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Abstract
We investigate the sample complexity of learning the op-
timal arm for multi-task bandit problems. Arms consist of
two components: one that is shared across tasks (that we
call representation) and one that is task-specific (that we call
predictor). The objective is to learn the optimal (representa-
tion, predictor)-pair for each task, under the assumption that
the optimal representation is common to all tasks. Within
this framework, efficient learning algorithms should transfer
knowledge across tasks. We consider the best-arm identifica-
tion problem with fixed confidence, where, in each round, the
learner actively selects both a task, and an arm, and observes
the corresponding reward. We derive instance-specific sam-
ple complexity lower bounds, which apply to any algorithm
that identifies the best representation, and the best predictor
for a task, with prescribed confidence levels. We devise an
algorithm, OSRL-SC, that can learn the optimal representa-
tion, and the optimal predictors, separately, and whose sample
complexity approaches the lower bound. Theoretical and nu-
merical results demonstrate that OSRL-SC achieves a better
scaling with respect to the number of tasks compared to the
classical best-arm identification algorithm. The code can be
found here https://github.com/rssalessio/OSRL-SC.

Introduction
Learning from previous tasks and transferring this knowl-
edge may significantly improve the process of learning
new tasks. This idea, at the core of transfer learning (Pan
and Yang 2009; Skinner 1965; Woodworth and Thorndike
1901), lifelong learning (Thrun 1996) and multi-task learn-
ing (Baxter et al. 2000; Caruana 1995, 1997), has recently
triggered considerable research efforts with applications in
both supervised and reinforcement learning. Previous work
on transfer and multi-task learning has mostly focused on
batch learning problems (Lazaric 2012; Pan and Yang 2009),
where when a task needs to be solved, a training dataset is
directly provided. Online learning problems, where samples
for a given task are presented to the learner sequentially,
have been much less studied (Taylor and Stone 2009; Zhan
and Taylor 2015).

In this paper, we consider a multi-task Multi-Armed Ban-
dit (MAB) problem, where the objective is to find the op-
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timal arm for each task using the fewest number of sam-
ples, while allowing to transfer knowledge across tasks. The
problem is modelled as follows: in each round, the learner
actively selects a task, and then selects an arm from a finite
set of arms. Upon selecting an arm, the learner observes a
random reward from an unknown distribution that represents
the performance of her action in that particular task. To allow
the transfer of knowledge across the various tasks, we study
the problem for a simple, albeit useful model. We assume
that the arms available to the learner consist of two compo-
nents: one that is shared across tasks (that we call represen-
tation) and one that is task-specific (that we call predictor).
Importantly, the optimal arms for the various tasks share the
same representation. The benefit of using this model is that
we can study the sample complexity of learning the best
shared representation across tasks while learning the task-
specific best action.

Contribution-wise1, in this work we derive instance-
specific sample complexity lower bounds satisfied by any
(δG, δH)-PAC algorithm (such an algorithm identifies the
best representation with probability at least 1 − δG, and
the best predictors with probability at least 1 − δH ). Again,
our lower bounds can be decomposed into two components,
one for learning the representation, and one for learning
the predictors. We devise an algorithm, OSRL-SC, which
can learn the optimal representation, and predictors, sepa-
rately, and whose sample complexity approaches the lower
bound, scaling at most as H(G log(1/δG) +X log(1/δH)).
Technically, we also show a novel regularization technique
to obtain unique allocations in best-arm identification prob-
lems with fixed confidence. Finally, we present numerical
experiments to illustrate the gains in terms of sample com-
plexity one may achieve by transferring knowledge across
tasks. To the best of our knowledge, this paper is the first
to study how tasks should be scheduled toward a sample-
optimal instance-specific best-arm identification algorithm.

Related work. Multi-task learning has been investigated
under different assumptions on the way the learner interacts
with tasks. One setting concerns batch learning (often re-
ferred to as learning-to-learn), where the training datasets for
all tasks are available at the beginning (Baxter et al. 2000;

1All the proofs and numerical details can be found here
https://arxiv.org/abs/2211.15129.
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Maurer 2005, 2009; Maurer, Pontil, and Romera-Paredes
2013). The so-called batch-within-online setting considers
that tasks arrive sequentially, but as soon as a task arrives, all
its training samples are available (Balcan, Blum, and Vem-
pala 2015; Pentina and Ben-David 2015; Pentina and Urner
2016; Alquier, Mai, and Pontil 2017).

Next, in the online multi-task learning (Agarwal, Rakhlin,
and Bartlett 2008; Abernethy, Bartlett, and Rakhlin 2007;
Dekel, Long, and Singer 2007; Cavallanti, Cesa-Bianchi,
and Gentile 2010; Saha et al. 2011; Lugosi, Papaspiliopou-
los, and Stoltz 2009; Murugesan et al. 2016; Yang et al.
2020), in each round, the learner observes a new sample for
each task, which, in some cases, this may not be possible.
Our framework is different as in each round the learner can
only select a single task. This framework has also been con-
sidered in (Lazaric, Brunskill et al. 2013; Soare et al. 2014;
Soare 2015; Alquier, Mai, and Pontil 2017; Wu, Wang, and
Lu 2019), but typically there, the learner faces the same task
for numerous consecutive rounds, and she cannot select the
sequence of tasks. Also, note that the structure tying the re-
ward functions of the various tasks together is different from
ours. The structure tying the rewards of actions for various
contexts is typically linear, and it is commonly assumed that
there exists a common low-dimensional representation, or
latent structure, to be exploited (Soare et al. 2014; Soare
2015; Deshmukh, Dogan, and Scott 2017; Kveton et al.
2017; Hao, Lattimore, and Szepesvari 2020; Lale et al. 2019;
Yang et al. 2020; Lu, Meisami, and Tewari 2021), or that
the reward is smooth across tasks and/or arms (Magureanu,
Combes, and Proutiere 2014; Slivkins 2014). The aforemen-
tioned papers address scenarios where the context sequence
is not controlled and investigate regret. Meta-learning is also
closely connected to meta-learning (Cella, Lazaric, and Pon-
til 2020; Kveton et al. 2021; Azizi et al. 2022). In (Azizi
et al. 2022) the authors investigate the problem of simple re-
gret minimization in a fixed horizon setting when tasks are
sampled i.i.d. from some unknown distribution.

