
Planning and Learning with Adaptive Lookahead

Aviv Rosenberg1*, Assaf Hallak2, Shie Mannor2,3, Gal Chechik2,4, Gal Dalal2

1 Amazon Science,
2 Nvidia Research,

3 Technion,
4 Bar-Ilan University

avivros@amazon.com

Abstract

Some of the most powerful reinforcement learning frame-
works use planning for action selection. Interestingly, their
planning horizon is either fixed or determined arbitrarily by
the state visitation history. Here, we expand beyond the naive
fixed horizon and propose a theoretically justified strategy for
adaptive selection of the planning horizon as a function of the
state-dependent value estimate. We propose two variants for
lookahead selection and analyze the trade-off between iter-
ation count and computational complexity per iteration. We
then devise a corresponding deep Q-network algorithm with
an adaptive tree search horizon. We separate the value estima-
tion per depth to compensate for the off-policy discrepancy
between depths. Lastly, we demonstrate the efficacy of our
adaptive lookahead method in a maze environment and Atari.

1 Introduction
The celebrated Policy Iteration (PI) and Value Iteration
(VI) (Sutton and Barto 2018) algorithms are the basis
for most state-of-the-art reinforcement learning (RL) algo-
rithms. Since both PI and VI are based on a one-step greedy
approach for policy improvement, so are the most com-
monly used policy-gradient (Schulman et al. 2017; Haarnoja
et al. 2018) and Q-learning (Mnih et al. 2013; Hessel et al.
2018) based approaches. In each iteration, they perform an
improvement of their current policy by looking one step
forward and acting greedily. While this is the simplest and
most common paradigm, stronger performance was recently
achieved using multi-step lookahead. Notably, in AlphaGo
(Silver et al. 2018) and MuZero (Schrittwieser et al. 2020),
the multi-step lookahead is implemented via Monte Carlo
Tree Search (MCTS) (Browne et al. 2012). In MCTS, the
search depth is not chosen adaptively but gradually increases
with the aggregation of state visitations.

Several recent works rigorously analyzed the properties of
multi-step lookahead in common RL schemes (Efroni et al.
2018; Moerland et al. 2020; Hallak et al. 2021; Sikchi, Zhou,
and Held 2022). These and other related literature studied a
fixed planning horizon chosen in advance. However, both
in simulated and real-world environments, a large variety of
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Algorithm #Iterations Iteration complexity
PI (Scherrer 2016) 1 c(1)

H-PI 1
H c(H)

(Efroni et al. 2018)
TLPI (this paper) 1

h(κ) c(1) + θ(κ)c(h(κ))

QLPI (this paper) log γ
log κ

(
≤ 1

h(κ)

)
O
(∑H

h=1 θhc(h)
)

Table 1: Algorithm comparison summary. The iterations
count (number of iterations) is divided by S(A−1) log(1−γ)

log γ .
The iteration complexity (computational complexity per it-
eration) is divided by S. c(k) is the computational com-
plexity of k-step planning. h(κ) is the smallest integer h

s.t. γh(κ) ≤ κ. θ(κ) is the fraction of κ-contracting states.
θ1, . . . , θH are the contraction quantiles sizes.

states benefit differently from various lookahead horizons. A
grasping robot far from its target will learn very little from
looking a few steps into the future, but if the target is within
reach, much more precision and planning are required to
grasp the object correctly. Similarly, at the beginning of a
chess game, lookahead grants little information about which
move is better, while agents in mid-game intricate situations
benefit immensely from considering all future possibilities
for the next few moves. Indeed, in this work, we devise a
methodology for adaptive selection of the planning horizons
in each state and show it achieves a significant speed-up of
the learning process.

We propose two complementing approaches to determine
the suitable horizon per state in each PI iteration. To do so,
we keep track of the room for improvement for the value
function. Our first algorithm, Threshold-based Lookahead
PI (TLPI), ensures the desired convergence rate and mini-
mizes the computational complexity for each iteration. Al-
ternatively, our second algorithm, Quantile-based Looka-
head PI (QLPI), takes the per-iteration computational com-
plexity as a given budget and aims for the best possible con-
vergence rate. We prove that both TLPI and QLPI converge
to the optimum and achieve a significantly lower computa-
tional cost than their fixed-horizon alternative (see Table 1).

