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Abstract
Owing to the prohibitive costs of generating large amounts
of labeled data, programmatic weak supervision is a grow-
ing paradigm within machine learning. In this setting, users
design heuristics that provide noisy labels for subsets of the
data. These weak labels are combined (typically via a graph-
ical model) to form pseudolabels, which are then used to
train a downstream model. In this work, we question a foun-
dational premise of the typical weakly supervised learning
pipeline: given that the heuristic provides all “label” infor-
mation, why do we need to generate pseudolabels at all? In-
stead, we propose to directly transform the heuristics them-
selves into corresponding loss functions that penalize differ-
ences between our model and the heuristic. By constructing
losses directly from the heuristics, we can incorporate more
information than is used in the standard weakly supervised
pipeline, such as how the heuristics make their decisions,
which explicitly informs feature selection during training. We
call our method Losses over Labels (LoL) as it creates losses
directly from heuristics without going through the intermedi-
ate step of a label. We show that LoL improves upon exist-
ing weak supervision methods on several benchmark text and
image classification tasks and further demonstrate that incor-
porating gradient information leads to better performance on
almost every task.

1 Introduction
Recent advances in deep learning are enabled by the avail-
ability of large labeled datasets. However, expertly labeled
data can be very costly to obtain, causing a bottleneck in
many deep learning applications. Fortunately, in the ab-
sence of labeled data, we can leverage domain knowledge
or auxiliary information for a given task. Many subfields
of machine learning have tackled this problem, including
semi-supervised learning, weakly supervised learning, and
self-supervised learning. Although the specific methods em-
ployed by these approaches are quite distinct, many of
them operate under a common theme. These approaches of-
ten work by generating pseudolabels (Lee 2013; Cascante-
Bonilla et al. 2020; Pham et al. 2021), which can be plugged
into a standard supervised learning pipeline to optimize a
model on large amounts of unlabeled data. This paper fo-
cuses on their particular use in the paradigm of program-
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matic weak supervision (Zhang et al. 2022a), which we will
refer to as weak supervision throughout this paper.

In the setting of weak supervision, we assume the pres-
ence of weak labelers that are commonly hand-engineered
heuristics (we use the terms weak labeler and heuristic in-
terchangeably, although weak labelers are more general and
can have more varied structures). As an example, consider a
sentiment classification task for restaurant reviews; a heuris-
tic might associate the word “delicious” with a positive la-
bel, although this is clearly an imperfect label. Most re-
cent advancements in weak supervision propose approaches
that aggregate the outputs of multiple such heuristics to
produce pseudolabels, typically through a graphical model
(Ratner et al. 2017). These pseudolabels are used in combi-
nation with unlabeled data to optimize a downstream model,
commonly referred to as an end model. This line of work
has demonstrated its widespread applicability and efficiency
(Bach et al. 2019) to learn from noisy information.

In this paper, we question this fundamental approach to
weak supervision: specifically, why is there any need to pro-
duce pseudolabels at all? This standard approach distills the
heuristics, which are rich sources of information, entirely
into a single pseudolabel, to fit into a standard supervised
learning pipeline. Instead, we propose to directly transform
heuristics into loss functions and train a network to mini-
mize a combination of these loss functions (Figure 1). We
refer to our method as Losses over Labels (LoL), as we pro-
duce a combination of loss functions rather than interme-
diate pseudolabels. The simplest form of these losses is a
smoothed variant of the number of times our model’s predic-
tion differs from the heuristic’s prediction; this is similar to a
form of “soft” pseudolabels. Building on this, our losses in-
corporate additional information from the heuristics, such as
which features are used in their decisions. We add a penalty
term to each loss, penalizing a model when its gradients do
not match the heuristics’ gradients on these important fea-
tures. Incorporating this gradient information improves fea-
ture selection during optimization, which has not been pre-
viously considered in weak supervision and which indeed
cannot be naturally performed with pseudolabels alone. In-
tuitively, this gradient information constrains our hypothesis
space, removing lots of incorrect hypotheses that do not use
correct features. Since our method uses the same heuristics
as other weakly supervised algorithms, it does not require
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Figure 1: Depiction of our LoL method (bottom), compared to a standard weakly supervised pipeline (top). Our loss functions
are generated by Equation 3.

any additional information over existing methods; it just ac-
cesses the heuristic’s underlying decision mechanism.

