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Abstract
The world is currently seeing frequent local outbreaks of epi-
demics, such as COVID-19 and Monkeypox. Preventing fur-
ther propagation of the outbreak requires prompt implemen-
tation of control measures, and a critical step is to quickly
infer patient zero. This backtracking task is challenging for
two reasons. First, due to the sudden emergence of local epi-
demics, information recording the spreading process is lim-
ited. Second, the spreading process has strong randomness.
To address these challenges, we tailor a gnn-based model to
establish the inverse statistical association between the cur-
rent and initial state implicitly. This model uses contact topol-
ogy and the current state of the local population to determine
the possibility that each individual could be patient zero. We
benchmark our model on data from important epidemiolog-
ical models on five real temporal networks, showing perfor-
mance significantly superior to previous methods. We also
demonstrate that our method is robust to missing information
about contact structure or current state. Further, we find the
individuals assigned higher inferred possibility by model are
closer to patient zero in terms of core number and the activ-
ity sequence recording the times at which the individual had
contact with other nodes.

Introduction
Artificial intelligence is providing increasingly valuable sup-
port to a diverse range of applications in medicine (Buch,
Ahmed, and Maruthappu 2018) by assisting humans to sift
through massive amounts of medical data and uncover the
relevant underlying patterns (Jittprasong 2022). Here, we
propose an AI-based solution for source detection in con-
tagion processes, i.e., inferring patient zero, the individ-
ual who initially introduces the virus into the local popu-
lation. At present, countries around the world are plagued
by highly contagious diseases, e.g., COVID-19 and Mon-
keypox. During an incubation period, the initially infected
population can be contagious without exhibiting detectable
symptoms, which can lead to the unforeseeable outbreak of
an epidemic. After an outbreak, source detection is a nec-
essary measure to investigate pathogenesis, cut off the route
of transmission and block further propagation. An efficient
detection algorithm can use limited data to determine where
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a virus comes from and guide governments to develop tar-
geted procedures for epidemic prevention.

The backtracking problem’s practical significance means
it has received sustained attention across several communi-
ties, including epidemiology, network science and computer
science. However, many algorithms require detailed infor-
mation about the spreading process, such as the exact mo-
ment when each individual was infected or the person by
whom each individual was infected, and the sudden and un-
expected onset of epidemics make this data difficult to ob-
tain in practice. Our algorithm is designed for the more com-
mon scenario in which the available information is limited
to three aspects (see Fig. 1). First, a snapshot of the distri-
bution of the disease throughout the population at the final
moment. This final state is usually obtained by carrying out
a full screening, in COVID-19, for example, by nucleic acid
testing. Second, the contact relation of the local population
during the contagion processes, which can be modelled as a
temporal network in which nodes represent individuals and
links represent physical proximity within a distance which
risks transmission. These contact networks can be recon-
structed from survey or modern location technologies, such
as mobile signaling data. Third, an estimated time interval –
not necessarily a precise time – when the outbreak starts.

In many epidemic models, individuals are infected with a
certain probability when they come into contact with a pa-
tient, with the infection rate depending on the type of dis-
ease. Thus, the spreading process is strongly random. Even
with the same patient zero, restarting the spreading process
many times can result in very different snapshots. For ex-
ample, when patient zero encounters an individual who is a
hub node in the contact network, whether this encounter be-
comes an effective transmission has a great influence on the
final size of infected population. On the other hand, similar
final snapshots can emerge from distinct patient zeros, espe-
cially when their topological distance on the temporal net-
work is small. Soft Margin Monte Carlo estimator (Antulov-
Fantulin et al. 2015) runs extensive simulations of spreading
taking each infected individual as a potential patient zero
in turn, and quantifies the similarity between the simulated
and real snapshots. The individual with maximum similarity
is identified as patient zero. However, this method provides
limited insights into how the behavior of the spreading dy-
namics system depends on the initial state (Strogatz 2018),
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Figure 1: Modeling of contagion process in local population. Contacts between individuals change over time and can be repre-
sented by a temporal network G. The SIR model is applied to simulate the spreading process on this temporal contact network.
The individual carrying the virus at the initial moment is called patient zero. Our problem is to infer who is the patient zero
from the current (final) state of the population.

and fails when contact networks are dense or the estimated
parameters used in simulation deviate slightly from those of
the real contagion process.

