce consistency in the functional space of working
memory through the knowledge retrieval loss. To mimic sparse coding in the brain, we enforce activation sparsity along with
semantic dropout, whereby the model tracks the class-wise activations during training and utilizes them to enforce sparse code,
which encourages the model to activate similar units for semantically similar inputs. Schematic shows how the activations from
layer l are propagated to the next layer. Darker shades indicate higher values. Given a sample from class 4, semantic dropout
retains the units with higher activation counts for the class, and top-k remaining (here 2) units with higher activations are
propagated to the next layer. This enables the network to form semantically conditioned subnetworks and mitigate forgetting.

stability and plasticity. To this end, we propose a multi-
memory experience replay mechanism that employs sparse
coding, SCoMMER. We enforce activation sparsity along
with a complementary dropout mechanism, which encour-
ages the model to activate similar units for semantically sim-
ilar inputs while reducing the overlap with activation pat-
terns of semantically dissimilar inputs. The proposed se-
mantic dropout provides us with an efficient mechanism to
balance the reusability and interference of features depend-
ing on the similarity of classes across tasks. Furthermore,
we maintain an additional long-term semantic memory that
aggregates the information encoded in the synaptic weights
of the working memory. Long-term memory interacts with
episodic memory to retrieve structural knowledge from pre-
vious tasks and facilitates information consolidation by en-
forcing consistency in functional space.

Our empirical evaluation on challenging CL settings and
characteristic analysis show that equipping the model with
these biologically inspired mechanisms can further mitigate
forgetting and effectively consolidate information across the
tasks. Furthermore, sparse activations in conjunction with
semantic dropout in SCoMMER leads to the emergence of
subnetworks, enables efficient utilization of semantic mem-
ory, and reduces the bias towards recent tasks.

Related Work
The different approaches to addressing catastrophic forget-
ting in CL can be broadly divided into three categories:
Regularization-based methods regularize the model in the
parameter space (Farajtabar et al. 2020; Kirkpatrick et al.
2017; Ritter, Botev, and Barber 2018; Zenke, Poole, and
Ganguli 2017) or the functional space (Rannen et al. 2017;
Li and Hoiem 2017), Dynamic architecture expands the net-

work to dedicate a distinct set of parameters to each task, and
Rehearsal-based methods (Riemer et al. 2018; Aljundi et al.
2019b) mitigate forgetting by maintaining an episodic mem-
ory buffer and continual rehearsal of samples from previous
tasks. Among these, our method focuses on rehearsal-based
methods, as it has been proven to be an effective approach
in challenging CL scenarios (Farquhar and Gal 2018). The
base method, Experience Replay (ER) (Riemer et al. 2018)
interleaves the training of the current task with the memory
samples to train the model on the approximate joint distribu-
tion of tasks. Several studies focus on the different aspects
of rehearsal: memory sample selection (Isele and Cosgun
2018), sample retrieval from memory (Aljundi et al. 2019a),
and what information to extract and replay (Ebrahimi et al.
2020; Bhat, Zonooz, and Arani 2022).

Dark Experience Replay (DER++) samples the output
logits along with the samples in the memory buffer through-
out the training trajectory and applies a consistency loss
on the update of the model. Recently, CLS theory has in-
spired a number of approaches that utilize multiple memory
systems (Wang et al. 2022a,b; Pham, Liu, and Hoi 2021)
and show the benefits of multiple systems in CL. CLS-
ER (Arani, Sarfraz, and Zonooz 2022) mimics the interplay
between fast and slow learning systems by maintaining two
additional semantic memories that aggregate the weights of
the working model at different timescales using an exponen-
tial moving average. Our method enforces sparse coding for
efficient representation and utilization of multiple memories.

Methodology
We first provide an overview of the motivation of biologi-
cal systems before formally introducing the different com-
ponents of the proposed approach.
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Continual Learning in the Biological System
Effective CL in the brain is facilitated by a complex set of
mechanisms and multiple memory systems. Information in
the brain is represented by neural activation patterns, which
form a neural code (Foldiak and Endres 2008). Specifically,
evidence suggests that the brain employs Sparse Coding, in
which sensory events are represented by strong activations
of a relatively small set of neurons. A different subset of neu-
rons is utilized for each stimulus (Foldiak 2003; Barth and
Poulet 2012). There is a correlation between these sparse
codes (Lehky, Tanaka, and Sereno 2021) that could capture
the similarity between different stimuli. Sparse codes pro-
vide several advantages: they enable faster learning of new
associations with controlled interference with previous asso-
ciations and allow efficient maintenance of associative mem-
ory while retaining sufficient representational capacity.