We demonstrate that LoL performs favorably when com-
pared to methods that create intermediate pseudolabels on
five standard tasks from a weak supervision benchmark
(Zhang et al. 2021). Our results support that our approach
to incorporate gradient information especially helps in the
regime when we do not have access to abundant unlabeled
data. As other methods have to implicitly learn important
features from data, LoL directly incorporates some of this
information from the heuristics and, thus, requires less unla-
beled data. Finally, we demonstrate that even when this gra-
dient information is implicitly learnt (i.e., pretrained mod-
els on an auxiliary task), incorporating it during training still
is beneficial to performance. As a whole, our results sug-
gest that weakly supervised methods do not need to generate
pseudolabels and can be further improved by directly trans-
lating heuristics into more informative loss functions.

2 Related Work
The problem of learning from weak or noisy sources of in-
formation has been studied in many different contexts.

Noisy Labels Various approaches have tackled the prob-
lem of learning from a single source of noisy labels. Many of
these techniques assume that these labels are corrupted with
random noise (Natarajan et al. 2013; Guan et al. 2018) and
provide methods to address this in the optimization proce-
dure or average over multiple splits of the dataset to denoise
these corrupted labels. More recent techniques consider
class-conditional noise or noise that is instance-dependent
(Han et al. 2020) and provide techniques to correct such
noise in the multiclass setting (Patrini et al. 2017). However,
a fundamental distinction from this line of work is that weak

supervision considers multiple sources of such noisy infor-
mation.

Crowdsourcing Learning from multiple noisy sources
has been classically studied in the field of crowdsourcing,
where the goal is to combine human-annotated labels from
multiple sources of varying quality. Many works in crowd-
sourcing combine these weak signals to recover the true
labels. These approaches (Dawid and Skene 1979; Nitzan
and Paroush 1982; Gao and Zhou 2013) make strong as-
sumptions about the noisy annotators and derive optimal ap-
proaches to combine them under these assumptions. Prior
work has extended this setting to allow abstentions (Dalvi
et al. 2013). More recent crowdsourcing work has connected
the field to modern machine learning applications by ana-
lyzing models trained on noisy crowdsourced labels (Zhang,
Wu, and Sheng 2016). All of these works focus on aggre-
gating crowdsourced annotators into a pseudolabel to po-
tentially optimize a downstream model, while our approach
proposes generating loss functions.

Ensemble Methods Aggregating multiple functions has
also been studied in the field of ensemble methods. In boost-
ing (Schapire 1990; Freund 1995; Chen and Guestrin 2016),
methods aggregate multiple weak learners into a strong clas-
sifier. Bagging (Breiman 1996) aggregates multiple mod-
els to reduce variance from the individual (potentially over-
fitting) classifiers through bootstrapped samples. Ensemble
methods have also been specifically studied in the semi-
supervised setting (Balsubramani and Freund 2015b,a), cre-
ating a combination of classifiers via a minimax game.
While these are all similar to combining weak labelers, their
focus is to produce a weighted combination of multiple weak
learners rather than training a downstream model.

Multi-task Learning Multi-task learning is a related
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field that focuses on optimizing multiple loss functions,
which are derived from different tasks. Here, approaches
train a single model on multiple learning tasks simulta-
neously (Caruana 1993). Many approaches have focused
on formalizing a notion of task similarity (Ben-David and
Schuller 2003; Shui et al. 2019) to guide learning. Recent
applications of multi-task learning to neural networks use
some form of parameter sharing (Argyriou, Evgeniou, and
Pontil 2007; Yang and Hospedales 2017; Ruder et al. 2017;
Shui et al. 2019). We remark that multi-task learning is dif-
ferent from our setting as our weak labelers are designed for
the same task, just with differing qualities and coverages.
While a connection between weak supervision and multi-
task learning has been made in previous work (Ratner et al.
2019), this approach still combines information from mul-
tiple tasks into a single pseudolabel via a graphical model,
rather than considering the heuristics individually.