Model and Assumptions
In this section, we describe the analytical model of the multi-
task MAB problem considered, and describe the framework
of best-arm identification for this class of multi-task MAB
models.

Model. We consider multi-task MAB problems with a
finite set X of X tasks. In each round t ≥ 1, the learner
chooses a task x ∈ X and an arm (g, h) ∈ G × H.
The components g and h are, respectively, referred to as
the representation and the predictor. When in round t,
x(t) = x and the learner selects (g, h), she collects a
binary reward Zt(x, g, h) of mean µ(x, g, h) (for the sake
of the analysis we only analyze the binary case, although
it can be extended to the Gaussian case as in (Garivier and
Kaufmann 2016)). The rewards are i.i.d. across rounds,
tasks, and arms. Consequently, the system is characterized
by µ = (µ(x, g, h))x,g,h, which is unknown to the learner.

The main assumption made throughout the paper is that
tasks share a common optimal representation g⋆: for any

Figure 1: Example of two symmetric tasks x1 and x2, where
learning the optimal representation g⋆ can be accelerated by
considering both tasks, instead of focusing only on a sin-
gle task. Task x1 can be used to learn that g3 is suboptimal,
while task x2 can be used to learn that g2 is suboptimal.

task x ∈ X , there is a predictor h⋆
x such that (g⋆, h⋆

x) yields
an optimal reward. Formally,

∀x ∈ X , µ(x, g⋆, h⋆
x) > max

(g,h) ̸=(g⋆,h⋆
x)
µ(x, g, h). (1)

Moreover, note that there is no assumption on the smooth-
ness of µ with respect to (x, g, h).

This type of model represents the case where a learner
can actively choose the task to execute (as if a generative
model is available to the learner), and in this way maximize
the learning efficiency by accurately picking tasks to reduce
the sample complexity. Since the model is quite generic, it
can be applied to a variety of problems where a collection
of tasks have a local component, and a shared global com-
ponent: (i) influence mechanisms with global/local groups;
(ii) hyperparameters learning across multiple tasks; (iii) for
advanced clinical trials, where, depending on the group of
patients (tasks, that vary according to factors such as age,
severity of the disease, etc.), different drugs and dosages can
be used for inoculation (g and h).

Sample complexity. The objective of the learner is to de-
vise a policy that learns the best arms (g⋆, h⋆

1, . . . , h
⋆
X)

with the least number of samples. Here, a policy π is de-
fined as follows. Let Fπ

t denote the σ-algebra generated
by the observations made under π up to and including
round t. Then π consists of (i) a sampling rule: in each
round t, π selects a Ft−1-measurable task xπ(t) and an
arm (gπ(t), hπ(t)); (ii) a stopping rule defined by τ , which
is a stopping time w.r.t. the filtration (Ft)t≥1; (iii) a deci-
sion rule returning a Fτ -measurable estimated best arm for
each task (ĝ, ĥ1, . . . , ĥX). Then, the performance of a pol-
icy π is assessed through its PAC guarantees and its ex-
pected sample complexity E[τ ]. PAC guarantees concern
both learning g⋆ and (h⋆

1, . . . , h
⋆
X). Denote by M = {µ :

∃(g⋆, h⋆
1, . . . , h

⋆
X) : Eq. (1) holds} the set of systems where

tasks share a common optimal representation. Then, we say
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that π is (δG, δH)-PAC if for all µ ∈M,

Pµ(τ <∞) = 1, Pµ (ĝ ̸= g⋆) ≤ δG, and (2)

Pµ

(
ĥx ̸= h⋆

x, ĝ = g⋆
)
≤ δH , ∀x ∈ X . (3)

Sample Complexity Lower Bound and the
OSRL-SC Algorithm

This section is devoted to the best-arm identification prob-
lem for the model considered in this work. We first derive
a lower bound for the expected sample complexity of any
(δG, δH)-PAC algorithm, and then present an algorithm ap-
proaching this limit. In what follows, we let δ = (δG, δH).

Sample Complexity Lower Bound
We begin by illustrating the intuition behind the sample
complexity lower bound, and then state the lower bound the-
orem. To identify the optimal representation g⋆ in a task as
quickly as possible, an algorithm should be able to perform
some sort of information refactoring, i.e., be able to use all
the available information across tasks to estimate g⋆.

To illustrate this concept, we use the model illustrated in
Fig. 1. In this model, there are only 2 tasks x1, x2, and 3
arms in G (and only 1 arm inH, thus it can be ignored). For
this model, to learn that g3 is suboptimal, we should mainly
sample task x1, since the gap between the rewards of g⋆ and
g3 is the largest. Similarly, to learn that g2 is suboptimal,
we should mainly choose task x2. Using the same task, to
infer that g2 and g3 are suboptimal, would be less efficient.
This observation also motivates why it is inefficient to con-
sider tasks separately, even in the case where µ is highly
non-smooth with respect to (x, g, h), and also motivates the
expression of the sample complexity lower bound that we
now present.

Sample complexity lower bound. Computing the sample
complexity lower bound amounts to finding the lower bound
of a statistical hypothesis testing problem, which is usually
done by finding what is the most confusing model. In this
case, the lower bound is given by the solution of the follow-
ing optimization problem.
Theorem 1. The sample complexity τδ of any δ-PAC algo-
rithm satisfies: Eµ[τδ] ≥ K⋆(µ, δ) for any µ ∈ M, where
K⋆(µ, δ) is the value of the optimization problem2:

min
η

∑
x,g,h

η(x, g, h) (4)

s.t. min
h ̸=h⋆

x

fµ(η, x, h) ≥ kl(δH , 1− δH) ∀x, (5)

min
ḡ ̸=g⋆

∑
x

min
h̄x

ℓµ(η, ḡ, h̄x) ≥ kl(δG, 1− δG), (6)

where kl(a, b) is the KL divergence between two Bernoulli
distributions of respective means a and b.
In the first constraint, fµ(η, x, h) = (η(x, g⋆, h⋆

x) +
η(x, g⋆, h))Iαx,g⋆,h

(µ(x, g⋆, h⋆
x), µ(x, g

⋆, h)) accounts for
the difficulty of learning the best predictor h⋆

x for each

2Refer to the appendix for all the proofs.

task x. The term αx,g,h = η(x, g⋆, h⋆
x)/(η(x, g

⋆, h⋆
x) +

η(x, g, h)) represents the proportion of time (x, g⋆, h⋆
x) is

picked over (x, g, h), while Iα(µ1, µ2), α ∈ [0, 1], is a gen-
eralization of the Jensen-Shannon divergence, defined as

Iα(µ1, µ2) := αkl(µ1, dα(µ1, µ2)) + (1− α)kl(µ2, dα(µ1, µ2)),

with dα(µ1, µ2) := αµ1 + (1− α)µ2.