To provide implicit understanding and improve concrete
inferences, we tailor a graph neural network (GNN) (San-
toro et al. 2017; Battaglia et al. 2018; Zhou et al. 2020;
Wu et al. 2020) to establish the statistical association be-
tween initial sources and final snapshots under the stochastic
spreading environment. The source detection problem can
be mapped to a multi-classification problem in which each
individual in the population is a separate category. The gnn-
based model processes the encoded spreading information,
and estimates the possibility of each individual to be patient
zero (see Fig. 2). Experiments on simulation data generated
by classic epidemiological models on five real temporal net-
works indicate that the performance of our method is sig-
nificantly superior to established methods. We also design
two scenarios with missing information to show the robust-
ness of the proposed algorithm, including partially missing
contact structure and partial non-observation of population
state. Further, we give some insight into the interior reason-
ing of gnn-based models based on topological properties of
patient zero. Specifically, we find the closeness of the activ-
ity sequence (which records the times at which a node had an
active edge) and core number (Batagelj and Zaversnik 2003;
Carmi et al. 2007) to those of the true patient zero tend to
increase with inferred possibility to be the infection source,
but the same is not true of degree.

Related Work
Several methods of source detection (Huang et al. 2018)
are based on calculating measures of node centrality on the
sampled network, such as distance centrality, Jordan central-
ity (Zhu and Ying 2014), closeness centrality, modified be-
tweenness centrality (Comin and da Fontoura Costa 2011),
dynamical age (Fioriti, Chinnici, and Palomo 2014), and ru-
mor centrality (Shah and Zaman 2010, 2011), which esti-
mates the probability of a node as the source as proportional
to the count of all possible sequences of infection starting
from that node.

The strategy of Pinto, Thiran, and Vetterli (2012) requires
a set of monitoring nodes which record from which neigh-
bor and at which times information is received, and adopt

a maximum likelihood estimator for potential sources that
averages over two different sources of randomness: the un-
certainty in the paths that the information takes to reach the
monitors and the uncertainty in the time that the information
takes to cross the edges. For every possible source of the
epidemic, Lokhov et al. (2014) use a fast dynamic message-
passing method (DMP) to estimate the probability that all
nodes in the network are the state in the observed snapshot,
and a mean-field like approximation to compute the proba-
bility of the observed snapshot as a product of the marginal
probabilities. Finally, the potential sources are ranked ac-
cording to that probability. To overcome some drawbacks of
DMP, the belief propagation equations are derived (Altarelli
et al. 2014) for the posterior distribution of the time evolu-
tion of the state of the system conditioned on some observa-
tions. GNN has been used to study contagion processes for
learning the reverse dynamics and predicting patient zero,
yet on static networks (Shah et al. 2020). Time-reversal
backward spreading (TRBS) (Shen et al. 2016) requires the
arrival time of certain signals at monitoring nodes and net-
work structure weighted to represent time delay of propaga-
tion. TRBS starts from a monitor ok and spreads to all nodes
in the network along the reversed direction of links to yield a
reversed arrival time tok − t̂(i, ok) at a node i, where t̂(i, ok)
is the shortest time delay from ok to i. Then, the node i gets a
vector Ti = [to1− t̂(i, o1), to2− t̂(i, o2), ..., tom− t̂(i, om)]T

from the set of monitors. The node with the minimum vari-
ance of Ti is the inferred source. Backward temporal diffu-
sion process (Huang et al. 2017) extends TRBS to temporal
networks.

Most algorithms are either developed for static networks
or require a considerable number of monitoring nodes to pre-
cisely record information during the spreading process. This
is not applicable to our problem due to the time-varying tem-
poral contact network and the unexpected nature of the out-
break making infeasible the timely installation of monitors.