Weak Supervision The paradigm of weak supervision
assumes the presence of weak labelers of varying quality
that label subsets of the data. A seminal work (Ratner et al.
2016) first formulated combining these noisy sources of in-
formation via a graphical model, which produces pseudola-
bels used to train an end model. Most recent advances in
weakly supervised learning have trended towards producing
higher quality pseudolabels, frequently through more com-
plex graphical models (Ratner et al. 2019; Fu et al. 2020).
Additional works have developed variants of these graphi-
cal models to extend the weakly supervised setting to han-
dle other objectives (Safranchik, Luo, and Bach 2020; Shin
et al. 2022) and more general forms of weak supervision
(Yu, Ding, and Bach 2022; Zhang et al. 2022b). Another line
of weak supervision research has improved these methods
by assuming additional information, i.e, a semi-supervised
setting (Awasthi et al. 2020; Xu et al. 2021), an active learn-
ing setting (Biegel et al. 2021), or prior information on weak
labeler accuracies (Arachie and Huang 2019; Mazzetto et al.
2021a,b; Arachie and Huang 2021, 2022). Finally, other
works have developed more elaborate downstream train-
ing methods, primarily focused on deep learning models
(Karamanolakis et al. 2021; Ruhling Cachay, Boecking, and
Dubrawski 2021; Yu et al. 2021). Overall, recent advances in
weak supervision have focused on improving pseudolabels
and potentially assuming access to more information. We re-
mark that our method looks to improve learning from weak
supervision in an orthogonal direction by generating losses.

3 Preliminaries
Our classification task has some domain X and a set of mul-
tiple discrete labels Y where |Y| = k. We assume that data
is given by some underlying distribution D over X ×Y . Our
goal is to learn a classifier h : X → [0, 1]k that maps exam-
ples to a probability distribution over labels Y , which mini-
mizes standard 0-1 risk (on the argmax of the outputs of h).

In the weakly supervised paradigm, we only observe
training examples X = {x1, ..., xn} ⊂ X . In the absence of
labels for these examples, weak labelers are given as a set of
m functions λ = {λ1, ..., λm}, and each λi : X → Y ∪ {∅}
where ∅ denotes an abstention. Abstentions allow more flex-
ibility in the design of weak labelers, as users can create

weak labelers that have high accuracy on specific regions of
the data and abstain everywhere else. While weak labelers
are permitted to abstain on data points, our classifier h is not
able to abstain and must always make a prediction for all x.

4 Losses over Labels
Our main contribution is that, instead of producing pseu-
dolabels, we propose to optimize a combination of loss func-
tions that are derived directly from the weak labelers. This
approach is arguably simpler than previous graphical mod-
els and still captures all “label” information used to gener-
ate these pseudolabels. In fact, this allows us to retain more
information from these multiple sources (such as which fea-
tures inform their decisions) during the optimization proce-
dure. Intuitively, this improves the training process by aiding
(and potentially correcting) feature selection with gradient
information from the heuristics. We remark that this infor-
mation is ignored by existing weak supervision methods that
aggregate heuristics to produce intermediate pseudolabels.