Another salient feature of the brain is the strong differ-
entiation and specialization of the nervous systems (Had-
sell et al. 2020). There is evidence for modularity in bio-
logical systems, which supports functional specialization of
brain regions (Kelkar and Medaglia 2018) and reduces in-
terference between different tasks. Furthermore, the brain
is believed to utilize multiple memory systems (Atkinson
and Shiffrin 1968; McClelland, McNaughton, and O’Reilly
1995). Complementary learning systems (CLS) theory states
that efficient learning requires at least two complementary
systems. The instance-based hippocampal system rapidly
encodes new episodic events into non-overlapping represen-
tations, which are then gradually consolidated into the struc-
tured knowledge representation in the parametric neocorti-
cal system. The consolidation of information is accompa-
nied by replay of the neural activities.

The encoding of information into efficient sparse codes,
the modular and dynamic processing of information, and
the interplay of multiple memory systems might play a cru-
cial role in enabling effective CL in the brain. Therefore, our
method aims to incorporate these components into ANNs.

Sparse Coding in DNNs
The sparse neural codes in the brain are in stark contrast
to the highly dense connections and overlapping represen-
tations in standard DNNs, which are prone to interference.
Particularly for CL, sparse representations can reduce inter-
ference between tasks and therefore reduce forgetting, as
there will be fewer task-sensitive parameters or fewer ef-
fective changes to the parameters (Abbasi et al. 2022; Iyer
et al. 2021). Activation sparsity can also lead to the natu-
ral emergence of modules without explicit architectural con-
straints (Hadsell et al. 2020). Therefore, to mimic sparse
coding, we enforce activation sparsity with a complementary
semantic dropout mechanism which encourages the model
to activate similar units for semantically similar samples.

Sparse Activations: To enforce the sparsity in activa-
tions, we use the k-winner-take-all (k-WTA) activation func-
tion (Maass 2000). k-WTA only retains the top-k largest val-
ues of an N × 1 input vector and sets all the others to zero
before propagating the vector to the next network layer. Im-
portantly, we deviate from the common implementation of

k-WTA in convolutional neural networks (CNNs) whereby
the activation map of a layer (C × H × W tensor where
C is the number of channels and H and W are the spatial
dimensions) is flattened into a long CHW × 1 vector in-
put and the k-WTA activation is applied similar to the fully
connected network (Xiao, Zhong, and Zheng 2019; Ahmad
and Scheinkman 2019). We believe that this implementation
does not take into account the functional integrity of an in-
dividual convolution filter as an independent feature extrac-
tor and does not lend itself to the formation of task-specific
subnetworks with specialized feature extractors. Instead, we
assign an activation score to each filter in the layer by taking
the absolute sum of the corresponding activation map and
select the top-k filters to propagate to the next layer.

Given the activation map, we flatten the last two dimen-
sions and assign a score to each filter by taking the absolute
sum of the activations. Based on the sparsity ratio for each
layer, the activation maps of the filters with higher scores are
propagated to the next layers, and the others are set to zero.
This enforces global sparsity, whereby each stimulus is pro-
cessed by only a selected set of filters in each layer, which
can be considered as a subnetwork. We also consider each
layer’s role when setting the sparsity ratio. The earlier lay-
ers have a lower sparsity ratio as they learn general features,
enabling higher reusability, and forward transfer to subse-
quent tasks uses a higher sparsity for later layers to reduce
the interference between task-specific features.

Semantic Dropout: While the k-WTA activation function
enforces the sparsity of activation for each stimulus, it does
not encourage semantically similar inputs to have similar ac-
tivation patterns and reduce overlap with semantically dis-
similar inputs. To this end, we employ a complementary Se-
mantic Dropout mechanism, which controls the degree of
overlap between activations of samples belonging to differ-
ent tasks while also encouraging same class samples to uti-
lize a similar set of units. We utilize two sets of activation
trackers: global activity counter,Ag ∈ RN , counts the num-
ber of times each unit has been activated throughout training,
whereas class-wise activity counter,As ∈ RC×N , tracks the
number of times each unit has been active for samples be-
longing to a particular class. N and C denote the total num-
ber of units and classes, respectively. For each subsequent
task, we first employ Heterogeneous Dropout (Abbasi et al.
2022) to encourage the model to learn the new classes by
using neurons that have been less active for previously seen
classes by setting the probability of a neuron being dropped
to be inversely proportional to its activation counts. Con-
cretely, let [Al

g]j denote the number of times that the unit j
in layer l has been activated after learning t sequential tasks.
For learning the new classes in task t+1, the probability of
retaining this unit is given by:

[P l
h]j = exp(

−[Al
g]j

maxi [Al
g]i

πh) (1)

where πh controls the strength of dropout with larger val-
ues leading to less overlap between representations. We then
allow the network to learn with the new task with hetero-
geneous dropout in place of a fixed number of epochs, Eh.
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Algorithm 1: SCoMMER Algorithm for Sparse Coding in Multiple Memory Experience Replay System

Input: data stream D; learning rate η; consistency weight γ; update rate r and decay parameter α, dropout rates πh and πs

Initialize: θs = θw
M←− {}

1: for Dt ∈ D do
2: while Training do
3: Sample training data: (xt, yt) ∼ Dt and (xm, ym) ∼M, and interleave x← (xt, xm)
4: Retrieve structural knowledge: Zs ← f(xm; θs)
5: Evaluate overall loss loss: L = Lce(f(x; θw), y) + γLkr(f(xm; θw),Zs) (Eq. 4)
6: Update working memory: θw ←− θw − η∇θwL
7: Aggregate knowledge: θs ← αθs + (1− α) θw, if r > a ∼ U(0, 1) (Eq. 3)
8: Update episodic memory:M←− Reservoir(M, (xt, yt))
9: After Eh epochs, update semantic dropout probabilities at the end of each epoch: Ps (Eq. 2)

10: Update heterogeneous dropout probabilities: Ph (Eq. 1)
return θs

During this period, we let the class-wise activations emerge
and then employ Semantic Dropout. It encourages the model
to utilize the same set of units by setting the probability of
retention of a unit for each class c as proportional to the
number of times it has been activated for that class so far:

[P l
s]c,j = 1− exp(

−[Al
s]c,j

maxi [Al
s]c,i

πs) (2)

where πs controls the strength of dropout. The probabilities
for semantic dropout are updated at the end of each epoch to
enforce the emerging pattern. This provides us with an effi-
cient mechanism for controlling the degree of overlap in rep-
resentations as well as enabling context-specific processing
of information, which facilitates the formation of semanti-
cally conditioned subnetworks. Activation sparsity, together
with semantic dropout, also provides an efficient mechanism
for balancing the reusability and interference of features de-
pending on the similarity of classes across the tasks.

Multiple Memory Systems
Inspired by the interaction of multiple memory systems in
the brain, in addition to a fixed-size instance-based episodic
memory, our method builds a long-term memory that aggre-
gates the learned information in the working memory.

Episodic Memory: Information consolidation in the brain
is facilitated by replaying the neural activation patterns that
accompanied the learning event. To mimic this mechanism,
we employ a fixed-size episodic memory buffer, which can
be thought of as a very primitive hippocampus. The memory
buffer is maintained with Reservoir Sampling (Vitter 1985),
which aims to match the distribution of the data stream by
assigning an equal probability to each incoming sample.

Long-Term Memory: We aim to build a long-term
semantic memory that can consolidate and accumulate
the structural knowledge learned in the working memory
throughout the training trajectory. The knowledge acquired
in DNNs resides in the learned synaptic weights (Krishnan
et al. 2019). Hence, progressively aggregating the weights
of the working memory (θw) as it sequentially learns tasks
allows us to consolidate the information efficiently. To this

end, we build long-term memory (θs) by taking the expo-
nential moving average of the working memory weights
in a stochastic manner (which is more biologically plausi-
ble (Arani, Sarfraz, and Zonooz 2021)), similar to (Arani,
Sarfraz, and Zonooz 2022):

θs ← αθs + (1− α) θw, if r > a ∼ U(0, 1) (3)

where α is the decay parameter and r is the update rate.
Long-term memory builds structural representations for

generalization and mimics the slow acquisition of struc-
tured knowledge in the neocortex, which can generalize
well across tasks. Long-term memory then interacts with
instance-level episodic memory to retrieve structural rela-
tional knowledge (Sarfraz, Arani, and Zonooz 2021) for the
previous tasks encoded in the output logits. Consolidated
logits are then utilized to enforce consistency in the func-
tional space of the working model. This facilitates the con-
solidation of information by encouraging the acquisition of
new knowledge while maintaining the functional relation of
previous knowledge and aligning the decision boundary of
working memory with long-term memory.