Next, we devise QL-DQN: a DQN (Mnih et al. 2013) vari-
ant of QLPI, where the policy chooses an action by employ-
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ing an exhaustive tree search (Hallak et al. 2021) looking h
steps into the future. The tree-depth h is chosen adaptively
per state to achieve an overall improved convergence rate at
a reduced computational cost. To sustain on-policy consis-
tency while generalizing over the multiple depths, we use a
different value network per depth, where the first layers are
shared across networks. We test our method on Atari and
show it improves upon a fixed-depth tree search.

To summarize, our contributions are the following. First,
we propose to use adaptive state-dependent lookahead and
devise corresponding algorithms. Our analysis shows they
converge with improved computational complexity. Second,
we extend our approach to online learning with a DQN vari-
ant that uses an exhaustive tree search of adaptive depth and
per-depth value network. Third, we evaluate the proposed
methods on maze and Atari environments and show better
results than a fixed lookahead horizon.

2 Preliminaries
We consider a discounted MDPM = (S,A, P, r, γ), where
S is a finite state space of size S, A is a finite action space
of size A, r : S × A → [0, 1] is the reward function, P :
S ×A → ∆S is the transition function, and γ ∈ (0, 1) is the
discount factor. Let π : S → A be a stationary policy, and
V π ∈ RS be the value function of π defined by V π(s) =
E [

∑∞
t=0 γ

tr(st, π(st) | s0 = s].
The goal of a planning algorithm is to find the optimal

policy π⋆ such that, for every s ∈ S ,

V ⋆(s) = V π⋆

(s) = max
π:S→A

V π(s).

Given a policy π, let Tπ : RS → RS be the Bellman oper-
ator: Tπ[V ] = rπ + γPπV, where rπ(s) = r(s, π(s)) and
Pπ(s′|s) = P (s′|s, π(s)). It is well known that the value
of policy π is the unique solution to the linear equations:
Tπ[V π] = V π . Let T : RS → RS be the optimal Bellman
operator defined as:

T [V ](s) = max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′).

Then, the optimal value is the unique solution to the nonlin-
ear equations T [V ⋆] = V ⋆ and T is a γ-contraction in the
max-norm over the state space:

∥V ⋆ − T [V π]∥∞ ≤ γ∥V ⋆ − V π∥∞.

2.1 PI and h-PI
PI starts from an arbitrary policy π0 and performs iterations
that consist of: (1) an evaluation step that evaluates the value
of the current policy, and (2) an improvement step that per-
forms a 1-step improvement based on the computed value.
That is, for n = 0, 1, 2, . . . ,

πn+1(s) = argmax
a∈A

r(s, a) + γ
∑
s′∈S

P (s′ | s, a)V πn(s′).

By the contraction property of the Bellman operator, one
can prove that PI finds the optimal policy after at most
⌈(log 1

γ )
−1S(A− 1) log 1/1−γ⌉ iterations (Scherrer 2016).

sn+1

s0 s1 s2 sn−1 sn......

u, r = 1− γ

d

u

d

u

d

u

d
d

Figure 1: Chain MDP example with deterministic transitions
and rewards 0 everywhere except for r(sn, u) = 1−γ. Using
a fixed horizon h per state for each PI iteration leads to the
same convergence rate as using horizon ℓ in only a single
state for ℓ = 2, . . . , h, but at a much higher computational
cost.

The PI algorithm can be extended to h-PI by perform-
ing h-step improvements (instead of 1-step). Formally, de-
fine the Q-function of policy π with a h-step lookahead as

Qπ
h(s, a) = max

πt

Es,a

[
h−1∑
t=0

γtr(st, πt(st)) + γhV π(sh)

]
,

where Es,a[·] = E[·|s0 = s, π0(s) = a]. Then, the update
rule of h-PI is πn+1(s) = argmaxa∈A Qπn

h (s, a). The oper-
ator induced by h-step lookahead is a γh-contraction which
allows to reduce a factor of h from the bound on the number
of iterations until convergence (Efroni et al. 2018), i.e., it is
bounded by

⌈
(h log 1

γ )
−1S(A− 1) log 1

1−γ

⌉
.