Method
Problem Formulation
The local population represents a typical complex system.
To represent the architecture of the complex system we use
a temporal network in which nodes are the system’s com-
ponents and temporal links capture changing interactions
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expert knowledge

Figure 2: Schematic demonstration of inference by backtracking network. A three-dimensional vector to characterize the state
of an individual: susceptible–[1 0 0], infectious–[0 1 0] and recovered–[0 0 1]. The slice sequence of posited temporal network
G̃ is integrated into an aggregation. A binary vector, with length equal to the time span of G̃, characterizes the activation pattern
of each edge. The BN gives the probability each individual is patient zero.

between these components (Holme and Saramäki 2012; Li
et al. 2017). The temporal network G = {G0, G1, · · · , GT }
is an ordered sequence of slice networks Gt on the same
node set V , as shown in Fig. 1. The evolution of states on
slice networks are represented as S = {S0, S1, · · · , ST },
where St is the state of the node set on slice Gt. Since an
interval of possible initial times is known rather than an ex-
act initial time, the posited temporal network G̃ may start
either earlier or later than reality G. Then, our problem is ex-
pressed concisely as: inferring S0 given

{
ST , G̃

}
. Assum-

ing only one node is infected in S0, the problem is further
refined into that of inferring patient zero.

Modeling of Contagion Process
Epidemic modeling describes the dynamical evolution of the
contagion process within the local population as a function
of time (Pastor-Satorras et al. 2015). Epidemic models gen-
erally assume that the population can be divided into dif-
ferent classes depending on the stage of the disease (Diek-
mann and Heesterbeek 2000), such as susceptible S who are
healthy currently and can be exposed to infection, infectious
I who are sick and can transmit the disease to contacts, and
recovered R who have previously had the disease and are
now non-infectious and immune. Here we adopt the clas-
sic three-state susceptible-infected-recovered (SIR) model
which defines basic individual-level processes governing the
two possible transitions of individuals from one class to an-
other as:

S(i) + I(j)
p→ I(i) + I(j), (1)

I(i)
q→ R(i). (2)

The first transition Eq. 1, denoted S → I , occurs when a
susceptible individual i has contact with an infectious in-
dividual j and becomes infected with infection rate p. The
second transition Eq. 2, denoted I → R, occurs when the
infectious individual i recovers from the disease with recov-

ery rate q and obtains immunity which lasts longer than the
time scale of the epidemic outbreak.

Encoding Available Information
The limited information available for source detection in-
cludes the final state and structure of temporal networks.
These are designed as a representation that can be exploited
in machine learning models.

a. Final state. When the SIR model is applied to sim-
ulate the spreading process, the state of an individual Ci

can transform among three classes: susceptible, infectious
and recovered. The final state of the complex system is a
macro aggregate comprising the microstates of the node set,
ST = {C0, C1, · · · , CN}. The one-hot encoding technique
is used to encode the individual state as a node feature (see
Fig. 2).

b. Structure of temporal networks. The aggregated net-
work G̃a (V,E) is a superposition of all slices in the tem-
poral network G̃, containing any edge which appears in at
least one slice. The adjacent matrix Aa of G̃a represents
the static topology properties of interactions between nodes,
but cannot provide temporal properties depending on the
times when interactions are active. An additional feature
vector Xe, of dimension equal to the length of the sequence{
G̃0, G̃1, · · · , G̃T

}
, is attached to each edge e to record its

activation pattern (see Fig. 2). The set of all edge features is
Xa = {Xe | ∀e ∈ E}.

Backtracking Network
We tailor a simple graph neural network focusing on source
detection, called backtracking network (BN), as shown in
Fig. 2. Compared with the spreading dynamic which drives
the system from an initial state forward to its final state, the
role of BN is to approximate an inverse function mapping
the final state back to its initial state: S0 = BN

(
ST , G̃

)
.

