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Abstract
Multimodal processing has attracted much attention lately es-
pecially with the success of pre-training. However, the explo-
ration has mainly focused on vision-language pre-training, as
introducing more modalities can greatly complicate model
design and optimization. In this paper, we extend the state-
of-the-art Vision-Language model CLIP to accommodate the
audio modality for Vision-Language-Audio multimodal pro-
cessing. Specifically, we apply inter-modal and intra-modal
contrastive learning to explore the correlation between au-
dio and other modalities in addition to the inner character-
istics of the audio modality. Moreover, we further design an
audio type token to dynamically learn different audio infor-
mation type for different scenarios, as both verbal and non-
verbal heterogeneous information is conveyed in general au-
dios. Our proposed CLIP4VLA model is validated in dif-
ferent downstream tasks including video retrieval and video
captioning, and achieves the state-of-the-art performance on
the benchmark datasets of MSR-VTT, VATEX, and Audio-
caps.The corresponding code and checkpoints will be re-
leased at https://github.com/ludanruan/CLIP4VLA.

Introduction
Multimodal processing (Portillo-Quintero, Ortiz-Bayliss,
and Terashima-Marı́n 2021; Carion et al. 2020; Sun et al.
2019) aims to learn the general knowledge across multiple
modalities of our daily perception, such as text, vision and
audio. Due to the high complexity and high training cost of
multimodal alignment, most works focus on the processing
of two modalities such as text and vision. However, only
visual and textual information may be insufficient to com-
prehensively understand a realistic scenario. For example,
in sports program, the sound of the race start gun and the
cheers of the crowd can describe the intensity of the com-
petition even more than the picture, and the narrator’s com-
mentary helps the general audience with less sports knowl-
edge to better understand the progress of the game. There-
fore, it is necessary to equip the video pre-training models
with audio modality modeling.

In recent years, pre-training has achieved great suc-
cess in multimodal processing. For example, Vision-
Language (VL) pre-training models (Carion et al. 2020; Sun
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et al. 2019; Portillo-Quintero, Ortiz-Bayliss, and Terashima-
Marı́n 2021) have shown superior performance for under-
standing tasks such as text-visual retrieval and flexible scal-
ability for generation tasks such as video captioning. Audio
pre-training models (Gong, Chung, and Glass 2021; Baevski
et al. 2020; Chen et al. 2022) can represent complex audio
information. As learning general correlations of vision, text
and audio via pre-training from scratch is highly compu-
tation costly (e.g. 768 TPU days for VATT (Akbari et al.
2021)), one straight-forward idea is to combine the state-
of-the-art VL models with the pre-trained audio backbones.
However, it faces two main challenges. First, the text, vision
and audio backbones usually have different model struc-
tures, which makes it hard to combine via a unified train-
ing strategy. For example, the audio pre-training models for
Automatic Speech Recognition (ASR) normally process au-
dio at the phoneme level, whose parameters are too heavy
compared with the VL models. Second, there is currently no
single audio backbone that can fully handle rich and differ-
ent types of information conveyed in general audios, which
can be roughly categorized as verbal information and non-
verbal information. The verbal information refers to the hu-
man speech in the video, which delivers linguistic seman-
tics of the video. The nonverbal information refers to am-
bient sounds which can reflect natural events occurring in
the video, such as raining. Due to the heterogeneity of these
two types of information, the existing audio models usually
focus on handling only one type. However, both types of
information are indispensable for the comprehensive video
understanding. It is naive and cumbersome to apply multiple
audio backbones to encode the two types of audio informa-
tion respectively.

To tackle the above two challenges, in this paper, we
propose CLIP4VLA (CLIP for Vision, Language and
Audio), which extends CLIP to accommodate the au-
dio modality with unified tri-encoder structure for multi-
modal processing. Specifically, we employ the state-of-the-
art VL model CLIP (Portillo-Quintero, Ortiz-Bayliss, and
Terashima-Marı́n 2021) as the vision and text encoders,
and propose an audio encoder with the same architecture
as the vision encoder to ensure the training consistency
and efficiency. To simultaneously encode both verbal infor-
mation and nonverbal information from the audio track of
videos, we design an audio type token to dynamically con-
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Figure 1: An overview of our CLIP4VLA model, which consists of three backbones: Text Encoder, Vision Encoder, and Au-
dio Encoder. After encoding a batch of text features {x1, x2, · · · , xB}, vision features {y1, y2, · · · , yB} and audio features
{z1, z2, · · · , zB}, we pre-train the model with four kinds of contrastive learning objectives for text-audio, video-audio, aug-
mented audio-original audio respectively. The black squares are not included in the calculation