Multi-step lookahead guarantees that the number of iter-
ations to convergence is smaller than the 1-step lookahead,
but it comes with a computational cost. Computing the h-
step improvement may take exponential time in h. In tabular
MDPs, this can be mitigated with the use of dynamic pro-
gramming (Efroni, Ghavamzadeh, and Mannor 2020), while
in MDPs with large (or infinite) state space, MCTS (Browne
et al. 2012) or the alternative exhaustive tree-search (Hallak
et al. 2021) are used in forward-looking fashion. To com-
pare our algorithms, in the rest of the paper we measure the
computational complexity as follows:
Definition 2.1. Let c(h) be the computational cost of per-
forming a h-step improvement in a single state. For example,
in a deterministic full A-ary tree we have c(h) = O(Ah).

3 Motivating Example
To show the potential of our approach, consider the chain
MDP example in Figure 1:
Example 3.1 (Chain MDP). LetM be an MDP with n + 1
states s0, s1, . . . , sn and a single sink state sn+1. Each of the
n+1 states transitions to the consecutive state with action u,
and to the sink state with action d. All rewards are 0 except
for state sn in which u yields reward 1− γ.

Now consider the standard PI algorithm initialized with
π0(si) = d for all i ∈ {0, . . . , n}. Since the reward at the
end of the chain needs to propagate backward, in each it-
eration the value of only a single state is updated. Thus, PI
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takes exactly n iterations to converge to the optimal policy
π⋆(si) = u for all i. Instead, with a fixed horizon h = 2,
the reward propagates through two states in each iteration
(instead of one) and therefore convergence takes ⌈n/2⌉ iter-
ations. Generally, PI with a fixed horizon h, i.e., h-PI, con-
verges in ⌈n/h⌉ iterations.

While h-PI converges faster (in terms of iterations) as h
increases, in most states, performing h-step lookahead does
not contribute to the speed-up at all. In our example, we can
achieve exactly the same convergence rate as 2-PI by using a
2-step lookahead in only a single state in each iteration (and
1-step in all other states). Specifically, we need to pick the
state that is exactly 2 steps behind the last updated state in
the chain. For general h, consider applying ℓ-step lookahead
in only one state — the one that is ℓ steps behind the last
updated state in the chain — for ℓ = 2, . . . , h and 1-step
in the others. This guarantees the same number of iterations
until convergence as h-PI, but with much less computation
time. Namely, while the per-iteration computational cost of
h-PI is O

(
n · c(h)

)
, we can achieve the same convergence

rate with just O
(
n · c(1) +

∑h
ℓ=2 c(ℓ)

)
. In practice, when n

is large and c(h) scales exponentially with h, this gap can be
immense: O

(
n · 2h

)
versus O

(
n+ 2h

)
.

4 Contraction-Based Adaptive Lookahead
In this section, we introduce the concept of dynamically
adapting the planning lookahead horizon during runtime,
based on the online obtained contraction. In Example 3.1,
h-PI convergence rate can be achieved when using a looka-
head larger than 1 in just h states. The question is how to
choose these states? In the example, the chosen states are ev-
idently those with the maximal distance between their 1-step
improvement and optimal value, i.e., argmaxs∈S |V ⋆(s) −
T [V πt ](s)|. In this section, we show that this approach also
leads to theoretical guarantees on the convergence of the PI
algorithm.

To understand how the convergence rate depends on the
distance of the 1-step improvement from the approximate
optimal value, we delve into the theoretical properties of
PI. Since the standard 1-step improvement yields a contrac-
tion of γ while the h-step improvement gives γh, h-PI con-
verges h times faster than standard PI (Efroni et al. 2018).
Importantly, this contraction is with respect to the L∞ norm;
i.e., the states with the worst (largest) contraction coefficient
determine the convergence rate of PI. This behavior is the
source of weakness of using a fixed lookahead. Example 3.1
shows that one state may slow down convergence, but it also
hints at an elegant solution: use larger lookahead in states
with larger contraction coefficient.