Given conditions ST , Aa and Xa, the BN computes with
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the kernel-based convolutional operator (Gilmer et al. 2017;
Simonovsky and Komodakis 2017):

v → e : gl+1
(i,j) = fe

(
gl(i,j), h

l
j

)
, (3)

e→ v : hl+1
i = fv

(
hl
i

)
+
∑

j∈N (i)

gl+1
(i,j), (4)

where gli,j and hl
i are the hidden features of edge (i, j) and

node i at layer l respectively. Initially, g0(i,j) = pe(X(i,j))

and h0
i = pv(Ci), where pe/pv is the projection layer. The

message function fe delivers the information on node to the
edge originating from it. The update function fv integrates
the information about disease states of neighbors and acti-
vation patterns of their contacts. fe and fv are represented
by two independent fully-connected layers with activation
function ReLU. The objective function is formulated as:

L = −
N∑
i=1

yi log
exp(hi)∑N
j=1 exp(hj)

, (5)

where hi ∈ R1 is the return of another projection layer fol-
lowing the gnn-based layers, and label yi = 1 if node i is
the real source else yi = 0. The softmax function inside the
log function maps hi to the detection probability of node i
being the source.

Expert Knowledge
Expert knowledge can complement machine, improving per-
formance by injecting human prior knowledge into the ma-
chine reasoning process, which is particularly valuable in
limited sample scenarios (Raissi, Perdikaris, and Karni-
adakis 2019; Hao et al. 2022). In SIR model, it is obvious
that individuals whose states are susceptible at final moment
are certainly not the source. If an individual is the source be-
ing infectious at initial moment, his state will not transition
to be susceptible (see Eq. 1-2). For humans, this knowledge
is easy to obtain because we know the mechanism of the
contagion process underlying the data generation whereas
the machine does not. What BN learns is that those suscep-
tible individuals have never been the sources in training sam-
ples (statistical association – thus gives them low detection
probabilities), not that they cannot be the sources (spread-
ing mechanism – these probabilities should be zero). As
the sample size increases, the given probabilities get close
to zero gradually. However, it may cause the BN to make
wrong inferences when sample size is not sufficient enough.
Therefore, we add a huge negative value on the susceptible
individuals to force their detection probabilities to become
zero after applying softmax function according to:

hs ← hs −∞. (6)

Then, hs is the final output on susceptible node s com-
bined with expert knowledge. The overall framework of our
method for source detection is summarized as Algorithm 1.

Experiment
We evaluate the performance of the proposed method on five
real temporal networks, check its robustness in two scenar-

Algorithm 1: Inference of patient zero
Input: Final snapshot of spreading in population ST , epi-
demic model e.g. SIR, estimated start interval of propaga-
tion, backtracking network BN
Output: Patient zero

1: Generate training set with size M .
2: while M has not meet do
3: Select start time t0 in estimated interval and a indi-

vidual activated at t0 as patient zero randomly.
4: Simulate spreading process using SIR on posited con-

tact network G̃
5: Collect the final snapshot and patient zero as a pair of

sample and label.
6: end while
7: Encode the available information in samples
8: Train BN combined with expert knowledge
9: return Patient zero in ST inferred by BN

ios where available spreading information is partially miss-
ing, and analyse the relationship between topological at-
tributes in contact network and the detectability of patient
zero.

Experiment Steps
Temporal networks. Statistics of the following five net-
works are provided in Tab. 3: (a) Sexual contact (Rocha,
Liljeros, and Holme 2011), is an empirical temporal net-
work of sexual contacts in Brazil; (b) Hospital (Isella et al.
2011), contains contacts among patients and health-care
workers in a hospital ward in Lyon, France; (c) European
email (Leskovec, Kleinberg, and Faloutsos 2007), is gener-
ated using email data from a large European research institu-
tion; (d) Bitcoin (Kumar et al. 2016), is a who-trusts-whom
network of people who trade using Bitcoin on a platform
called Bitcoin OTC; (e) Message (Panzarasa, Opsahl, and
Carley 2009), comprises private messages sent on an online
social network at the University of California, Irvine. The
two face-to-face networks, Sexual contact and Hospital, are
undirected, while others are directed and transmission only
occurs along the direction of an edge.
Datasets. We generate 20,000 samples (19,600/200/200 for
training/validation/test) for each temporal network by us-
ing the SIR model with two parameter combinations of
mean infection and recovery rate (p̄ = 0.3, q̄ = 0.01 and