trol the learned information type. During pre-training, we
apply both inter-modal and intra-modal contrastive learn-
ing to learn the correlation across audio modality with other
modalities and the inner characteristics of the audio modal-
ity. To better utilize the multimodal representations learned
by CLIP4VLA, we further explore different modality fu-
sion methods for video-text downstream tasks on various
datasets. CLIP4VLA is demonstrated to be effective on both
retrieval and captioning tasks, requiring much less hardware
resource and training time.

Our contributions can be summarized as follows:

• We propose CLIP4VLA for learning correlation across
textual, visual and audio information in videos by accom-
modating the audio encoder in CLIP.

• To fully exploit the rich audio information in videos, we
propose to explicitly encode both verbal information and
nonverbal information with audio type tokens.

• We design intra-modal and inter-modal contrastive learn-
ing for pre-training CLIP4VLA and explore multiple
modality fusion methods for video downstream tasks.

• Our model achieves the state-of-the-art performance in
retrieval and captioning tasks on the benchmark datasets
of MSR-VTT, VATEX, and Audiocaps.

Related Work
Audio Pre-training
Audio pre-training works aim to well represent nonver-
bal information in ambient sound (Gemmeke et al. 2017;
Gong, Chung, and Glass 2021; Guzhov et al. 2022, 2020;
Wu et al. 2022) or verbal information in human speech
(Liu, Li, and Lee 2021; Tang, Lei, and Bansal 2021; Chung
et al. 2019; Baevski et al. 2020; Hsu et al. 2021; Chen
et al. 2022) . For nonverbal information encoding, recent

works (Guzhov et al. 2022, 2020; Wu et al. 2022; Gong,
Chung, and Glass 2021) prove that audio representation
learning can benefit from other modalities (i.e. images)
by transfer learning. To encode verbal information, self-
supervised methods are always utilized to learn inherent
characteristic, ranging from auto-regressive learning (Chung
et al. 2019; Liu, Chung, and Glass 2021; Liu, Li, and Lee
2021) to contrastive learning (Baevski et al. 2020; van den
Oord, Li, and Vinyals 2018; Ling et al. 2020). Further-
more, wav2vec2.0 (Baevski et al. 2020), HuBERT (Hsu et al.
2021), WavLM (Chen et al. 2022) demonstrate that self-
supervised learning with a large amount of unlabeled data
could boost the model’s performance on semantic related
tasks (i.e. ASR) and decrease the demand of labeled data.
Our CLIP4VLA has two changes compared with the previ-
ous audio pre-training works: Firstly, previous works mainly
focus on audio encoding and ignore cross-modality under-
standing, while CLIP4VLA enhances audio representation
by both self-supervised learning and cross-modal alignment.
Secondly, previous works only focus on one specific type of
audios while CLIP4VLA extract both verbal and nonverbal
information for general video understanding.

Video-Text Pre-training

Most video-text pre-training works (Sun et al. 2019; Tang,
Lei, and Bansal 2021; Xu et al. 2021; Lei et al. 2021; Sun
et al. 2020; Zhu and Yang 2020; Luo et al. 2020) focus
on the vision-text alignment in videos. VideoBERT (Sun
et al. 2019) and CBT (Sun et al. 2020) are pioneering
works to explore Video-Language representation by self-
supervised learning. For fine-grained multimodal under-
standing, HERO (Li et al. 2020) designs a temporal-specific
proxy task and UniVL (Luo et al. 2020) designs a genera-
tion proxy task. ClipBERT (Lei et al. 2021) further explores
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Figure 2: An overview of the audio encoding. The audio spectrogram is first split into segments along temporal dimension
without overlap, the spectrogram of each audio segment is then split into a patch sequence of 7 × 7 without overlap. After
flattening, A [CLS] token and an audio type embedding are added to the start and the end of the patch sequence respectively.
Each patch embedding is added with a learnable positional embedding and then fed into the Audio encoder, which keeps the
same structure as the visual encoder. The output of [CLS] is used as the final audio segment representation

an end-to-end manner by inputting sparse sampled frames
from video clips rather than extracted video features from
pre-trained backbones (Xie et al. 2018). These works well
explore the correlation between vision and text modalities
but ignore audio information in videos.