We leverage this observation and present two new al-
gorithms: TLPI which aims to achieve a fixed contraction
in all states with a reduced computational cost, and QLPI
which aims to achieve maximal contraction in every iteration
within a fixed computational budget. While both algorithms
seek to optimize a similar problem, their analyses differ and
shed light on the problem from different perspectives: TLPI
depends on the contraction factor per state, while QLPI con-
siders only the ordering of the states with respect to their

Algorithm 1: TLPI

1: Input: S,A, r, P, γ, κ, β, Ṽ ⋆.
2: Initialization: Arbitrary π0, t← 0.
3: while πt changes do
4: Evaluation: compute V πt , and set U(s, a)←∞.
5: 1-step improvement: U(s, a)← Qπt

1 (s, a) ∀(s, a).
6: h(κ)-step improvement: U(s, a) ← Qπt

h(κ)(s, a) for
every (s, a) s.t.: (here U(s) = maxa U(s, a))

|Ṽ ⋆(s)− U(s)| > κ∥Ṽ ⋆ − V πt∥∞ − β. (1)

7: Set πt+1(s)← argmaxa∈A U(s, a) for every s ∈ S.
8: end while

contraction factors.
Since we do not have access to the optimal value V ⋆(s),

the algorithms rely on warm-starts or an approximation of
the optimal value V ⋆, denoted by Ṽ ⋆. While obtaining a
good approximation of the value function is hard, we aim
at a simpler task: find an approximation that is informative
for allocating the depth resources. The approximated values
may be far from optimal, as long as they yield similar al-
location across depths. In many cases, we can obtain such
an approximation through, e.g., state aggregation, training
agents on similar tasks, or by running PI for a small num-
ber of iterations. In Sections 5 and 6, we show that these
approximation methods are indeed effective in practice.

4.1 Threshold-Based Lookahead Policy Iteration
TLPI (Algorithm 1) takes as input the approximated value

Ṽ ⋆, a desired contraction factor κ and a correction term β.

We assume that ∥V ⋆−Ṽ ⋆∥∞ ≤ ϵ. This implies we can mea-
sure contraction up to some approximation error that scales
with ϵ. The algorithm ensures that in each iteration, the value
in every state contracts by at least κ. This is achieved by first
performing 1-step improvement in all states and then per-
forming h(κ)-improvement in states whose measured con-
traction is less than κ, where h(κ) is the smallest integer h
such that γh ≤ κ. Since we do not have an accurate estimate
of the optimal value, we use the correction term β to make
sure that no states falsely seem to achieve the desired con-
traction due to the approximation error ϵ (see Equation (1)).

The following result states that TLPI converges at least as
fast as h-PI (Efroni et al. 2018) with h set to h(κ) − 1, and
with improved computational complexity. To measure the
trade-off between the contraction factor (that determines the
convergence rate) and the computational complexity needed
to achieve it, Definition 4.1 presents θ(κ) as the fraction of
states in which we perform a large lookahead.

Definition 4.1 (Def. of θ(κ)). Let {πt}Tt=1 be the sequence
of policies generated by TLPI with correction term β and
approximated value Ṽ ⋆. Let κ ∈ (0, 1), and define

Xt = {s : |Ṽ ⋆(s)− T [V πt ](s)| ≤ κ∥Ṽ ⋆ − V πt∥∞ − β}
as the set of states, that after 1-step improvement in iteration
t, are β-close to be contracted by κ with respect to Ṽ ⋆. Then,
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Algorithm 2: QLPI

1: Input: S,A, r, P, γ, (θ1 . . . θH),m, Ṽ ⋆.
2: Initialization: Arbitrary π0, t← 0.
3: while πt changes do
4: Evaluation: compute V πt , and set U(s, a)←∞.
5: for h = 1, 2, . . . ,H do
6: Compute qh as the (1 − θh − m/S) quantile of

{|Ṽ ⋆(s)−maxa U(s, a)|}s∈S .
7: h-step improvement: U(s, a) ← Qπt

h (s, a) for ev-
ery (s, a) s.t.: |V ⋆(s)−maxa∈A U(s, a)| ≥ qh.