4.1 Generating Losses from Heuristics
Formally, our approach looks to optimize an aggregation of
loss functions that are derived from our heuristics. We can
find some classifier ĥ

ĥ = argmin
h

m∑
i=1

1

m(xj)

(
n∑

j=1

ℓi(xj , h)

)
, (1)

where ℓi corresponds to the loss function generated from
weak labeler λi, and m(x) =

∑m
i=1 1{λi(x) ̸= ∅} repre-

sents the number of labelers that do not abstain on point x.
Perhaps the simplest loss function that we can consider is
the loss ℓi on data x and classifier h as

ℓi(x, h) = 1{λi(x) ̸= ∅} · ℓ(h(x), λi(x)), (2)
where ℓ can be any arbitrary loss function. This simple loss
function can be easily generated given access to the heuris-
tic function outputs. A combination of these losses repre-
sents the average loss ℓ over weak labelers that do not ab-
stain. This is reasonable as our learnt model should con-
flict the fewest possible number of times with the weak la-
bels. For the remainder of this paper, we consider ℓ to be
the cross-entropy loss, which serves as a smoothed version
of the number of disagreements between the trained classi-
fier h and weak labeler λi. We remark that this simple com-
bination of losses is similar to optimizing over pseudolabels
with a “soft” majority vote function. In fact, under the log
loss and the square loss, we recover the same objective up to
a constant factor.
Proposition 1. An aggregation of log losses is equivalent to
using a soft version of a majority vote as a pseudolabel.
Proposition 2. An aggregation of squared losses is equiva-
lent to using a soft version of a majority vote as a pseudola-
bel, up to an additive constant (with respect to our model).

The derivations of these propositions are shown in the ex-
tended version of this paper (Sam and Kolter 2022). While
this combination of naive losses recovers the same objective
as using pseudolabels, this overall framework paves the road
for us to create more informative and powerful loss functions
from heuristics by incorporating their gradient information.
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4.2 Incorporating Additional Heuristic
Information via Input Gradients

We now present our approach to incorporate gradient infor-
mation from the heuristics, in order to produce more com-
plex losses. In the typical weak supervision pipeline, the
weak labeler aggregation model only looks at the outputs of
the weak labelers. As the weak labelers are hand-engineered
by experts, we frequently have access to the underlying
mechanism of the heuristics. Therefore, we have informa-
tion about which features are used to make their decisions.

The most common form of weak labelers (in a text classi-
fication setting) is that of a rule that checks for the presence
of a set of words in a given example. For a bag of words data
representation, we can determine exactly which dimensions
of the data our weak labelers use, by finding the indices of
the words in the vocabulary. This is a rich source of informa-
tion, which is thrown away when generating pseudolabels.
Therefore, we propose to leverage these additional proper-
ties of the heuristics through their input gradients. We re-
mark that this form of weak labelers is a binary-valued func-
tion and is not differentiable. Therefore, we can incorporate
its “gradient information” in a principled manner by creating
a smoothed approximation of these heuristics via random in-
puts to the heuristics. This is similar to an idea used in ad-
versarial robustness (Cohen, Rosenfeld, and Kolter 2019).

Formally, let X = {0, 1}n and Y = {0, 1}, although this
easily generalizes to a multiclass setting. Then, we can con-
sider a heuristic function that looks for the presence of a
word at index j, or λi(x) = 1{xj=1} and provides a positive
label if it is present. We can define the smoothed approxima-
tion of this heuristic λ̃i : [0, 1]

n → [0, 1]k+1 as

λ̃i(ϕ) = Ex∼Ber(ϕ)[λi(x)],

where ϕ = (ϕ1, ..., ϕn) ∈ [0, 1]n. This is now a (continuous-
valued) smoothed approximation of the heuristic by consid-
ering its expectation over random independent Bernoulli in-
puts to the function. Then xj = 1 with probability ϕj , so

λ̃i(ϕj) =

(
0
ϕ

1− ϕ

)
,

where the first index corresponds to class 0, the second index
corresponds to class 1, and the third index corresponds to
the abstain vote ∅. We can now compute a gradient of the
smoothed approximation of our weak labeler λ̃i with respect
to the Bernoulli distribution parameter ϕ. The gradient of the
smoothed heuristic i at index j is given by

∇ϕj λ̃i(ϕj) =

(
0
1
−1

)
.