Recently, some works (Alayrac et al. 2020; Akbari et al.
2021; Liu et al. 2021) try to incorporate audio modality
during pretraining for tri-modal understanding. OPT (Liu
et al. 2021) focuses on the speech of image descriptions,
which is greatly different from the audio in general videos.
To encode general videos, VATT (Akbari et al. 2021) ex-
plores representing all three modalities with one modality-
agnostic encoder. Our work also focuses on general videos
for broader application and there are major two differences.
Firstly, VATT is trained from scratch with heavy computa-
tion load while our model learns triple-modal correlation
based on existing VL pe-trained model. Secondly, VATT
does not distinguish verbal and nonverbal information in au-
dios while CLIP4VLA respectively learns their correlation
with other two modalities from different types of videos.

Method
In this section, we describe the proposed CLIP4VLA model
and the multimodal contrastive learning objectives for pre-
training in details. Given a batch of videos and their cor-
responding descriptions, we first extract audios from the
videos and formulate the video batch, audio batch and
text batch as V , A and T respectively. The target of our
CLIP4VLA model is to learn rich semantic representations
for the three modalities, so that the corresponding video, au-
dio and text with similar semantics can be embedded close
to each other though in different modalities, while those with
different semantics be embedded further away.

With the multimodal representations fully learned, we
adapt the model on different downstream tasks including
cross-modal retrieval and multimodal captioning to verify
the effectiveness of our CLIP4VLA model.

Model Structure

As illustrated in Figure 1, our proposed CLIP4VLA model
consists of three backbones to handle the textual, visual and
audio signals respectively. The details of the audio process-
ing and audio backbone structure are illustrated in Figure 2.
Text & Vision Encoder. We employ CLIP (Portillo-
Quintero, Ortiz-Bayliss, and Terashima-Marı́n 2021) as our
text and vision encoders to encode text input T and vision
input V . Each ti ∈ T is first tokenized into a token sequence
and then added with a start token [SOS] and an end token
[EOS], denoted as {t1i , t2i , · · · , t

LT
i }. After text encoding,

outputs of each token are collected as word-level represen-
tations {x1

i , x
2
i , · · · , x

LT
i }. Following CLIP, we choose the

output of [EOS] token as the global text representation of ti,
denoted as xg

i .
For visual information in videos, we uniformly sample

LV frames from vi ∈ V in the temporal dimension as the
vision sequence {v1i , v2i , · · · , v

LV
i }. Specifically, each frame

is split into a sequence of patches without overlap and then
added with a [CLS] token. During vision encoding, patch
sequence of each frame is independently fed into the vision
encoder to model the spatial relationship between patches.
The final output of the [CLS] token is chosen as the vision
representation of each video frame. Finally, for the vision
sequence {v1i , v2i , · · · , v

LV
i }, we acquire frame-level vision

representations yi = {y1i , y2i , · · · , y
LV
i }. By average pool-

ing of yi, we get a global vision embedding, denoted as ygi .
Audio Encoder Well-trained specialists could infer ambi-
ent events or human voice by watching spectrograms. Thus
it is also possible for machine to encode audio informa-
tion with visual spectrograms as inputs. To keep architec-
ture consistency across different modalities, we design our
audio encoder with the same model structure as the vision
encoder. To process audios similarly as the visual signals,
the first thing to do is to transfer the 1-dimensional long au-
dio ai ∈ A into the image format, a matrix in the shape
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Figure 3: An overview of different modal fusion methods. We explore 3 methods for video retrieval, which includes (1) Global
to Global, (2) Global to Local, (3) Local to Local

of 224×224×3 in this paper. To be specific, we convert
the audio waveform into 224-dimensional log Mel filter-
bank (fbank) features with 32ms Hamming window every
8ms. In this way, a t-second audio stream will be trans-
ferred into a spectrogram in the shape of 125t × 224. We
cut the spectrogram into k×224×224 along the temporal
dimension without overlap, and pad with zeros if the last
part is less than 224. Therefore, a t-second audio will be
finally transferred into ⌈ t

1.792⌉ frames {a1i , a2i , · · · , a
LA
i }

with aji ∈ R224×224×3. Then the normalized segment
frames can be encoded similarly with frame images. The fi-
nal sequence of audio segment representations is denoted as
zi = {z1i , z2i , · · · , z