8: end for
9: Set πt+1(s)← argmaxa∈A U(s, a) for every s ∈ S.

10: end while

denote by θ(κ) = max1≤t≤T |S \ Xt|/S the largest fraction
of states with contraction less than κ, observed along all pol-
icy updates.
Theorem 4.2. The TLPI algorithm with approximated value
Ṽ ⋆ and correction term β = ϵ(κ + 1) converges in

at most
⌈(

(h(κ) − 1) log 1
γ

)−1

S(A− 1) log 1
1−γ

⌉
itera-

tions. Moreover, its per-iteration computational complexity
is bounded by S ·

(
c(1) + θ(κ)c(h(κ))

)
.

Proof sketch. The proof to bound the number of iterations
follows Scherrer (2016) while utilizing two key observa-
tions. First, the convergence analysis of PI only uses the
contraction property of the Bellman operator w.r.t. V ⋆, and
not w.r.t. an arbitrary pivot vector. The distance to V ⋆ can
be approximated using Ṽ ⋆, and the approximation error is
handled by the correction term β. Second, by the construc-
tion of the algorithm, a contraction of at least κ in every
state is guaranteed. The computational complexity follows
because we perform 1-step lookahead in all states and h(κ)-
step lookahead in θ(κ) of the states by Definition 4.1. For the
complete proof, see Appendix A.1.

To illustrate the merits of TLPI and Thoerem 4.2, con-
sider the Chain MDP in Example 3.1 where we set κ = γh

for some h ∈ N (and assume Ṽ ⋆ = V ⋆ for simplicity). In
every iteration, the states not contracted by κ after 1-step im-
provement are the h states closest to the end of the chain that
have not been updated yet (recall that each state reaches the
correct optimal value after just one non-idle update). Thus,
θ(κ) = h/S and the per-iteration computational complexity
is S · c(1) + h · c(h).

4.2 Quantile-Based Lookahead Policy Iteration
QLPI (Algorithm 2) resembles TLPI, but instead of a con-

traction coefficient κ, it takes as input a vector of quantiles
(budgets) (θ1, . . . , θH) ∈ [0, 1]H for some predetermined
maximal considered lookahead H . Instead of the actual dis-
tance to the optimal value, QLPI relies only on the ordering
of the states in terms of distance from the optimum. This al-
lows for weaker requirements on the approximated value Ṽ ⋆

as it should only preserve the order.

Definition 4.3. Let ps and p̃s be the positions of state s

in the orderings of {|V ⋆(s) − V πt(s)|}s∈S and {|Ṽ ⋆(s) −
V πt(s)|}s∈S , respectively. We define the approximation Ṽ ⋆

to be m-order-preserving if, for every s ∈ S , |ps− p̃s| ≤ m.
State-aggregation is an example of an approximation that

preserves orders and that is available in many domains
where states are based on locality (like the maze environ-
ment considered in Section 5). Assume that we have access
to a state-aggregation scheme that splits the state space into
S/m groups of size m such that for every two states s1, s2
in the same group |V ⋆(s1) − V ⋆(s2)| ≤ ϵ and for any state
s3 from a different group |V ⋆(s1) − V ⋆(s3)| > 2ϵ. Then
the optimal value of the aggregated MDP V ⋆

agg is m-order-
preserving as long as |V ⋆

agg(s)−V ⋆(s)| ≤ ϵ for every s ∈ S ,
since the position of a state can be shifted due to the aggre-
gation by at most the size of its group m.

QLPI attempts to maximize the contraction in every itera-
tion while using ℓ-step lookahead in at most θℓ ·S+m states.
This is achieved by performing ℓ-step improvement on the
(θℓ+m/S) portion of states that are furthest away from Ṽ ⋆.