However, the binary nature of these heuristics only allows
for gradients of the smoothed approximations to take values
of −1 or 1. As our learnt classifier takes real-valued inputs
and produces real-valued outputs, we penalize our model for
having an input gradient less than some hyperparameter c
times ∇ϕ λ̃i, which serves as a threshold for our model’s

desired gradient. In essence, this penalizes models that do
not use the same features that are used by the heuristic.

While we can analytically compute the randomized ap-
proximation of weak labelers, we can only approximate the
gradient of our classifier. We can similarly define a smoothed
approximation of our classifier h on random Bernoulli in-
puts as

h̃(ϕ) = Ex∼Ber(ϕ)[h(x)],

and we can estimate the input gradient empirically as
∇ϕ h̃(ϕ) =

1
t

∑t
i=1 ∇zih(zi) where z = {z1, ..., zt} is sam-

pled iid from Ber(ϕ). Then, we can construct a gradient loss
function ℓ∗i induced by a weak labeler λi as

ℓ∗i (x, h) = 1{λi(x) ̸= ∅} ·
(
ℓ(h(x), λi(x))+

α · ||
[
c · ∇ϕλ̃i(ϕ)Y −∇ϕh̃(ϕ)

]+
||22
)
,

(3)

where λ̃i(ϕ)Y denotes the gradient of the smoothed
heuristic only along dimensions that correspond to non-
abstaining votes and where [x]+ = max(x, 0), α > 0, and
c > 0. We note that can only match the gradients of the
heuristic on the non-abstaining dimensions as our model h
cannot abstain.

At a high level, this loss function incorporates a squared
penalty for the gradient of our model being less than c times
the gradient of the heuristic (along non-abstained dimen-
sions). α serves as a hyperparameter that determines the
weighting or importance of the gradient matching term, sim-
ilar to a weighting parameter for regularization. We provide
ablations in the extended version (Sam and Kolter 2022) to
compare with other choices of this gradient penalty (e.g., lin-
ear or exponential).

Finally, we can compute the empirical risk minimizer over
the average of these gradient loss functions to produce a
classifier ĥg:

ĥg = argmin
h

m∑
i=1

(
1

m(xj)
·

n∑
j=1

ℓ∗i (xj , h)

)
. (4)

We remark that matching the input gradients of our learnt
model to that of the heuristics only requires unlabeled data
to compute. Therefore, our approach does not require any
additional information, such as labeled data, to incorporate
information about how the heuristics make their decisions.
While this paper focuses on this prevalent type of heuristic,
it generalizes to any weak labeler that has a gradient that
we can compute. We demonstrate this applicability to other
forms or weak labelers and types of data, such as pretrained
models on image classification tasks, in Section 5.6.

5 Experiments
In our experiments, we compare LoL to existing weakly su-
pervised algorithms on 5 text classification datasets from
WRENCH (Zhang et al. 2021), which provides the weak
supervision sources. For all of our text classification tasks,
we use a bag of words data representation, so we can easily
compute the gradients of a smoothed version of the heuris-
tics. Most weak labelers in WRENCH check for the pres-
ence of a word or a set of words in a given sentence. We
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MV Snorkel T-Mean T-Median E2E LoL

agnews 82.3 ± 1.1 82.7 ± 0.9 – – 74.8 ± 0.1 83.4 ± 0.1
chemprot 51.4 ± 0.4 51.0 ± 0.4 – – 50.1 ± 1.2 52.9 ± 0.3
IMDB 80.8 ± 0.2 82.1 ± 0.5 79.3 ± 1.1 80.4 ± 0.8 75.2 ± 0.6 81.8 ± 0.3
Yelp 77.1 ± 1.1 77.7 ± 0.5 79.3 ± 1.1 81.0 ± 1.0 79.7 ± 0.2 75.9 ± 0.7
YouTube 92.9 ± 0.9 91.0 ± 0.3 90.0 ± 0.7 90.6 ± 0.5 91.7 ± 0.5 94.2 ± 0.7

Table 1: Results on 5 datasets from the WRENCH benchmark, averaged over 5 random seeds. Accuracies are reported as mean
± standard deviation. We note the best-performing method in bold. We omit results from T-Mean and T-Median on multiclass
tasks (agnews, chemprot) as they are binary classification methods.