LA
i }. We also get a global audio embed-

ding by average pooling of zi, denoted as zgi .
Audio Type Token As we consider roughly two types of
information in the audios of common videos (VerBal infor-
mation and NonverBal information), we design audio type
tokens to effectively control which type of features the au-
dio encoder tends to generate. To be specific, after flatten-
ing patches of each audio segment, an audio type token
[VB]/[NB] is added at the end of the patch sequence ac-
cording to different application scenarios. For example, for
dialogue or commentary, the audio type token [VB] could
be used to encode the verbal information. While for natural
activities/events, where the nonverbal information is more
important, the [NB] token can be used as the control signal
to extract the audio features from the nonverbal aspect. Fur-
thermore, for the complex scenarios where both verbal in-
formation and nonverbal information are crucial, these two
types of embeddings can also be combined for better video
understanding. During pre-training, we set the audio type
token according to the characteristics of audio pre-training
datasets. During fine-tuning or testing, we add both audio
type tokens at the end of the flatten patch sequences to flex-
ibly extract both verbal and nonverbal information.

Pre-training
In this section, we introduce pre-training objectives of our
CLIP4VLA model. To learn semantic representations of
text, vision and audio, we explore contrastive learning from

two perspectives: inter-modal and intra-modal. The inter-
modal contrastive learning is designed to learn the correla-
tion between audio modality and text/vision modality. The
intra-modal contrastive learning aims to learn the inherent
characteristics of the audio modality. We choose the NCE
loss (Józefowicz et al. 2016) for both inter-modal and intra-
modal contrastive learning.
Inter-modal Learning During inter-modal learning, which
learns cross-modal alignments between text, vision and au-
dio, positive pairs of cross-modal representations should be
closer than negative ones. In this work, we construct neg-
ative pairs of cross-modal representations within a mini-
batch. With global embeddings of text, vision and audio
modalities, we compute the cosine similarity matrix in B ×
B for text-audio pairs and vision-audio pairs within a mini-
batch, where B is the batch size. Since the vision and text
encoders have been well pre-trained to learn vision-language
alignment, we mainly train the audio encoder by maximiz-
ing the cosine similarity of B positive pairs while minimiz-
ing the cosine similarity of the B2 − B negative pairs. The
symmetric cross entropy loss is calculated as follows:

NCEat =
1

B

B∑
i

log
exp(zgi · xg

i )∑B
j exp(zgi · xg

j )
(1)

NCEav =
1

B

B∑
i

log
exp(zgi · ygi )∑B
j exp(zgi · ygj )

(2)

where xg , yg , zg refer to global embbeddings of text, vision
and audio modalities.
Intra-modal Learning To enhance the information repre-
sentation ability of audio encoder, we further optimize it
with intra-modal self-supervised learning. We first augment
the audio ai to âi by randomly masking the audio spectro-
grams along both channel and temporal dimension (Liu, Li,
and Lee 2021). To be specific, we randomly sample the start
step along the channel step and the time step with probability
of 5% and 15% respectively, then we mask the subsequent
10 consecutive steps from the start step. Overlap is allowed
in the masking. The original audio ai and its augmented ver-
sion âi then can be seen as a positive pair for the contrastive
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MSR-VTT VATEX
Model R@1 R@5 R@10 MedianR R@1 R@5 R@10 MedianR

W2VV++ (Li et al. 2019) 18.9 45.3 57.5 - 34.3 73.6 83.7 -
CE (Liu et al. 2019) 20.9 48.8 62.4 5.0 47.9 84.2 91.3 2.0
MMT (Gabeur et al. 2020) 26.6 57.1 69.6 - - - - -
HGR (Chen et al. 2020) - - - - 35.1 73.5 83.5 2.0
SSB (Patrick et al. 2021) 30.1 58.5 69.3 3.0 45.9 82.4 90.4 1.0
UniVL (Luo et al. 2020) 20.6 49.1 62.9 6.0 - - - -
ClipBERT (Lei et al. 2021) 22.0 46.8 59.9 6.0 - - - -
VLM (Xu et al. 2021) 28.1 55.5 57.4 4.0 - - - -
CLIP 31.2 53.7 64.2 4.0 39.7 72.3 82.2 -
CLIP-FRL (Chen et al. 2021) 38.2 66.0 75.7 - 47.1 82.3 90.6 -
CLIP4Clip (Luo et al. 2021) 44.5 71.4 81.6 2.0 55.9 89.2 95.0 1.0
CLIP2Video (Fang et al. 2021) 45.6 72.5 81.7 2.0 57.3 90.0 95.5 1.0