Overall Formulation
Given a continuous data stream D containing a sequence of
tasks (D1,D2, ..,DT ), the CL task is to learn the joint dis-
tribution of all the observed tasks without the availability of
task labels at test time. Our proposed method, SCoMMER,
involves training a working memory θw, and maintains an
additional long-term memory θs and an episodic memory
M. The long-term memory is initialized with the same pa-
rameters as the working memory and has the same spar-
sity constraints. Therefore, long-term memory aggregates
the weights of working memory. We initialize heterogeneous
dropout probabilities πh randomly to set the probability of
retention of a fraction of units to 1 and others to 0 so that the
first task is learned using a few, but sufficient units and the
remaining can be utilized to learn subsequent tasks.

During each training step, we interleave the batch of sam-
ples from the current task xt ∼ Dt, with a random batch of
exemplars from episodic memory xm ∼M. Working mem-
ory is trained with a combination of cross-entropy loss in
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Buffer Method S-CIFAR10 S-CIFAR100 GCIL
Class-IL Task-IL Class-IL Task-IL Unif Longtail

– JOINT 92.20±0.15 98.31±0.12 70.62±0.64 86.19±0.43 58.36±1.02 56.94±1.56

SGD 19.62±0.05 61.02±3.33 17.58±0.04 40.46±0.99 12.67±0.24 22.88±0.53

200

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.39 16.40±0.37 19.27±0.77

DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±0.78 18.84±0.60 26.94±1.27

CLS-ER 66.19±0.75 93.90±0.60 35.23±0.86 67.34±0.79 25.06±0.81 28.54±0.87

SCoMMER 69.19±0.61 93.20±0.10 40.25±0.05 69.39±0.43 30.84±0.80 29.08±0.31

500

ER 57.74±0.27 93.61±0.27 28.02±0.31 68.23±0.16 28.21±0.69 20.30±0.63

DER++ 72.70±1.36 93.88±0.50 41.40±0.96 70.61±0.11 32.92±0.74 25.82±0.83

CLS-ER 75.22±0.71 94.94±0.53 47.63±0.61 73.78±0.86 36.34±0.59 28.63±0.68

SCoMMER 74.97±1.05 94.36±0.06 49.63±1.43 75.49±0.43 36.87±0.36 35.20±0.21

Table 1: Comparison on different CL settings. The baseline results are from (Arani, Sarfraz, and Zonooz 2022).

T1 T2 T3 T4 T5

After T1

After T2

After T3

After T4

After T5

98.0

88.3 85.4

86.2 38.3 88.5

81.5 29.9 42.0 96.8

47.4 45.0 55.5 70.0 94.9

Working Memory

T1 T2 T3 T4 T5

98.6

92.0 84.8

87.7 57.5 79.7

85.5 49.0 64.5 86.7

70.0 52.0 60.8 79.2 86.5

Long-Term Memory

Figure 2: Task-wise performance of working memory and
the long-term memory. The long-term memory effectively
aggregates knowledge and generalizes well across the tasks.

the interleaved batch x← (xt, xb), and knowledge retrieval
loss on the exemplars. Thus, the overall loss is given by:

L = Lce(f(x; θw), y) + γLkr(f(xm; θw), f(xm; θs)) (4)

where γ controls the strength of consistency enforcement,
and the mean squared error loss is used for Lkr. The train-
ing step is followed by stochastically updating the long-term
memory (Eq. 3). The semantic dropout and heterogeneous
dropout probabilities are updated at the end of each epoch
and task, respectively (using Eqs. 1 and 3). We use long-
term memory for inference, as it aggregates knowledge and
generalizes well across tasks (cf. Figure 2). Algorithm 1 pro-
vides further training details.

Evaluation Protocol
To gauge the effectiveness of SCoMMER in tackling the
challenges faced by a lifelong learning agent, we consider
multiple CL settings that test different aspects of the model.

Class-IL presents a challenging CL scenario where each
task presents a new set of disjoint classes, and the model
must learn to distinguish between all the classes seen so
far without the availability of task labels at the test time.
It requires the model to effectively consolidate information

across tasks and learn generalizable features that can be
reused to acquire new knowledge. Generalized Class-IL
(GCIL) (Mi et al. 2020) extends the Class-IL setting to more
realistic scenarios where the agent has to learn an object over
multiple recurrences spread across tasks and tackle the chal-
lenges of class imbalance and varying number of classes in
each task. GCIL utilizes probabilistic modeling to sample
the number of classes, the classes appearing, and their sam-
ple sizes. Details of the datasets used in each setting are pro-
vided in Appendix. Although our method does not utilize
separate classification heads or subnets, for completion, we
also evaluate performance under the Task-IL setting, where
the model has access to the task labels at inference. In this
setting, we use the task label to select the subset of output
logits to select from.