Name Nodes tmin/tmax/tendEdges <k> <ka> Directed
Sex

Hospital
Eu email
Bitcoin

Message

5762
75

625
1302
1522

9319
1139
2113
4053
8764

1/10/101
1/5/71
1/3/11

1/10/81
1/3/11

1.2
4.4
1.2
0.8
1.9

3.23
30.4
3.38
3.11
5.76

N
N
Y
Y
Y

Table 1: Statistics of real temporal networks. 〈k〉 and 〈ka〉
is the mean degree in slice and aggregate networks respec-
tively. Times are given in days.
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(a) Sex

(c) Bitcoin

(b) Eu email

(d) Message

Figure 3: Distribution of final number of affected individuals
in datasets . The value on abscissa represents the final num-
ber of Infectious + Recovered individuals, among whom we
infer the single patient zero. There are 20,000 independent
samples in each dataset.

p̄ = 0.8, q̄ = 0.05) to simulate the spreading process.
Thus, we obtain ten experimental datasets in total, and the
distribution of the final number of individuals affected by
the epidemic is shown in Fig. 3. Each simulation individ-
ually chooses the start time t0 ∈ N+ from a fixed inter-
val [tmin, tmax] randomly and selects patient zero randomly
from among all individuals who are active (i.e., participate
in an active edge) at time t0. Simulations end at time tend.
When using these samples, the start time t0 is masked and
only the estimated interval [tmin, tmax] is known. Thus, we
unify the time span of the posited temporal networks G̃ input
into BN as [tmin,tend] for all samples. For each simulation the
infection rate p and recovery rate q are independently sam-
pled from the uniform distribution Up ∼ [p̄− 0.1, p̄ + 0.1]
and Uq ∼ [q̄ − 0.01, q̄ + 0.01]). This choice accommodates
possible differences between reality and the calibrated epi-
demic model.
Baselines. We compared BN with five baselines: (a) Jor-
dan centrality (Zhu and Ying 2014); (b) Modified between-
ness centrality (Comin and da Fontoura Costa 2011); (c) Dy-
namical age (Fioriti, Chinnici, and Palomo 2014); (d) Back-
tracking network without expert knowledge (BNW); (e) Soft
Margin Monte Carlo estimator (SM). For a test sample, SM
runs a large number M (200 in our experiment) of epidemic
simulations taking each infectious and recovered individual
in turn as the potential patient zero, and the inferred proba-
bility is proportional to the similarity between the real and
simulated snapshots calculated as (Antulov-Fantulin et al.
2015):

P (i) ∝ 1

M

M∑
m=1

exp
(
− [ϕ (~r∗, ~ri,m)− 1]

2
)
, (7)

where the vectors ~r∗ and ~ri,m ∈ RN record the state of the

population in the real snapshot and m-th simulated one with
individual i as source. ϕ is the Jaccard similarity function
ϕ : RN × RN → [0, 1] given by the ratio of the size of
the intersection of the sets of infected individuals in ~r∗ and
~ri to the size of their union; (f) Soft Margin Monte Carlo
estimator with exact start time (SMT). All methods share
test sets.
Evaluation metrics. Under each evaluation metric, a suc-
cess is as follows: (a) Top-1. The real patient zero is the
individual with maximal inferred probability to be patient
zero; (b) Top-5. The real patient zero is among the five in-
dividuals with the highest inferred probability to be patient
zero; (c) Hop-1. The topological distance between real and
inferred patient zero on the aggregate network Ga is less
than or equal to one. In other words, the inferred patient zero
is within one hop of the true patient zero (either the true pa-
tient zero or the true patient zero’s direct neighbor).
Training details. We train BN by the ADAM (Kingma and
Ba 2015) optimizer with learning rate of 10−3 (we report
the variation of performance with the number of layers in
Results). The batch size is 128 and training epoch is 200.
We compose our code on PyTorch framework and run all ex-
periments in a local machine with two NVIDIA Tesla V100
32GB GPUs.