The following result is complementary to Theorem 4.2:
now, instead of choosing the desired iteration complexity
(via κ in TLPI), we choose the desired computational com-
plexity per iteration via budgets (θ1, . . . , θH). For the result-
ing iteration complexity we define the induced contraction
factor:
Definition 4.4 (Def. of κ(θ)). Let {πt}Tt=1 be the sequence
of policies generated by QLPI. Let hθ

t (s) be the largest
lookahead applied in state s in iteration t when running
QLPI with quantiles (θ1, . . . , θH). For a given κ, define

Yt(κ) = {s : |V ⋆(s)− Thθ
t (s)V πt(s)| ≤ κ∥V ⋆ − V πt∥∞}

as the set of states contracted by κ in iteration t. The induced
contraction factor κ(θ) is defined as the minimal κ such that
Yt(κ) = S for every t.

Though its formal definition may seem complex, κ(θ) is
simply the effective contraction obtained by QLPI.
Theorem 4.5. The QLPI algorithm converges in at most⌈
(log 1

κ(θ) )
−1S(A− 1) log 1

1−γ

⌉
iterations. Moreover, its

per-iteration computational complexity is bounded by
S ·

∑H
h=1(θh +m/S)c(h).

We provide the proof in Appendix A.2; it is based on sim-
ilar ideas as the proof of Theorem 4.2.

To illustrate the merits of QLPI and Theorem 4.5, con-
sider the Chain MDP in Example 3.1 where we set θ1 = 1

and θ2 = · · · = θh = 1/S for some h ∈ N (again Ṽ ⋆ = V ⋆

for simplicity). In every iteration QLPI first performs 1-step
lookahead in all states, and then, for each ℓ = 2, . . . , h, it
performs ℓ-step lookahead in exactly one state – the state
that is ℓ steps behind the last updated state in the chain. As
explained in Section 3, the induced contraction is κ(θ) = γh

and QLPI converges in n/h iterations with optimal per-
iteration complexity of S · c(1) +

∑h
ℓ=2 c(ℓ).

Finally, we highlight the complementary nature of the
two algorithms: while in TLPI the complexity parameter
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Figure 2: Snapshot of our maze environment, a 30× 30 grid
world. The agent is spawned in the top left corner (blue) and
needs to reach one of four randomly chosen goals (green),
while avoiding the trap (red). White pixels denote walls.
Upon reaching a goal state, the agent re-appears in a new
random location.

θ(κ) is governed by the desired contraction coefficient, in
QLPI the induced contraction κ(θ) is the outcome of the pre-
determined computational budget.

5 Maze Experiments
In the first set of experiments, we evaluate our adaptive
lookahead algorithms, TLPI and QLPI, on a grid world
with walls (Tennenholtz et al. 2022). Specifically, we used
a 30×30 grid world that is divided to four rooms with doors
between them; see Figure 2. The agent is spawned in the top
left corner (blue) and needs to reach one of four randomly
chosen goals (green) where the reward is 1, while avoiding
the trap (red) that incurs a reward of −1. There are four de-
terministic actions (up, down, right, left). Upon reaching a
goal, the agent is moved to a random state. We set γ = 0.98.

Fixed lookahead. We begin with testing the fixed-horizon
h-PI with values h = 1, 2, . . . , 7. To corroborate that larger
lookahead values reduce the number of PI iterations required
for convergence, in Figure 3, we show the distance from the
solution as the function of iteration for the different depths.
The plot demonstrates the effect of the lookahead in a less
pathological example than Example 3.1.

In Figure 5, we compare the overall computational com-
plexity, and not only the number of iterations, of the different
fixed lookahead values. To measure performance, we count
the number of queries to the simulator (environment) until
convergence to the optimal value. More efficient lookahead
horizons will require fewer overall calls to the simulator.