CLIP4VLA 46.2 73.5 83.5 2.0 63.5 91.5 95.9 1.0

Table 1: Video Retrieval Performance on MSR-VTT-1kA and VATEX

Model Modality R@1 R@5 R@10 MedianR

VGGish A 18.5 - 62.0 -
VGGSound A 22.4 - 69.2 -
MoEE A 22.5 - 69.5 -
CE A 23.1 56.2 70.7 4.0
CLIP4VLA A 28.4 60.9 76.2 4.0

CE AV 28.0 - 80.4 -
CLIP4VLA AV 33.6 68.1 82.3 3.0

Table 2: Retrieval Performance Comparison on Audiocaps

learning. Similar to the inter-modal NCE loss, other masked
audios within a mini-batch are negative samples for ai. The
symmetric cross entropy loss is calculated as follows:

NCEaâ =
1

B

B∑
i

log
exp(zgi · ẑig)

S
(3)

S =
B∑
j

exp(zgi · ẑjg) +
B∑

k ̸=i

exp(zgi · zk
g
) (4)

where ẑi
g is the global embedding of masked audio âi.

The final pre-training loss for CLIP4VLA is the sum of
inter-modal NCE and intra-modal NCE objectives:

L = NCEat +NCEav +NCEaâ (5)

Fine-tuning
To verify the effectiveness of the learned representations for
text, vision and audio, we fine-tune the CLIP4VLA model
for multiple downstream tasks.
Fine-tuning for Video Retrieval Video Retrieval aims to
search the target video based on a video caption as the re-
trieval query. Without encoding audio information, existing
video retrieval works (Liu et al. 2019; Miech, Laptev, and
Sivic 2018; Chen et al. 2020) only focus on the matching
between text and vision modality. Benefiting from the tri-
modality encoding ability of CLIP4VLA, we fully explore

both vision and audio information in the video for text-video
retrieval. Since there are three modalities involved in this
task, effective multimodal fusion is important. In this pa-
per, we explore three multimodal fusion approaches for text-
video retrieval, including (1) Global to Global, (2) Global
to Local, and (3) Local to Local. As illustrated in Figure 3,
the Global to Global approach directly calculates similarity
based on the global embeddings of vision and audio modali-
ties via mean pooling. For the Global to Local approach, we
apply a Video Temporal Encoding Module (N-layer trans-
former) to encode temporal relevance of vision and audio
modalities, and calculate the similarity between text feature
and fused video feature. For the Local to Local approach,
we apply a Fine-grained Cross-modality Fusion Module (N-
layer transformer) to further exploit the fine-grained correla-
tion of text to vision and audio modalities. We analyze these
multimodal fusion methods in the supplementary material.
Fine-tuning for Video Captioning Besides the video re-
trieval task, Video Captioning (Zhang et al. 2020; Lin, Gan,
and Wang 2021; Wang et al. 2022) is another challenging
task on video understanding, which aims to generate fluent
natural language description of video contents. To conduct
sentence generation, we introduce a Multimodal Caption
Generator (N-layer transformer encoder) upon CLIP4VLA.
At the tth decoding step, we feed previous generated words,
vision frames and audio segments into CLIP4VLA. After
intra-model encoding with three encoders, we concatenate
the fine-grained features to construct multimodal sequence
Ui. Input the sequence into Multimodal Caption Generator,
the tth word is predicted as follows:

Hi = MCG(Ui), (6)

pti = softmax(f(ht
i)), ht

i ∈ Hi, (7)

where MCG refers to the Multimodal Caption Generator,
f(·) is the linear output layer, pti is the predicted probabili-
ties over the whole vocabulary size.
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Figure 4: The zero-shot text-audio retrieval performance on different datasets with different audio type token. The x-axis
represents the mixing ratio of [VB] and [NB] type embeddings, and the y-axis represents the retrieval performance

Model BLUE4 METEOR ROUGE CIDER

ORG-TRAL 43.6 28.8 62.1 50.9
SemSynAN 44.3 28.8 62.5 50.1
APML 41.9 29.9 62.6 49.8
UniVL 42.2 28.8 61.2 49.9
CMG 43.7 29.4 62.8 55.9
Clip4Caption 46.1 30.7 64.8 57.7
CLIP4VLA 46.7 31.1 64.4 58.0