In the second constraint, ℓµ(η, ḡ, h̄x) accounts for the diffi-
culty of learning the optimal g⋆. To define it, let the average
reward over some subset of arms C ⊆ G × H for a task x
and allocation η to be defined as

m(x, η, C) :=
∑

(g,h)∈C η(x, g, h)µ(x, g, h)∑
(g,h)∈C η(x, g, h)

. (7)

Then, ℓµ(η, ḡ, h̄x) is defined as:

ℓµ(η, ḡ, h̄x) :=
∑

(g,h)∈Uη,µ

x,ḡ,h̄x

η(x, g, h)kl
(
µ(x, g, h),m

(
x, η,Uη,µ

x,ḡ,h̄x

))
,

(8)
where Uµ

x,ḡ,h̄x
is the set of confusing arms for a task x and

m
(
x, η,Uη,µ

x,ḡ,h̄x

)
represents the average reward of the con-

fusing model (when (ḡ, h̄x) is optimal for task x in the con-
fusing model).

Confusing arms. The set Uη,µ

x,ḡ,h̄x
is defined through

N µ

x,g,h;ḡ,h̄x
, which is the set of arms whose mean is bigger

than µ(x, g, h) and that also include (ḡ, h̄x), which is

N µ

x,g,h;ḡ,h̄x
:= {(g′, h′) : µ(x, g′, h′) ≥ µ(x, g, h)} ∪ {(ḡ, h̄x)}.

Then, the set of confusing arms Uη,µ

x,ḡ,h̄x
is defined as

Uη,µ

x,ḡ,h̄x
=
{
(g, h) : µ(x, g, h) ≥ m

(
x, η,N µ

x,g,h;ḡ,h̄x

)}
∪ {(ḡ, h̄x)}.

The set Uη,µ

x,ḡ,h̄x
can be computed recursively. We start with a

set that only contains (g⋆, h⋆
x) and (ḡ, h̄x). We compute the

corresponding value of m
(
x, η,Uη,µ

x,ḡ,h̄x

)
, and we add to the

set Uη,µ

x,ḡ,h̄x
the arm (g, h) with the highest mean not already

in the set. We iterate until convergence. Fig. 2 provides an
illustration of the set Uη,µ

x,ḡ,h̄x
.

We now provide the proof of Theorem 1.

Proof of Theorem 1. The proof relies on classical change-
of-measure arguments, as those used in the classical MAB
(Kaufmann, Cappé, and Garivier 2016). To simplify the
notation, let τ = τδ , and further let η(x, g, h) =
Eµ[Nτ (x, g, h)] at the stopping time τ , thus Eµ[τ ] =∑

x,g,h η(x, g, h). For any model µ ∈ M we denote the op-
timal representation of µ by g⋆(µ) and the optimal set of pre-
dictors (associated to g⋆(µ)) by h⋆(µ) = (h⋆

1, . . . , h
⋆
X)(µ).

Whenever possible, we write g⋆ = g⋆(µ) (similarly for
h⋆
x = h⋆

x(µ), ∀x ∈ X ).
We define the set of confusing problems as

Λ(µ) := {λ ∈M : (g⋆, h⋆
1, . . . , h

⋆
X)(λ) ̸= (g⋆, h⋆

1, . . . , h
⋆
X)(µ)} .
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Figure 2: Example of the set Uη,µ

x,ḡ,h̄x
. All points in the shadowed area are in the set. All arms with average reward above

m
(
x, η,Uη,µ

x,ḡ,h̄x

)
(including (ḡ, h̄x)) belong to Uη,µ

x,ḡ,h̄x
.

We split the analysis by considering two subsets of Λ, de-
fined as follows:

Λµ
1 := {λ ∈ Λ(µ) : g⋆(λ) = g⋆(µ)} ,

Λµ
2 := {λ ∈ Λ(µ) : g⋆(λ) ̸= g⋆(µ)} .

We now focus on the first subset Λµ
1 , from which we derive

the first constraint (5) of Theorem 1. Then, we focus on the
second subset Λµ

2 , from which follows the second constraint
(6).

First constraint (5). We restrict our attention to Λµ
1 . Define

the set of confusing problems for task x ∈ X as

Λµ
1 (x) := {λ ∈ Λµ

1 : h⋆
y(λ) = h⋆

y(µ), ∀y ∈ X \ {x}}.

Now, consider a (δG, δH)-PAC algorithm, and for a specific
task x ∈ X define the event E = {ĥx ̸= h⋆

x, ĝ = g⋆}, where
ĥx and ĝ denote respectively the estimated predictor for task
x and the estimated optimal representation at the stopping
time τ . Let then λ ∈ Λµ

1 (x), be an alternative bandit model:
the expected log-likelihood ratio Lτ at the stopping time τ
of the observations under the two models µ and λ is given
by

Eµ[Lτ ] =
∑

(y,g,h)∈X×G×H

η(y, g, h)klµ|λ(y, g, h),

and in view of the transportation Lemma 1 in (Kaufmann,
Cappé, and Garivier 2016) and the definition of (δG, δH)-
PAC algorithm, we can lower bound the previous quantity at
the stopping time τ :

Eµ[Lτ ] =
∑
y,g,h

η(y, g, h)klµ|λ(y, g, h),

≥ kl(Pµ(E),Pλ(E)) = kl(δH , 1− δH).

We can get a tight lower bound by considering the worst pos-
sible model λ. To do so, first introduce the set Λµ

1 (x, h) =
{λ ∈ Λµ

1 (x) : λ(x, g⋆, h) > λ(x, g⋆, h⋆
x)}, which is the

set of confusing problems where the predictor h⋆
x is not

optimal in task x. Observe that one can write Λµ
1 (x) =

∪h ̸=h⋆
x
Λµ
1 (x, h). This rewriting allows us to derive the first

constraint as follows:

kl(δH , 1− δH) ≤ inf
λ∈Λµ

1 (x)

∑
y,g,h

η(y, g, h)klµ|λ(y, g, h),

(a)
= inf

λ∈Λµ
1 (x)

∑
h

η(x, g⋆, h)klµ|λ(x, g⋆, h),

where (a) follows from the fact that in λ we are changing the
predictor of only one task x.