Empirical Evaluation
We compare SCoMMER with state-of-the-art rehearsal-
based methods across different CL settings under uniform
experimental settings (details provided in Appendix). SGD
provides the lower bound with standard training on sequen-
tial tasks, and JOINT gives the upper bound on performance
when the model is trained on the joint distribution.

Table 1 shows that SCoMMER provides performance
gains in the majority of the cases and demonstrates the ef-
fectiveness of our approach under varying challenging CL
settings. In particular, it provides considerable improve-
ment under low buffer size settings, which suggests that
our method is able to mitigate forgetting with fewer sam-
ples from previous tasks. The performance gains over CLS-
ER, which employs two semantic memories, show that the
sparse coding in our method enables the effective utilization
of a single semantic memory. In particular, the gains in the
GCIL setting where the agent has to face the challenges of
class imbalance and learn over multiple occurrences of ob-
jects allude to several advantages of our method. Our pro-
posed semantic dropout in conjunction with sparse activa-
tions enables the model to reuse the sparse code associated
with the recurring object and learn better representations
with the additional samples by adapting the corresponding
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T1 T2 T3 T4 T5

After T1

After T2

After T3

After T4

After T5

98.8

67.0 92.1

54.0 16.9 95.8

55.9 13.1 22.9 98.7

15.8 15.1 36.0 73.8 98.2

ER

T1 T2 T3 T4 T5

98.2

89.2 87.3

82.0 50.0 90.0

79.3 33.4 63.0 94.8

58.4 29.5 67.5 81.1 95.7

DER++

T1 T2 T3 T4 T5

98.7

89.0 89.5

78.2 53.5 89.0

81.2 42.4 76.3 87.5

69.2 41.5 76.8 83.3 41.1

CLS-ER

T1 T2 T3 T4 T5

98.6

92.0 84.8

87.7 57.5 79.7

85.5 49.0 64.5 86.7

70.0 52.0 60.8 79.2 86.5

SCoMMER

Figure 3: Task-wise performance of different methods. The heatmaps provide the test set accuracy of each task (x-axis) eval-
uated at the end of each sequential learning task (y-axis). SCoMMER retains the performance of earlier tasks better without
compromising on the current task.

Sparse Long-Term Semantic AccuracyActivations Memory Dropout

✓ ✓ ✓ 69.19±0.61

✓ ✓ ✗ 67.38±1.51

✗ ✓ ✗ 61.88±2.43

✓ ✗ ✗ 49.44±5.43

✗ ✗ ✗ 44.79±1.86

Table 2: Ablation Study: Effect of systematically removing
different components of SCoMMER on the performance in
S-CIFAR10. All components contribute to the gain.

subset of filters. Furthermore, compared to the dense activa-
tions in CLS-ER, the sparse coding in SCoMMER leads to
the emergence of subnetworks that provide modularity and
protection to other parts of the network, since the entire net-
work is not updated for each input image. This increases the
robustness of the model to class imbalance.

Overall, our method provides an effective approach to
employ sparse coding in DNN and allows better long-term
memory utilization, which can effectively consolidate infor-
mation across tasks and further mitigate forgetting.

Ablation Study
To gain further insight into the contribution of each com-
ponent of our method, we systematically remove them and
evaluate the performance of the model in Table 2. The results
show that all components of SCoMMER contribute to the
performance gains. The drop in performance from remov-
ing semantic dropout suggests that it is effective in enforc-
ing sparse coding on the representations of the model, which
reduces the interference between tasks and allows semanti-
cally similar classes to share information. We also observe
the benefits of multiple memory systems in CL. Additional
long-term memory provides considerable performance im-
provement and suggests that the EMA of the learned synap-
tic weights can effectively consolidate knowledge across
tasks. Furthermore, we observe that sparsity is a critical
component for enabling CL in DNNs. Sparse activations

alone significantly improve ER performance and also en-
able efficient utilization of semantic memory. We highlight
that these individual components complement each other
and that the combined effect leads to the observed perfor-
mance improvement in our method.