Table 3: Captioning Performance on MSR-VTT

Model BLUE4 METEOR ROUGE CIDER

Shared E 28.4 21.7 47.0 45.1
Shared E-D 27.9 21.6 46.8 44.2
ORG-TRAL 32.1 22.2 48.9 49.7
SCST-C-B-F 33.3 22.8 49.6 54.6
CLIP4VLA 36.4 25.0 54.7 59.7

Table 4: Captioning Performance on VATEX

Experiments
Experiment Settings
We first pre-train our proposed CLIP4VLA on large scale
datasets including Howto100M (Miech et al. 2019) and
Audioset (Gemmeke et al. 2017), then fine-tune it for
the retrieval and captioning tasks on three datasets: MSR-
VTT (Xu et al. 2016), VATEX (Wang et al. 2019), Au-
diocaps (Kim et al. 2019). The evaluation metrics are Re-
call@n (R@n) and Median R for retrieval tasks, and BLUE-
n, METEOR, ROUGE, CIDER for captioning tasks.
Pre-training Datasets Our pre-training data includes in-
structional video dataset Howto100M (Miech et al. 2019)
and event video dataset Audioset (Gemmeke et al. 2017). To
enable our audio encoder to distinguish verbal and nonverbal
audio information, we choose [VB] as the audio type token
for Howto100M and [NB] for Audioset, respectively. More
details of data processing can be found in the supplementary
material.
Fine-tuning Datasets We evaluate the pre-trained
CLIP4VLA on retrieval and captioning benchmarks,

including MSR-VTT (Xu et al. 2016), VATEX (Wang et al.
2019) and Audiocaps (Kim et al. 2019). After filtering out
the silent videos, MSR-VTT remains 7867 and 884 videos
for training and testing on the retrieval task, and 5867,
448, and 2617 videos for training, validation, and testing
on the captioning task. VATEX remains 24667, 1427, and
1421 videos for training, validation, and testing on retrieval,
and 24667, 2845, and 5698 videos for training, validation,
and testing on captioning. Audiocaps keeps 49712, 495,
and 967 videos for training, validation, and testing on the
retrieval task. For training cost comparison with previous
work, we further measure our model on event classification
datasets of UCF101 (Soomro, Zamir, and Shah 2012) and
ESC50 (Piczak 2015). The former one contains 13K videos
of 101 action classes, and the latter one contains 2K audio
clips of 50 classes.

Comparison with the State-of-the-arts
Video Retrieval To demonstrate the effectiveness of our
proposed CLIP4VLA, we first evaluate it for video re-
trieval on three benchmarks. Baselines could be grouped
into three categories, corresponding to the three blocks in
the table: 1) Classical Retrieval Methods: W2VV++ (Li
et al. 2019), CE (Liu et al. 2019), HGR (Chen et al. 2020),
MMT (Gabeur et al. 2020), SSB (Patrick et al. 2021),
MoEE (Miech, Laptev, and Sivic 2018); 2) Pre-training
based Methods: UniVL (Luo et al. 2020), ClipBERT (Lei
et al. 2021), VLM (Xu et al. 2021); 3) CLIP-based Meth-
ods: CLIP (Portillo-Quintero, Ortiz-Bayliss, and Terashima-
Marı́n 2021), CLIP-FRL (Chen et al. 2021), CLIP4Clip (Luo
et al. 2021), CLIP2Video (Fang et al. 2021). Our model
understands videos according to both vision and audio in-
formation. However, on visual-centric video datasets MSR-
VTT and VATEX, not all videos contain audio information.
To deal with the missing modality problem for each silent
video during testing, we pair it with the audio of the most
similar video, which is chosen from corresponding training
set according to cosine similarity of global vision features.
As shown in Table 1, firstly, our model CLIP4VLA achieves
state-of-the-art performance on both MSR-VTT and VATEX
datasets. Secondly, CLIP-based methods significantly out-
perform other baselines, which shows video understanding
can benefit a lot from large-scale image-text pre-training.
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MSR-VTT VATEX
Components R@1 R@5 R@10 MedianR R@1 R@5 R@10 MedianR

1 Scratch 2.5 7.8 11.1 124.0 1.9 6.0 9.4 156.0
2 +Initial 3.6 11.6 16.5 136.5 3.7 12.5 19.3 72.0
3 +Inter-modal NCE 6.8 15.4 21.6 81.5 7.0 19.7 27.5 40.0
4 +Intra-modal NCE 10.5 25.4 37.5 21.0 9.3 24.9 34.2 26.0
5 +Audio Type Token 10.6 26.5 38.0 19.0 9.9 25.4 34.3 29.0