Then, the last term is equal to
minh ̸=h⋆

x
infλ∈Λµ

1 (x,h)

[
η(x, g⋆, h⋆

x)klµ|λ(x, g⋆, h⋆
x)

+η(x, g⋆, h)klµ|λ(x, g⋆, h)
]

(b)
= minh ̸=h⋆

x
(η(x, g⋆, h⋆

x) +

η(x, g⋆, h))Iαx,g⋆,h
(µ(x, g⋆, h⋆

x), µ(x, g
⋆, h)) and (b) fol-

lows by solving the infimum problem as in Lemma 3 of
(Garivier and Kaufmann 2016), and from the definition of
generalized Shannon divergence.

Second constraint (6). Similarly to the previous case, con-
sider a (δG, δH)−PAC algorithm and define the event E =
{ĝ ̸= g⋆}: then, we can apply the transportation Lemma 1 in
(Kaufmann, Cappé, and Garivier 2016) at the stopping time
τ to obtain: for every λ ∈ Λµ

2

kl(δG, 1− δG) ≤
∑
x,g,h

η(x, g, h)klµ|λ(x, g, h).

We consider subsets of Λµ
2 defined as follows: for every ḡ ∈

G such that ḡ ̸= g⋆ we define

Λµ
2 (ḡ) := {λ ∈ Λµ

2 : g⋆(λ) = ḡ} .

Similarly, for all (ḡ, h̄) ∈ (G \ {g⋆})×HX , where (ḡ, h̄) =
(ḡ, h̄1, . . . , h̄X), we also define

Λµ
2 (ḡ, h̄) :=

{
λ ∈ Λµ

2 (ḡ) : (g
⋆, h⋆

1, . . . , h
⋆
X)(λ) = (ḡ, h̄)

}
.
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Thus, we observe
Λµ
2 = ∪ḡ ̸=g⋆Λµ

2 (g) = ∪ḡ ̸=g⋆ ∪h̄∈HX Λµ
2 (ḡ, h̄).

In conclusion, by minimizing the r.h.s. over the
set of confusing models, i.e., kl(δG, 1 − δG) ≤
infλ∈Λµ

2

∑
x,g,h η(x, g, h)klµ|λ(x, g, h), we obtain the

following expression
kl(δG, 1− δG)

≤ min
ḡ ̸=g⋆,h̄∈HX

∑
x∈X

inf
λ∈Λµ

2 (ḡ,h̄)

∑
g,h

η(x, g, h)klµ|λ(x, g, h),

which stems from the fact that (ḡ, h̄) is fixed, for all the
tasks. We conclude by observing that the right-hand side of
the last inequality can be rewritten using Lemma (1) in the
appendix.

Discussion of Theorem 1. In Theorem 1 η(x, g, h) can be
interpreted as the minimal expected number of times any δ-
PAC algorithm should select (x, g, h). Eq. (5) corresponds to
the constraints on η one has to impose so that the algorithm
learns the optimal predictor h⋆

x for all x, while Eq. (6) is
needed to ensure that the algorithm identifies the best repre-
sentation g⋆ across all tasks. Both Eq. (5) and Eq. (6) define
two convex sets in terms of η, and hence K⋆(µ, δ) is the
value of a convex program.

We wonder if it is possible to learn only the optimal repre-
sentation g⋆, without learning the optimal predictors. In fact,
observe that the constraints in Eq. (5) and Eq. (6) share the
components of η that concern g⋆ only. We believe that actu-
ally separating the problem into two problems, one for each
constraint, as formulated in the proposition below, yields a
tight upper bound of K⋆(µ, δ).
Proposition 1. We have K⋆(µ, δ) ≤ K⋆

H(µ, δH) +
K⋆

G(µ, δG), where K⋆
H(µ, δH) (resp. K⋆

G(µ, δG)) is the
value of the problem: minη≥0

∑
x,g,h η(x, g, h) subject to

(Eq. (5)) (resp. (Eq. (6))).
Note that K⋆

H(µ, δH) scales as HXkl(δH , 1− δH) (since
the corresponding optimization problem is that obtained in
a regular bandit problem for each task (Garivier and Kauf-
mann 2016), which scales as Hkl(δH , 1−δH) for each task).
Now, to know how K⋆

G(µ, δG) scales, we can further derive
an upper bound of K⋆

G(µ, δG).
Proposition 2. We have K⋆

G(µ, δG) ≤ L⋆
G(µ, δG)

where L⋆
G(µ, δG) is the value of the optimization

problem: min
∑

x,g,h η(x, g, h) over η ≥ 0 satis-
fying for all ḡ ̸= g⋆, maxx minh̄x

(η(x, g⋆, h⋆
x) +

η(x, ḡ, h̄x))Iαx,ḡ,h̄x
(µ(x, g⋆, h⋆

x), µ(x, ḡ, h̄x)) ≥ kl(δG, 1−
δG).

One can show that L⋆
G(µ, δG) scales as GHkl(δG, 1−δG)

(since, even with one task, we need to sample all GH arms
to identify g⋆). To summarize, we have shown that the lower
bound K⋆(µ, δ) scales at most as H(Gkl(δG, 1 − δG) +
Xkl(δH , 1 − δH)). The latter scaling indicates the gain in
terms of sample complexity one can expect when exploiting
the structure of M, i.e., a common optimal representation.
Without exploiting this structure, identifying the best arm
for each task would result in a scaling of GHXkl(δ, 1 − δ)
for δ = δG + δH .

Differences with classical best-arm identification. To
better understand the lower bound in Theorem 1 it is instruc-
tive to compare it with a classical MAB problem.

Consider the best-arm identification problem in MAB
with K arms. Then, the set of confusing problems is Λ(µ) =
{λ ∈ [0, 1]K : a⋆(λ) ̸= a⋆(µ)}, where a⋆(µ) denotes
the optimal arm under µ, i.e., a⋆(µ) = argmaxa∈K µ(a).
The sample complexity lower bound derived for such these
models (Kaufmann, Cappé, and Garivier 2016; Garivier and
Kaufmann 2016) exploits the fact that the set Λ(µ) can be
written as Λ(µ) =

⋃
a ̸=a⋆(µ) Λa(µ), where

Λa(µ) :=
{
λ ∈ [0, 1]K : λa > λa⋆(µ)

}
.