Results

On all datasets, the performance of our gnn-based method is
significantly superior (see Tab. 2) to SM and SMT, which for
Top-5 only achieves accuracy above 0.6 on the small-scale
Hospital network, with 75 nodes. The failure of SM and
SMT indicates the similarity between the snapshots gener-
ated by multiple simulations on the same patient zero is not
distinctly higher than the similarity for distinct patient ze-
ros with small topological distance on the temporal network.
The superiority of SMT (i.e. SM with exact start time) to SM
shows that even if the spreading origins from the same pa-
tient zero, starting a few days earlier or later results in differ-
ent epidemic processes and final snapshots. We find that the
accuracy of BN is usually better than that of BNW in metric
Top-1. When BNW recognizes as suspicious a set of indi-
viduals including both the true patient zero and susceptible
individuals, BNW (without expert knowledge) needs more
features than BN to exclude the susceptible individuals.

We check the effect of receptive fields of nodes on BN’s
performance. As the number of layers (one layer comprises
both Eq. 2 and Eq. 3) increases, the node can gather informa-
tion from its neighbors with farther topological distance, i.e,
the receptive field becomes larger. Taking epidemic spread-
ing on sexual contact network as an example, the variation
of performance with a number of layers from 1 to 7 is shown
in Tab.3. We find the performance approaches its maximum
when the number of layers is 5, and further expanding the
receptive field provides no obvious improvement to the per-
formance. In other datasets, the performance even declines
since the information gathered on adjacent nodes become
homogeneous as their receptive field becomes too large.
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p=0.3 q=0.01 HospitalSex Bitcoin Eu email Message