Table 5: Impact of key components for audio retrieval on MSR-VTT & VATEX

Model Training Cost Batch Size Training Param ESC50(A) UCF101(V& A)
VATT-Medium 512∼768 TPU days 2048 264M 84.7 89.6
CLIP4VLA 48 V100 days 256 88M 86.8 91.9

Table 6: The Comparison of Training Cost and event classification performance of VATT and CLIP4VLA on ESC50 and
UCF101 (audio features of ESC50, vision and audio features of UCF101)

Thirdly, with audio content as extra input, our CLIP4VLA
achieves better performance than other CLIP-based meth-
ods. This indicates that our model could well encode the
correlation across text, vision and audio modality.

Besides visual-centric datasets, we also evaluate our
model on audio-centric video dataset Audiocaps. As shown
in Table 2, either with only audio representations or both au-
dio and vision representations of videos, our model achieves
state-of-the-art video retrieval performance on Audiocaps.
What’s more, CLIP4VLA with both audio and vision in-
formation outperforms the one with only audio information.
This indicates that our model could better understand audio-
centric videos by leveraging vision information.
Video Captioning We further validate the adaptability of
CLIP4VLA to video captioning task on MSRVTT and VA-
TEXT. As shown in Table 3 and Table 4, our model achieves
state-of-the-art captioning performance on both datasets as
well. This indicates that our model also possesses good cap-
tion generation capability by leveraging well-aligned multi-
modal representations.

Ablation Study
Audio Type Token To verify the validity of our proposed
audio type token for different kinds of audio information en-
coding, we conduct the experiment to compare the audio re-
trieval performance when adjusting the mixing ratio of the
two type embeddings of [NB] and [VB]. As shown in Fig-
ure 4, with the mixing ratio of [NB] embedding increased,
the audio retrieval result on the Audiocaps dataset is signif-
icantly improved, because most of the audios in Audiocaps
dataset are ambient sound. However, for the video datasets
MSR-VTT and VATEX, the best results are yielded when
the [NB] and [VB] embeddings are mixed with a ratio of
1:1, which further demonstrates that videos usually contain
complex audios with both verbal and nonverbal informa-
tion, while previous multimodal pre-training works have not
specifically considered handling them simultaneously. The
results on the three datasets show that our audio type token
can effectively control the information aspect of encoded au-
dio features for different application scenarios.

Key Components Table 5 ablates the contributions from key
components of our model. The text-audio retrieval results on
MSR-VTT and VATEX datasets consistently demonstrate
the effectiveness of each proposed component. Especially,
compared with row 1, directly initializing the audio back-
bone with vision backbone (row 2) has brought obvious
gains, which further demonstrates that the audio information
learning can benefit from existing visual knowledge.
Training Cost Fully exploiting the existing vision-text
knowledge for audio pre-training can not only help the audio
representation learning, but also reduce the training cost. In
this section we compare the training cost and the classifica-
tion performance on ECS50 and UCF101 with VATT (Ak-
bari et al. 2021), which is a vision-text-audio model pre-
trained from scratch. For fair comparison, we follow the
VATT to train a linear classifier on top of the frozen mul-
timodal backbones, and report the mean accuracy over offi-
cial splits (5-fold and 3-fold cross validation for ESC50 and
UCF101 respectively) . As the results shown in Table 6, our
CLIP4VLA model achieves better downstream results with
much less training cost, which demonstrates the advantages
of learning audio from the existing visual-text knowledge.

Conclusion

We propose CLIP4VLA for Vision-Language-Audio pro-
cessing by extending the VL pre-training model CLIP to ac-
commodate the audio modality in a unified and economic
way, which incorporates an audio encoder with the same
structure as the vision backbone for training consistency
and efficiency. To take full advantage of multimodal training
data, we propose the contrastive learning from both inter-
and intra-modal perspectives. Considering both verbal in-
formation and nonverbal information contained in general
audios, we further propose an audio type token to explicitly
encode these two types of information. CLIP4VLA is val-
idated by the video retrieval and video captioning tasks on
MSR-VTT, VATEX, and Audiocaps benchmark datasets and
achieves the state-of-the-art performance.
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