Unfortunately, this way of rewriting the set of confusing
problems cannot be used in our problem setting. The reason
is that the constraint in Λa(µ) does not account for the model
structure, i.e., the optimal representation g⋆ needs to be the
same across all the tasks (which is equivalent to imposing
that a is optimal for all tasks). This fact also explains why
the lower bound in Theorem 1 appears more complex than
the one in (Garivier and Kaufmann 2016). In the appendix,
we show how to account for this kind of structure.

Because of this difference, with the model specified in
Eq. (1) the confusing parameter λ differs from µ for more
than 2 arms (i.e., we need to consider all arms in the set
Uη

x,ḡ,h̄x
, see also Lemma 1 in the appendix), whereas in clas-

sical MAB problems to learn that a is suboptimal, the con-
fusing parameter λ ∈ Λa(µ) differs from µ only for arms
a and a⋆(µ). In fact, in our model to identify that (ḡ, h̄x)
is suboptimal, we need to consider an alternative model
where only the average reward of the arms in the set Uη,µ

x,ḡ,h̄x

changes.

Algorithm
We now present OSRL-SC (Algorithm 1), a δ-PAC algo-
rithm whose expected sample complexity is asymptotically
upper bounded by K⋆

G(µ, δG) +K⋆
H(µ, δH). The algorithm

proceeds in two phases: a first phase aimed at learning g⋆,
and a second phase devoted to learning the optimal predic-
tor for each task. At the end of the first phase, we have an
estimate ĝ of the best representation. In the second phase,
for each task x, we use the optimal track-and-stop algorithm
(Garivier and Kaufmann 2016) to identify ĥx, the best pre-
dictor associated to ĝ. In the remaining part of the section,
we just describe the first phase.

A track-and-stop algorithm to learn g⋆. The lower
bound describes the minimal expected numbers η of ob-
servations of the various tasks needed to learn g⋆. These
numbers minimize

∑
x,g,h η(x, g, h) over η ≥ 0 satisfying

(Eq. (6)). In other words, the sampling budget should be al-
located according to the following distribution: q⋆(µ) ∈ Σ,
solving: maxq∈Σ ρ(q, µ), where

ρ(q, µ) = min
ḡ ̸=g⋆

∑
x

min
h̄x

ℓµ(q, ḡ, h̄x), (9)

and Σ denotes the set of distributions over X × G ×H. We
design an algorithm tracking this optimal allocation: it con-
sists of (i) a sampling rule, (ii) a stopping rule, and a (iii)
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Algorithm 1: OSRL-SC (δG, δH , σ)

1: Initialization.
2: N1(x, g, h), µ̂1(x, g, h)← 0, ∀(x, g, h) ∈ X × G ×H
3: t← 1
4: Phase 1. Learning g⋆

5: while maxg∈G Ψt(g) ≤ βt(δG) do
6: if Ut = ∅ and µ̂t ∈M then
7: (x(t), g(t), h(t)) ← argmax(x,g,h) tq

⋆
σ(x, g, h; µ̂t) −

Nt(x, g, h)
8: else
9: (x(t), g(t), h(t))← argmin(x,g,h) Nt(x, g, h)

10: end if
11: Select (x(t), g(t), h(t)), observe the corresponding

reward and update statistics; t← t+ 1
12: end while
13: return ĝ = argmaxg µ̂τG(g)
14: Phase 2. Learning (h⋆

1, . . . , h
⋆
X)

15: For all task x, ĥx ← [track-and-stop (Garivier and Kauf-
mann 2016) with arms (ĝ, h)h∈H and confidence δH ]

16: return (ĝ, ĥ1, . . . , ĥX)

decision rule, described below.

(i) Sampling rule. We adapt the D-tracking rule introduced
in (Garivier and Kaufmann 2016). The idea is to track q⋆(µ),
the optimal proportion of times we should sample each
(task, arm) pair. One important issue is that the solution
to maxq∈Σ ρ(q, µ) is not unique (this happens for example
when two tasks are identical).

To solve this problem, we employ the following novel
idea: we propose to regularize the optimization problem by
tracking q⋆σ(µ), the unique solution of

(Pσ) : max
q∈Σ

ρ(q, µ)− 1

2σ
∥q∥22, σ > 0. (10)

When σ is large, Berge’s Maximum theorem (Berge 1963)
implies that q⋆σ(µ) approaches the set of solutions of
maxq∈Σ ρ(q, µ), and that the value Cσ(µ) of ρ(q⋆σ(µ), µ)
converges to K⋆

G(µ, δG)/kl(δG, 1 − δG). In what follows,
we let K⋆

G,σ(µ, δG) := Cσ(µ)kl(δG, 1− δG).
Our D-tracking rule targets q⋆σ(µ̂t), which is the unique

maximizer of maxq∈Σ ρ(q, µ̂t)− 1
2σ∥q∥22, where ρ(q, µ̂t) for

any µ̂t ∈M is defined as

ρ(q, µ̂t) = min
ḡ ̸=g⋆

t

∑
x

min
h̄x

ℓµ̂t(q, ḡ, h̄x). (11)

More precisely, if the set of under-sampled tasks
and arms Ut = {(x, g, h) ∈ X × G × H : Nt(x, g, h) <√
t−GHX/2} is not empty, or when µ̂t /∈M, we select the

least sampled (task, arm) pair. Otherwise, we track q⋆σ(µ̂t),
and select argmax(x,g,h) tq

⋆
σ(x, g, h; µ̂t)−Nt(x, g, h).

(ii) Stopping rule. We use Chernoff’s stopping rule, which
is formulated as a Generalized Likelihood Ratio Test (Cher-
noff 1959). The derivation of this stopping rule is detailed
in appendix B. The stopping condition is maxg̃ Ψt(g̃) >

βt(δG), where the exploration threshold βt(δG) needs to be
appropriately chosen, and where

Ψt(g̃) = min
ḡ ̸=g̃

∑
x

min
h̄x

ℓµ̂t
(Nt, ḡ, h̄x).

(iii) Decision rule. The first phase ends at time τG, and
ĝ is chosen as the best empirical representation: ĝ =
argmaxg µ̂t(g).