SM
SMT
BNW
BN

0.10 / 0.22 / 0.28
0.12 / 0.28 / 0.29
0.50 / 0.91 / 0.87
0.50 / 0.92 / 0.88

0.44 / 0.79 / 0.98
0.64 / 0.91 / 0.98
1.00 / 1.00 / 1.00
1.00 / 1.00 / 1.00

0.08 / 0.23 / 0.40
0.07 / 0.26 / 0.43
0.41 / 0.88 / 0.85
0.45 / 0.87 / 0.89

0.16 / 0.44 / 0.65
0.17 / 0.49 / 0.67
0.39 / 0.84 / 0.76
0.44 / 0.85 / 0.83

0.08 / 0.13 / 0.30
0.09 / 0.16 / 0.27
0.25 / 0.52 / 0.54
0.28 / 0.59 / 0.53

SM
SMT
BNW
BN

0.04 / 0.13 / 0.14
0.04 / 0.10 / 0.14
0.40 / 0.86 / 0.82
0.45 / 0.92 / 0.84

0.33 / 0.65 / 0.98
0.31 / 0.65 / 0.98
1.00 / 1.00 / 1.00
1.00 / 1.00 / 1.00

0.03 / 0.12 / 0.36
0.04 / 0.13 / 0.37
0.47 / 0.86 / 0.85
0.46 / 0.85 / 0.79

0.25 / 0.52 / 0.61
0.25 / 0.52 / 0.62
0.49 / 0.86 / 0.78
0.55 / 0.91 / 0.82

0.12 / 0.21 / 0.34
0.13 / 0.24 / 0.37
0.35 / 0.62 / 0.56
0.36 / 0.66 / 0.58

_ _

p=0.8 q=0.05
_ _

HospitalSex Bitcoin Eu email Message

Jordan
Betweenness
Dynamic Age

0.02 / 0.08 / 0.19
0.01 / 0.03 / 0.01
0.03 / 0.08 / 0.19

0.12 / 0.12 / 0.82
0.00 / 0.00 / 0.17
0.10 / 0.26 / 0.97

0.04 / 0.06 / 0.25
0.01 / 0.01 / 0.02
0.00 / 0.04 / 0.30

0.07 / 0.24 / 0.41
0.00 / 0.00 / 0.02
0.09 / 0.25 / 0.58

0.02 / 0.05 / 0.16
0.00 / 0.02 / 0.01
0.00 / 0.01 / 0.35

Jordan
Betweenness
Dynamic Age

0.01 / 0.02 / 0.04
0.02 / 0.02 / 0.02
0.00 / 0.02 / 0.04

0.09 / 0.09 / 0.86
0.00 / 0.00 / 0.29
0.19 / 0.38 / 0.95

0.00 / 0.01 / 0.21
0.00 / 0.01 / 0.01
0.00 / 0.07 / 0.28

0.05 / 0.10 / 0.23
0.00 / 0.01 / 0.01
0.02 / 0.06 / 0.29

0.01 / 0.01 / 0.14
0.01 / 0.02 / 0.02
0.02 / 0.03 / 0.37

Table 2: Performance comparison using dataset from SIR model with mean infection and recovery rates (top: p̄ = 0.3, q̄ = 0.01;
bottom: p̄ = 0.8, q̄ = 0.05) on five real temporal networks. Each element contains three values representing the accuracy in
metric Top-1/Top-5/Hop-1 respectively.

L1
Top-1
Top-5
Hop-1

0.39
0.78
0.77

L2
0.45
0.82
0.81

L3
0.45
0.88
0.82

L4
0.46
0.88
0.86

L5
0.48
0.92
0.87

L6
0.45
0.89
0.88

L7
0.49
0.91
0.86

Metric

Table 3: Performance versus receptive field of node on
dataset of sexual contact. In column Ln, BN uses n layers.

Robustness

We design two more practical scenarios in which spreading
information is missing, as shown in Fig. 4. (a) Links missing.
The incomplete network structure generates fictitious tem-
poral patterns of contacts and activity rhythms of individ-
uals in G̃. The original propagation paths are obscured and
clues to infer by whom patients are infected became blurred.
To investigate this, we adjust the proportion of missing links
from mild to severe, and remove the links randomly from
each slice of the temporal network. (b) Partial observation.
Only a fraction of node states in final state ST is observed.
This leads to four classes of individual states in S̃T : suscep-
tible, infectious, recovered and unknown. Confused by the
unobserved individuals, we even fail to judge the final num-
ber of affected individuals. In this case, the problem is ex-
pressed as: inferring S0 given

{
S̃T , G̃

}
. Concretely, we ad-

just the proportion of observed nodes from dense to sparse,
and select observed nodes randomly from the population.
Taking epidemic spreading on sexual contact network as an
example, the robustness of our algorithm is shown in Fig. 5.
The faster decline in the first scenario supports the assertion
that the underlying structure of the temporal network has a

(a) Contact missing (b) Partial observation

Unobserved

Figure 4: Graphic illustration of two types of information
missing. (a) Contact missing. The light gray dashed lines
represent the missing links between the nodes. (b) Partial
observation.

drastic impact on spreading dynamics (Holme and Saramäki
2012; Bansal et al. 2010). When the information about net-
work structure is insufficient, BN is challenged to establish
correctly the association between the final state and initial
state which represents the inversion of spreading dynamics.
In contrast, partial observation has a substantially weaker in-
fluence on inference via BN. Even if eighty percent of final
states are unknown, BN still achieves around 0.7 accuracy
according to the metric Top-5.