MV Snorkel T-Mean T-Median E2E LoL

agnews 52.9 ± 1.8 54.7 ± 1.8 – – 46.7 ± 2.5 63.2 ± 0.7
chemprot 38.2 ± 0.7 36.5 ± 1.9 – – 37.1 ± 1.1 39.8 ± 1.2
IMDB 67.5 ± 0.6 66.0 ± 1.0 58.3 ± 2.5 52.4 ± 0.7 61.7 ± 1.0 69.6 ± 0.4
Yelp 67.8 ± 1.5 67.7 ± 2.2 70.0 ± 1.7 65.0 ± 2.6 65.9 ± 1.4 71.2 ± 2.4
YouTube 90.9 ± 1.01 87.5 ± 2.4 88.0 ± 1.3 79.8 ± 4.5 90.2 ± 0.7 92.0 ± 0.9

Table 2: Results when training on only 100 unlabeled data, averaged over 5 random seeds. Accuracies are reported as mean ±
standard deviation. Again, we note the best-performing method in bold.

still include weak labelers that are of a different form (e.g.,
a pre-trained sentiment classifier) for all methods. However,
we are unable to analytically compute the gradients for these
other weak labelers, so we remove those terms from the LoL
loss and use the simple loss given in Equation 2. In Section
5.6, we extend our setting to consider 3 image classification
tasks from the Animals with Attributes 2 dataset (Xian et al.
2018) with weak labelers that are trained models. Code for
our experiments can be found here1.

5.1 Baselines
We compare our method against weakly supervised base-
lines that do not require any labeled data or estimates of
weak labeler error rates. Our baselines include:

Majority Vote (MV): We create pseudolabels with a
vanilla majority vote where ties are broken randomly. These
pseudolabels are then used to train an end model.

Snorkel MeTaL (Snorkel): We generate soft pseudola-
bels via the graphical model approach in Snorkel MeTaL
(Ratner et al. 2019), which are used to train an end model.

Triplet Methods (T-Mean and T-Median): We generate
soft pseudolabels via the triplet method described in Fly-
ingSquid (Fu et al. 2020). Mean denotes the original ap-
proach, and median denotes the extension later for estimat-
ing median parameters (Chen et al. 2021). Both of these pro-
duce pseudolabels that are used to train an end model. We re-
mark that these models are defined for binary classification
tasks, so we cannot report their scores on multiclass tasks.

1https://github.com/dsam99/LoL

End to End (E2E): We compare against the end-to-end
approach that jointly learns both the aggregation of weak la-
belers and the end model (Ruhling Cachay, Boecking, and
Dubrawski 2021). We remark that this approach uses an ad-
ditional neural network as an encoder to generate pseudola-
bels. Therefore, it uses a more complex model as compared
to LoL and other baselines.

5.2 Results
We provide the results of our methods and the baselines
in Table 1. LoL achieves the best performance on 3 of
the 5 datasets. In addition, our method is the second best-
performing method on another dataset. While T-Median
and E2E are the best-performing methods on the remaining
dataset, we note that LoL outperforms both of these methods
on all other tasks. Even when compared to the much more
complex architecture of E2E, LoL still performs favorably
in most cases.

These experiments illustrate that LoL achieves frequently
better performance than existing weakly supervised ap-
proaches, without the need for intermediate pseudolabels.
Furthermore, this demonstrates that using information about
how the heuristics make their decisions can benefit weakly
supervised methods, improving overall performance.