PAC and Sample Complexity Analysis
We now present the sample complexity upper bound for Al-
gorithm 1. First, we outline the stopping rule used by the
algorithm. Following (Kaufmann and Koolen 2018), we de-
fine ϕ : R+ → R+ as ϕ(x) = 2p̃3/2

(
p−1(1+x)+ln(2ζ(2))

2

)
,

where ζ(s) =
∑

n≥1 n
−s, p(u) = u − ln(u) for u ≥ 1 and

for any z ∈ [1, e] and x ≥ 0:

p̃z(x) =

{
e1/p

−1(x)p−1(x) if x ≥ p−1(1/ ln z),

z(x− ln ln z) otherwise.

Then, the following theorem states that with a carefully cho-
sen exploration threshold, the first phase of OSRL-SC re-
turns the optimal representation w.p. greater than 1− δG.
Theorem 2. Let δG ∈ (0, 1): for any sampling rule, Cher-
noff’s stopping rule with threshold βt(δG) = β1(t) +
β2(δG), where β1(t) = 3

∑
x,g,h ln(1 + ln(Nt(x, g, h))),

and β2(δG) = GHXϕ(ln((G − 1)/δG)/XGH), ensures
that for all µ ∈M, Pµ(τG <∞, ĝ ̸= g⋆) ≤ δG.

Proof. The proof can be seen as multi-task version of Propo-
sition 12 in (Garivier and Kaufmann 2016) with an improved
bound from (Kaufmann and Koolen 2018). Let g⋆t be the de-
cision rule at time t. Since Pµ(τG <∞, ĝ ̸= g⋆) = Pµ(∃t ∈
N : g⋆t ̸= g⋆,Ψt(g

⋆
t ) > βt(δG)), we can apply a union

bound over the set G \ {g⋆} us to upper bound the probabil-
ity of error as follows:

Pµ(τG <∞, ĝ ̸= g⋆) ≤∑g̃ ̸=g⋆ Pµ(∃t : g⋆t = g̃,Ψt(g̃) > βt(δG)).

Then, note that ℓµ̂t
(Nt, ḡ, h̄x) lower bounds∑

(g,h)∈U(t)

x,ḡ,h̄x

Nt(x, g, h)kl(µ̂t(x, g, h), µ(x, g, h)),

with U (t)

x,ḡ,h̄x
= UNt,µ̂t

x,ḡ,h̄x
. Therefore, we derive that

Pµ(τG <∞, ĝ ̸= g⋆) ≤
∑
g̃ ̸=g⋆

Pµ

(
∃t ∈ N :

∑
x,g,h

Nt(x, g, h)kl(µ̂t(x, g, h), µ(x, g, h)) > βt(δG)
)
.

We conclude by applying (Kaufmann and Koolen 2018,
Thm. 14) with x = ln

(
G−1
δG

)
and S = X × G ×H.

From (Garivier and Kaufmann 2016), the second phase
of OSRL-SC also returns the optimal predictors for each
task w.p. greater than 1 − δH . Finally, in the next theorem,
we show that OSRL-SC stops in finite time a.s., and that
its expected sample complexity approaches K⋆

G(µ, δG) +
K⋆

H(µ, δH) for sufficiently small values of the risks δG, δH ,
and sufficiently large σ.
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Average Confidence interval 97.5% Min Max Std
δ = 0.1 OSRL-SC Total 21278.80 ±430.37 5254.0 46876.0 6423.03

Phase 1 3578.38 ±43.31 2163.0 7014.0 646.46
Phase 2 17700.42 ±428.39 1554.0 43270.0 6393.44

TAS 26456.83 ±510.60 4544.0 54566.0 7620.35

δ = 0.05 OSRL-SC Total 22671.50 ±420.40 6068.0 48184.0 6274.13
Phase 1 3651.99 ±41.86 2358.0 6245.0 624.72
Phase 2 19019.51 ±417.81 2207.0 45298.0 6235.60

TAS 27735.38 ±534.35 7675.0 58227.0 7974.87

δ = 0.01 OSRL-SC Total 25765.90 ±436.13 8951.0 55809.0 6508.94
Phase 1 3829.56 ±45.93 2358.0 7354.0 685.44
Phase 2 21936.34 ±434.09 5398.0 52002.0 6478.57

TAS 30970.94 ±536.99 9538.0 70319.0 8014.26

Table 1: OSRL-SC vs TAS: Sample complexity results, over 1120 runs.

Theorem 3. If the exploration threshold of the first phase
of OSRL-SC is chosen as in Theorem 2, then we have:
Pµ[τG < ∞] = 1 and Pµ[τH < ∞] = 1 (where
τH is the time at which the second phase ends). In
addition, the sampling complexity of OSRL-SC satis-
fies: lim supδG,δH→0

Eµ[τ ]
K⋆

G,σ(µ,δG)+K⋆
H(µ,δH) ≤ 1, where

K⋆
G,σ(µ, δG) = Cσ(µ)kl(δG, 1 − δG), with Cσ(µ) :=

ρ (q⋆σ(µ), µ)
−1.

Proof. The result follows from Theorem 7 (in the appendix)
and Theorem 14 in (Garivier and Kaufmann 2016). The lat-
ter result upper bounds the expected duration of the second
phase of OSRL-SC if we use, for this phase, a threshold rule
βt(δH) that is increasing in t and for which there exists con-
stants C,D > 0 such that

∀t ≥ C, ∀δH ∈ (0, 1), βt(δH) ≤ ln

(
Dt

δH

)
.