Characteristics Analysis
We look at the model characteristics to understand the per-
formance gains. Subsequent analysis is performed on mod-
els trained on S-CIFAR10 with a 200 buffer size.

Stability-Plasticity Dilemma
To better understand how well different methods maintain
a balance between stability and plasticity, we look at how
task-wise performance evolves as the model learns tasks se-
quentially. The diagonal of the heatmap shows the plastic-
ity of the model as it learns the new task, whereas the dif-
ference between the accuracy of the task when it was first
learned and at the end of the training indicates the stabil-
ity of the model. Figure 3 shows that SCoMMER is able to
maintain a better balance and provides a more uniform per-
formance on tasks compared to baselines. While CLS-ER
provides better stability than DER++, it comes at the cost of
the model’s performance on the last task, which could be due
to the lower update rate of the stable model. SCoMMER, on
the other hand, retains performance on the earlier tasks (T1
and T2) and provides good performance on the recent task.
We also compare the long-term semantic and working mem-
ory performance in Figure 2. Long-term memory effectively
aggregates the learned knowledge into the synaptic weights
of working memory and generalizes well across tasks.

Emergence of Subnetworks
To evaluate the effectiveness of activation sparsity and se-
mantic dropout to enforce sparse coding in the model, we
look at the average activity of the units in the penultimate
layer. The emerging sparse code for each class is tracked
during training using the class-wise activity counter and en-
forced using semantic dropout probabilities (Equation 2).
Given a test sample from class c, ideally, we would want
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Figure 4: Class-wise activation counts of the filters in the penultimate layer of the model trained on S-CIFAR10 with 200 buffer
size. Comparison of the activation counts on the test set with the learned class-wise probabilities, Ps, during training shows the
effectiveness of semantic dropout in enforcing sparse coding. Right plot shows the cosine similarities between the activation
counts of different classes. Semantically similar classes have higher correlation in activations. Darker color shows higher values.

the model to use the subset of neurons that had higher activ-
ity for the training samples from class c without providing
any task information. Concretely, we track the class-wise
activity on the test set and plot the normalized activation
counts for a set of neurons next to their class-wise proba-
bilities at the end of training. Figure 4 shows a high correla-
tion between the test set activation counts and the semantic
dropout probabilities at the end of training, particularly for
recent classes. The activation counts also hint at the natural
emergence of semantically conditioned subnetworks, as the
model utilizes a different set of units for different classes.
Furthermore, we observe that semantically similar classes
have a higher degree of correlation between their activation
patterns. For instance, cat and dog share the most active neu-
rons, a similar pattern is observed between horse and deer,
and car and truck. The cosine similarities between the ac-
tivation counts of the different classes further supports the
observation. This is even more remarkable given that these
classes are observed in different tasks, particularly for cars
and trucks, which are observed in the first and last tasks.

Task Recency Bias
A major challenge in CL is the recency bias, in which the
predictions of the model are biased toward the recent task
task (Wu et al. 2019). This leads to considerable forgetting
of earlier tasks. To compare the degree to which SCoMMER
tackles this issue, we evaluate the probabilities of predicting
each task by aggregating the softmax output of samples from
the test set of all seen tasks and averaging the probabilities
of classes in each task. Figure 5 shows that SCoMMER pro-
vides more uniform probabilities to predict each task. CLS-
ER is able to mitigate the bias towards the last task, which
can be attributed to the aggregation of knowledge in the se-
mantic memories; however, CLS-ER reduces the probability
of predicting the last task. SCoMMER effectively mitigates
recency bias and provides uniform prediction probabilities
across tasks without any explicit regularization.
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Figure 5: Average probabilities of predicting classes from
each tasks at the end of training. SCoMMER provides more
uniform probabilities across the tasks.

Conclusion

Motivated by the mechanisms for the representation and uti-
lization of multiple memory systems in the brain, we pro-
posed a novel approach to employ sparse coding in multi-
ple memory systems. SCoMMER enforces activation spar-
sity along with a complementary semantic dropout mecha-
nism, which encourages the model to activate similar units
for semantically similar inputs and reduce overlap with dis-
similar inputs. In addition, it maintains long-term memory,
which consolidates the learned knowledge in the working
memory. Our empirical evaluation shows the effectiveness
of the approach in mitigating forgetting in challenging CL
scenarios. Furthermore, sparse coding enables efficient con-
solidation of knowledge in the long-term memory, reduces
the bias towards recent tasks, and leads to the emergence
of semantically conditioned subnetworks. We hope that our
study inspires further research in this promising direction.
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