Topological Insight into the Interior of BN
To give some insight into the implicit inverse association
S0 = BN

(
ST , G̃

)
, we analyze from this perspective: what

are the common characteristics among the individuals which
BN assigns top probability of being the source? We visual-
ize two cases of the final snapshot of the epidemic on tem-
poral network of sex contacts, and observe that the individ-
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(a) p=0.3, q=0.01 (b) p=0.8, q=0.05

Figure 5: Robustness to missing information. The values on
the abscissa represent the proportion of either missing links
(ml) or unobserved individuals (ui). The filled areas indicate
the gap of robustness between two scenarios.

uals given higher probabilities by BN always play a role in
the spreading process matched with that of the real patient
zero, as shown in Fig. 6. (a) Passersby. The patient zero, a
fringe node with 1 degree, activates only in one day, infects
a hub neighbor by chance (p̄=0.3) and never activates again.
The outbreak is caused mainly by the subsequent propaga-
tion from this neighbor of patient zero, which is a hub hav-
ing 47 neighbors. (b) Participant. The patient zero is a hub
with frequent activation, and contacts 91 other nodes. The
patient zero makes a substantial contribution to the outbreak
on its own. Comparing (a) with (b), we notice that although
these two patient zeros play completely different roles in
the spreading process, in either case BN can find alterna-
tive nodes which could fulfil a role similar to the true patient
zero. (a) top1 (source), top2 and top5 are all fringe nodes
and connect to the same hub node (top3) directly. BN rec-
ognizes that top3 is the main contributor of this outbreak,
but recognises that instead of being the source, it may in-
stead be infected on a certain slice of the temporal network.
(b) top1∼5 are all hubs, but are not simply the nodes in the
network with the highest degrees.

For further understanding, we quantify the match between
topological properties of the nodes which BN estimates have
the highest probability to be patient zero and topological

Patient zero

Patient zero
top1
top2

top4
top5

top3

Prob

(a)Passerby (b)Participant

Figure 6: The role of patient zero plays in spreading pro-
cess (a) Passerby and (b) Participant. The five nodes given
top probabilities are enlarged in size and filled with differ-
ent shades of red. The two local aggregated networks shown
here only contains the second-order inner neighbors of pa-
tient zero whose states are infectious or recovered in the final
snapshot.

(b) K-shell and degree(a) Activity sequence

Figure 7: Quantification of match between patient zero and
nodes given top inferred probability (a) Mean similarity of
activity sequence and (b) MAD of k-shell and degree on ag-
gregated network G̃a.

properties of the true patient zero. The three metrics we con-
sider are mean similarity of activity sequences, and absolute
mean absolute deviation (MAD) between degree and k-shell
on the aggregated network, as shown in Fig. 7. The simi-
larity of activation sequences is defined as (vi · vj)/|vi||vj |
, where vi is the activity sequence of node i on tempo-
ral network. Sorting nodes in descending order by inferred
probability, we observe the progressive decrease of similar-
ity, and also an increasing trend for MAD of k-shell but
not degree, which initially drops rapidly but then fluctuates.
This indicates that nodes with degree similar to patient zero
are not necessarily given high inferred probability. The BN
prefers to extract k-shell as topological inference identifier
rather than degree, corresponding to the conclusion (Kitsak
et al. 2010) that core in the network determines efficiency of
spreaders.

Conclusion

Our research involves backtracking the spreading of epi-
demics on temporal networks and inferring patient zero with
the help of artificial intelligence. The gnn-based method we
propose opens a novel path to deal with this kind of in-
verse problem in random environments. We show that this
problem is solved efficiently by a gnn-based method even in
the case of missing information about network structure and
node states.

Source detection is not only restricted to epidemiology,
but extends to other fields such as rumor in sociology and
pollution in ecology. The emergency of any of these phe-
nomena will lead to confusion in the local area, and locating
the source is crucial for subsequent interventions to erad-
icate negative events. The proposed method can be easily
transferred to solve these problems. Moreover, the inference
of patient zero is just a special case of initial state inference
for complex systems the entities of which can have a diverse
mixture of states described by a mixture of discrete and con-
tinuous values, and many important scientific questions can
be formulated in this way. Hence, extending our research to
inference of more general types of initial states is a interest-
ing direction.
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