For example, in the Bernoulli case, one can choose
βt(δH) = log

(
2t(H−1)

δH

)
. Note that the sample complex-

ity of the second phase can be rewritten as Eµ[τH ] =
Eµ[τH |ĝ = g⋆]Pµ(ĝ = g⋆) + Eµ[τH |ĝ ̸= g⋆]Pµ(ĝ ̸= g⋆),
where Eµ[τH |ĝ = g] denotes the conditional expected sam-
ple complexity of the second phase, given that the first phase
outputs ĝ. From the result of (Garivier and Kaufmann 2016),
we know that

lim sup
δH→0

Eµ[τH |ĝ = g⋆]

K⋆
H(µ, δH ; g⋆)

≤ 1,

where

K⋆
H(µ, δH ; g⋆) :=

∑
x

T ⋆(x, g⋆;µ)kl(δH , 1− δH),

and T ⋆(x, g⋆;µ) is defined as

T ⋆(x, g⋆;µ)−1 = sup
q∈Σ

min
h ̸=ĥ⋆

x

(
η(x, g⋆, ĥ⋆

x)

+ η(x, g⋆, h)
)
Iαx,g⋆,h

(µ(x, g⋆, ĥ⋆
x), µ(x, g

⋆, h)),

with ĥ⋆
x = argmaxh µ(x, g, h). For g ̸= g⋆ we instead have

lim sup
δH→0

Eµ[τH |ĝ = g]

kl(δH , 1− δH)
≤ C,

for some positive constant C that depends on the threshold
rule βt(δH). Since the first phase of the algorithm is δG-
PAC, we have:

Eµ[τH ] ≤ Eµ[τH |ĝ = g⋆]Pµ(ĝ = g⋆) + Eµ[τH |ĝ ̸= g⋆]δG.

Therefore, we can conclude that for any positive δG we ob-
tain

lim sup
δH→0

Eµ[τH ]
K⋆

H(µ,δH ;g⋆)Pµ(ĝ=g⋆)+δGC(G−1)kl(δH ,1−δH) ≤ 1.

Hence, we obtain the result by letting δG → 0:

lim sup
δH ,δG→0

Eµ[τ ]

K⋆
G,σ(µ, δG) +K⋆

H(µ, δH)
≤ 1.

Corollary 1. Additionally, due to Berge’s theorem, since
ρ(q, µ)− 1

2σ∥q∥22 is continuous in q for each (σ, µ), we have:
limσ→∞ K⋆

G,σ(µ, δG) = K⋆
G(µ, δG).

Numerical Results

We analyze the performance of OSRL-SC, and compare it
directly with TRACK AND STOP (TAS)(Garivier and Kauf-
mann 2016). We are interested in answering the following
question: is it easier to learn the best representation by just
focusing on one task, or should we consider multiple tasks
at the same time?

Simulation setup. We consider 2 tasks (x1, x2), 3 repre-
sentations (g1, g2, g3) and 2 predictors (h1, h2). This setting
is rather simple, although not trivial. Note that as the num-
ber of (task, arm) pairs decreases, we expect the gap between
the two algorithms to decrease and thus favor TAS. Hence,
considering examples with small numbers of tasks are in-
formative about OSRL abilities to factor information across

9664



Task x1 (g1, h1) (g1, h2) (g2, h1) (g2, h2) (g3, h1) (g3, h2)

NτG(x1)/τG 0.14 0.05 0.02 0.02 0.12 0.15
q⋆σ(x1;µ) 0.18 5 · 10−3 6 · 10−4 7 · 10−4 0.13 0.18

Task x2 (g1, h1) (g1, h2) (g2, h1) (g2, h2) (g3, h1) (g3, h2)

NτG(x2)/τG 0.14 0.05 0.12 0.16 0.02 0.02
q⋆σ(x2;µ) 0.18 5 · 10−3 0.13 0.18 6 · 10−4 7 · 10−4

Table 2: Analysis of OSRL-SC. Comparison of the optimal
allocation vector q⋆σ(µ) and the average proportion of arm
pulls NτG/τG at the stopping time.

tasks. The average rewards are

( h1 h2

g1 0.5 0.45
g2 0.35 0.33
g3 0.1 0.05

)
︸ ︷︷ ︸
Average rewards for task x1

,

( h1 h2

g1 0.5 0.45
g2 0.1 0.05
g3 0.35 0.33

)
︸ ︷︷ ︸
Average rewards for task x2

We set up tasks x1 and x2 so that they are very similar: ac-
tually, the only difference is that the 2nd and 3rd row of the
above matrices are swapped. Therefore, it should not matter
which task TAS picks, but, on the other hand, OSRL-SC
should benefit from this small difference. Hence, for each
simulation of TAS, we picked one task uniformly at random.
Finally, we averaged results over 1120 runs.

Algorithms. We test TAS and OSRL-SC with various
risks δ ∈ {0.01, 0.05, 0.1} (with δ = δG = δH for OSRL-
SC). For TAS, we use the following threshold βt(δG) =

log
(

2t(GH−1)
δg

)
. We tried the same threshold as in OSRL-

SC, but it yielded worse results. For OSRL-SC, we set
σ = 105. For the example considered, one can see that
argmaxq∈Σ ρ(q, µ) has a unique maximizer. Therefore, σ
will not influence the value of the lower bound if µ̂t is ap-
proximately close to µ, in norm. However, when µ̂t is visibly
different from µ, then the value of Cσ(µ̂t) may be affected
by the value of σ. We have not thoroughly explored different
values of σ, but we may suggest that a value of σ > 103 is a
safe choice.

We computed q⋆σ(µ̂t) every 12 rounds (which is equal to
GHX) to reduce the computational time (this is theoreti-
cally motivated in the appendix). Despite that, one needs to
keep in mind that tracking a suboptimal, or wrong, reference
vector q⋆σ may sensibly affect the sample complexity. We can
also motivate this period update by the fact that q⋆σ(µ̂t) in a
small time interval does not change much, as shown numer-
ically.

To compute q⋆σ(µ̂t), in round t+ 1, we use as initial con-
dition a convex combination of the previous solution and a
uniform point in the probability simplex (with a factor 0.5).
This is done to speed up the algorithm (for more details, re-
fer to the appendix).

Comparison of OSRL-SC and TAS. In Table 1, we re-
port the sample complexity of the two algorithms. In bold,
we highlighted results for the first phase of OSRL-SC. Even
if the number of representations is higher than the number

of predictors, somewhat surprisingly, the first phase OSRL-
SC seems, on average, very stable, with a small confidence
interval (when compared to Phase 2 or TAS). It is worth
observing that with the smallest number possible of tasks
(X = 2), OSRL-SC manages to reduce the required num-
ber of rounds to identify the optimal representation, and the
predictors, when compared to TAS. Furthermore, the first
phase of OSRL-SC appears stable also when δ decreases.
Between δ = 0.1 and δ = 0.05 there is a relative increase of
average sample complexity of roughly 2% for OSRL-SC;
between δ = 0.05 and δ = 0.01 we have that the average
sample complexity for OSRL-SC has a relative increase of
roughly 5%. Overall, these results indicate that OSRL-SC
is able to re-factor information efficiently.