5.3 Performance with Limited Unlabeled Data
While weakly supervised learning usually assumes abundant
unlabeled data, we demonstrate the ability of LoL on set-
tings with limited unlabeled data. We remark that LoL out-
performs other methods, especially when unlabeled data is
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Figure 2: Results (left to right, top to bottom: agnews, chemprot, IMDB, Yelp, Youtube) as we vary validation set size. Baselines
are given by dashed lines, and LoL is given by a solid line. We compute error bars (standard deviation) over 5 seeds.

also limited in quantity. This is due to the additional infor-
mation from how the heuristics make their decisions; this
additional gradient information helps with feature selection
during the training process. On the other hand, other meth-
ods must learn this information from unlabeled data, failing
when unlabeled data is limited.

We consider the same experimental setting as above in
Table 2; however, we now only assume the presence of a
few (N = 100) unlabeled training data from each task.
We present these additional empirical results in Table 2. In
this setting, LoL is now the best-performing method across
all datasets. This is a notable result as LoL was previously
outperformed on both IMDB and Yelp with large unlabeled
data. In fact, we remark LoL with only 100 unlabeled data
performs better than almost all other methods, using the full
unlabeled training dataset (excluding MV).

The best performing baseline in most cases is MV, as
other baselines (Snorkel, T, T-Median) likely produce incor-
rect accuracy estimates with limited unlabeled data. In ad-
dition, E2E is a more complex model, with an additional
neural network as an encoder; thus, it struggles with learn-
ing from a small amount of data. These experiments demon-
strate that our method especially improves performance
specifically in the case when unlabeled data is limited.

5.4 Impact of Using Gradient Information
We provide an ablation study in Table 3 to directly com-
pare using gradient information to the combination of naive

LoL LoL-simple

agnews 83.4 ± 0.1 82.3 ± 1.2
chemprot 52.9 ± 0.3 53.2 ± 0.2
IMDB 81.8 ± 0.3 80.8 ± 0.8
Yelp 75.9 ± 0.7 74.8 ± 0.4
YouTube 94.2 ± 0.7 93.7 ± 0.8

Table 3: Comparison of LoL and LoL-simple, averaged over
5 random seeds. Accuracies are reported as mean ± standard
deviation. We bold the best performing method.

losses (i.e, a soft majority vote pseudolabel), which we re-
fer to as LoL-simple. This comparison looks to demonstrate
the impacts of incorporating gradient information, which is
the only difference between these two approaches.

We observe that in almost every dataset (except
chemprot), incorporating gradient information improves
upon the simple combination of labelers (that is equivalent
to a soft majority vote). Only on the chemprot dataset, LoL-
simple performs slightly better to LoL. This supports that
gradient information is beneficial to the standard weakly su-
pervised learning pipeline.
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MV Snorkel T-Mean E2E LoL-simple LoL LoL-sw

seal v. whale 90.2 ± 1.5 97.1 ± 0.6 93.1 ± 0.8 96.6 ± 0.6 91.8 ± 1.5 93.6 ± 1.3 95.5 ± 0.9
raccoon v. rat 75.3 ± 5.7 94.9 ± 0.9 85.1 ± 3.0 91.8 ± 2.1 69.9 ± 5.6 77.9 ± 4.1 96.4 ± 0.5
whale v. hippo 98.4 ± 0.4 99.1 ± 0.4 98.1 ± 0.8 98.4 ± 0.4 97.3 ± 0.5 98.3 ± 0.3 98.1 ± 0.4

Table 4: Results on binary classification tasks between test classes of the Animals with Attributes 2 dataset, averaged over 5
random seeds. We selected the 3 tasks with the fewest weak labelers (defined by differences in class attribute annotations).
Accuracies are reported as mean ± standard deviation. k = 20 for LoL. The best-performing method is bolded.

5.5 Sensitivity to Amount of Validation Data
Finally, we provide experiments that demonstrate the perfor-
mance of LoL as we vary the amount of validation data used
for model selection. We note that LoL has two additional hy-
perparameters α, c; thus, it potentially requires more valida-
tion data. The WRENCH benchmark uses 10% of the entire
data as validation data, which is frequently sufficient labeled
data to even train a supervised model. Therefore, we provide
experiments (Figure 2) that evaluate the sensitivities of our
methods to the amount of validation data.