Analysis of OSRL-SC: First phase. To analyze the con-
vergence of OSRL-SC, we focus on its first phase, specif-
ically on the following quantities: µ̂t, q

⋆
σ(µ̂t) and C−1

σ (µ̂t).
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Figure 3: Analysis of C−1
σ (µ̂t) and µ̂t under OSRL-SC.

(a) Average dynamics of C−1
σ (µ̂t), (b) Dynamics of µ̂t.

∥µ̂t− µ̂t−1∥2 is normalized by
√
GHX to show the average

change of each component, and low-pass filtered using a 8-th
order Butterworth filter with critical frequency ω0 = 0.025.
The shadowed areas represent 97.5% confidence interval.
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Figure 4: Analysis of q⋆σ(µ̂t) under OSRL-SC. (a) Results
using the 2-norm; (b) Results using the L∞-norm. ∥q⋆σ(µ̂t)−
q⋆σ(µ̂t−1)∥2 is normalized by

√
GHX to show the average

change for each component. The shadowed areas represent
97.5% confidence interval.

We use the right y-axis of each plot to display the difference
between the value in round t and round t−1 of the quantities
considered.

Figure 3(b) shows how ∥µ̂t − µ̂t−1∥2 (normalized by√
XGH) and ∥µ̂t∥2 evolve over time. We clearly see that
∥µ̂t∥2 quickly converges to some fixed value. This conver-
gence appears in all the plots. Figure 3(a) shows the value of
C−1

σ (µ̂t), the true value C−1
σ (µ), and the relative change of

C−1
σ (µ̂t) between two consecutive steps. We observe that

the convergence rate of µ̂t dictates also the convergence
of C−1

σ (µ̂t). This suggests that we do not need to solve
the lower bound optimization problem too often to update
the target allocation, which helps reduce the computational
complexity.

Figures 4(a) and (b) show 2 curves each: the left plot
shows the 2-norm of q⋆σ(µ̂t) and q⋆σ(µ̂t) − q⋆σ(µ̂t−1) (the
latter normalized by

√
GHX), whilst the right plot shows

the same signals computed using the L∞-norm. In Figure
4(b), notice that the average absolute change in each com-
ponent of the reference vector is very small, below 3% after
few dozens of steps. Furthermore, we can see that this quan-
tity has a convergence rate that is directly dictated by the
convergence of µ̂t (even if its convergence rate is smaller).
In Figure 4(a), observe that the relative difference between
q⋆σ(µ̂t) and q⋆σ(µ) around t = 2500 is upper bounded by
roughly 1/9.

Finally, and importantly, in Table 2, we show the aver-
age proportion of arm pulls under OSRL-SC at the stopping
time τG compared to the optimal allocation vector q⋆σ(µ). It
turns out that OSRL-SC follows accurately the optimal al-
location. The algorithm picks the most informative arms in
each task, i.e., it adapts to the task. From this table, we can
answer our initial question: to learn g⋆ as fast as possible, we
need to use all tasks. Task 1 is used to learn that g3 is subop-
timal, and Task 2 is used to learn that g2 is suboptimal. This
is precisely what OSRL-SC is doing.

Conclusion
In this work, we analyzed knowledge transfer in stochastic
multi-task bandit problems with finite arms, using the frame-
work of best-arm identification with fixed confidence. We
proposed OSRL-SC, an algorithm that transfers knowledge
across tasks while approaching the sample complexity lower
bound. We believe that this paper constitutes a sound start-
ing point to study the transfer of knowledge in more gen-
eral online multi-task learning problems. The limitation of
this work is that we only consider models with a finite num-
ber of tasks and arms, which could limit their application in
real life. Furthermore, our algorithm converges to an upper
bound of the lower bound. Lastly, we think it would be inter-
esting to study different structural assumptions (e.g. linear-
ity) that tie reward functions across tasks together, or extend
this work to multi-task reinforcement learning in MDPs.
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Kveton, B.; Szepesvári, C.; Rao, A.; Wen, Z.; Abbasi-Yadkori, Y.;
and Muthukrishnan, S. 2017. Stochastic low-rank bandits. arXiv
preprint arXiv:1712.04644.
Lale, S.; Azizzadenesheli, K.; Anandkumar, A.; and Hassibi, B.
2019. Stochastic linear bandits with hidden low rank structure.
arXiv preprint arXiv:1901.09490.
Lazaric, A. 2012. Transfer in reinforcement learning: a framework
and a survey. In Reinforcement Learning, 143–173. Springer.
Lazaric, A.; Brunskill, E.; et al. 2013. Sequential transfer in multi-
armed bandit with finite set of models. In Advances in Neural In-
formation Processing Systems, 2220–2228.
Lu, Y.; Meisami, A.; and Tewari, A. 2021. Low-rank generalized
linear bandit problems. In International Conference on Artificial
Intelligence and Statistics, 460–468. PMLR.
Lugosi, G.; Papaspiliopoulos, O.; and Stoltz, G. 2009. On-
line multi-task learning with hard constraints. arXiv preprint
arXiv:0902.3526.

Magureanu, S.; Combes, R.; and Proutiere, A. 2014. Lipschitz
Bandits: Regret Lower Bounds and Optimal Algorithms. In COLT,
Barcelona, Spain, June 13-15, 2014, volume 35, 975–999.
Maurer, A. 2005. Algorithmic stability and meta-learning. Journal
of Machine Learning Research, 6(Jun): 967–994.
Maurer, A. 2009. Transfer bounds for linear feature learning. Ma-
chine learning, 75(3): 327–350.
Maurer, A.; Pontil, M.; and Romera-Paredes, B. 2013. Sparse cod-
ing for multitask and transfer learning. In International Conference
on Machine Learning, 343–351.
Murugesan, K.; Liu, H.; Carbonell, J.; and Yang, Y. 2016. Adap-
tive smoothed online multi-task learning. In Advances in Neural
Information Processing Systems, 4296–4304.
Pan, S. J.; and Yang, Q. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10): 1345–
1359.
Pentina, A.; and Ben-David, S. 2015. Multi-task and lifelong learn-
ing of kernels. In International Conference on Algorithmic Learn-
ing Theory, 194–208. Springer.
Pentina, A.; and Urner, R. 2016. Lifelong learning with weighted
majority votes. In Advances in Neural Information Processing Sys-
tems, 3612–3620.
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