For each task, we split the dataset into 80% train and vali-
dation data and 20% test data. Then we further split training
and validation data into N examples per class of labeled val-
idation data. We report results for validation set sizes of N ∈
{10, 15, 20, 50, 100}. We additionally compare all methods
against a supervised learning approach on the labeled valida-
tion data (ValSup). This baseline helps us assess the particu-
lar regime of our experiment; we primarily care about when
traditional supervised learning fails. We note that the ValSup
supervised learning baseline performs model selection on its
own training set. In these experiments, we train methods for
10 epochs. Our results demonstrate that our model performs
comparably to or better than other methods, with access to
little validation data. On the YouTube dataset, we even out-
perform the supervised baseline.

5.6 Extension to Pretrained Labelers on Images
We extend our setting to consider image classification tasks
with weak labelers that are trained models. We follow the
standard procedure outlined in (Mazzetto et al. 2021b,a)
to create weak labelers from the Animals with Attributes
2 dataset (Xian et al. 2018). These models learn to detect
coarse-grained attributes from images (e.g., color, presence
of water, etc.), which we use to produce noisy labels for new
classes at test time. We follow the same experimental proce-
dure as before, now using an underlying representation given
by the pretrained ResNet18.

To generate our gradient constraints, we can directly com-
pute the input gradients of the weak labelers, as they are
functions defined on continuous input data. However, as
these models are learnt, we do not have any explicit control
over their gradients. Therefore, we only constrain our model
to match the top-k gradient features of the weak labeler as
they may be potentially noisy. Intuitively, we again benefit
from additional feature selection as we add constraints that
our models should explicitly use the most informative fea-

tures for these auxiliary tasks, while not requiring the model
to match less informative features.

We compare LoL against baselines on these image classi-
fication tasks in Table 4. We additionally provide a Snorkel-
weighted variant of LoL, called LoL-sw. This essentially
uses the same weights that Snorkel uses in generating pseu-
dolabels. More discussion on different weightings of our
losses is given in the extended version (Sam and Kolter
2022), which also demonstrates that optimal weighting
schemes depend on the particular task of interest. We ob-
serve that our method is outperformed by Snorkel on two
tasks but is the best-performing method on one task. As be-
fore, we also observe that incorporating constraints based
on gradient information does lead to benefits over a simple
combination of soft weights, as LoL improves over LoL-
simple on all tasks. This demonstrates that incorporating
gradient information from weak labelers, even that which
is implicitly learnt on auxiliary tasks, can yield further im-
provements in the field of weak supervision.

6 Conclusion
In summary, we present a new and effective approach in the
weakly supervised paradigm to optimize a model via a com-
bination of loss functions that are generated directly from the
weak labelers. Under this framework, these losses can lever-
age information about how the heuristics make decisions in
our optimization, which has not been done previously by
weakly supervised methods. We demonstrate that, on many
text and image classification tasks, LoL achieves better per-
formance than weakly supervised baselines and that incor-
porating (even learnt) gradient information almost always
leads to better performance.

Our work has the potential to start a new direction of re-
search in weakly supervised learning. While recent work in
weak supervision has focused on improving the process of
creating pseudolabels, our approach proposes a fundamen-
tally different pipeline. When creating pseudolabels, we ad-
mittedly gain the benefit of using a plethora of standard su-
pervised learning methods and models. However, we lose
the ability to impose additional control over the model opti-
mization process. Incorporating more information from the
heuristics directly in our method gives experts more control
over the training procedure of the model. In fact, this re-
sult has larger implications on the design of the weak label-
ers themselves; experts now have a greater influence on the
weakly supervised pipeline, as they can induce constraints
on the gradients of the learnt model via designing heuristics.
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and Ré, C. 2019. Training Complex Models with Multi-Task
Weak Supervision. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01): 4763–4771.
Ratner, A. J.; De Sa, C. M.; Wu, S.; Selsam, D.; and
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