Beginning with the fixed lookahead results in the leftmost
plot, we see the trade-off when picking the lookahead. For a
lookahead too short (1 in this case), the convergence requires
too many iterations such that even the low computational
complexity of each iteration is not sufficient to compensate
for the total compute time. Note that h-PI with h = 1 is the
standard PI algorithm, which evidently performs worse than
the best-fixed lookahead although it is overwhelmingly the
most widely used version of PI. On the other extreme of a
very large lookahead, each iteration is too computationally
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Figure 3: The distance to the optimum, captured by ∥V ⋆ −
V πt∥∞, as a function of the iteration number t for fixed
lookahead values of h = 1, 2, . . . , 7 in maze environment.

expensive, despite the smaller number of iterations.

TLPI. To verify our observation that a long lookahead is
wasteful in large parts of the state space, we first plot a his-
togram of the contraction factor along several PI iterations in
Figure 4. Here we see that indeed the effective contraction
factor κ is much smaller than γ (i.e., more contractive than
1-step lookahead) in roughly 90% of the states.

Next, we run TLPI with κ = γ2, γ3, . . . , γ7 and an accu-
rate approximated value Ṽ ⋆ = V ⋆. The results are given
in Figure 5, second plot. By Theorem 4.2, when setting
κ = γh, we expect the same number of iterations until con-
vergence as h-PI but with better computational complexity.
In fact, the results reveal even stronger behavior: TLPI(γh)
for all h = 1, 2, . . . , 7 achieves similar computational com-
plexity compared to the best fixed lookahead witnessed in
h-PI.

QLPI. In all our experiments we run QLPI with θ1 = 1

and θ3 = θ5 = θ6 = θ7 = 0 (again Ṽ ⋆ = V ⋆).
For (θ2, θ4, θ8) we set the following values: (0.3, 0.2, 0.1),
(0.2, 0.15, 0.05), (0.2, 0.05, 0.02) and (0.1, 0.05, 0.02),
which respectively depict decreasing weights to depths
2, 4, 8. The results are presented in Figure 5, third plot.
Again we can see that for all the parameters, QLPI performs
as well as the best-fixed lookahead. Moreover, notice that
for some of the choices of θ vectors, the performance signif-
icantly improves upon the best-fixed horizon.

Approximate V ⋆ via state aggregation. We again run
QLPI with budget values (0.1, 0.05, 0.02), but replace V ⋆

with an approximation we obtain with state aggregation.
Namely, we merge squares of k× k into a single state, solve
the smaller aggregated MDP, and use its optimal value as an
approximation for V ⋆.

We perform this experiment with k = 2, 3, 4, 5 and in-
clude the aggregated MDP solution process in the total sim-
ulator query count. This way, our final algorithm does not
have any prior knowledge of V ⋆. The results are presented in
Figure 5, last plot. As expected, the performance is slightly
worse than the original QLPI that uses the accurate V ⋆, but
for all different aggregation choices the algorithm still per-
forms as well as the best-fixed lookahead in h-PI.
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Figure 4: Histograms for the fraction of states per effective lookahead along several iterations of PI. The effective lookahead of
contraction factor κ is defined as h = logγ(κ), i.e., γh = κ.

Figure 5: Number of simulator queries until convergence. Lower is better. Results are averaged across 10 runs and error bars
represent standard deviation. QLPI is run with lookaheads 1, 2, 4, and 8, where the quantiles in the x-axis represent θ2, θ4, θ8.

To summarize, the maze experiments show that adaptive
planning lookaheads manage to reach the solution with bet-
ter sample complexity (i.e. number of simulator queries)
compared to fixed-horizon h-PI. More importantly, our
methods are robust to hyperparameter choices: the improved
results are obtained uniformly with all various tested param-
eters of TLPI and QLPI. This alleviates the heavy burden of
finding the best-fixed horizon for a given environment.

6 QL-DQN and Atari Experiments
In this section, we extend our adaptive lookahead algorithm
QLPI to neural network function approximation. We present
Quantile-based lookahead DQN (QL-DQN): the first DQN
algorithm that uses state-dependent lookahead that is dy-
namically chosen throughout the learning process. QL-DQN
is visualized in Figure 7 and operates as follows:

1. We introduce a per-depth Q-function. Technically, main-
tain H parallel Q-networks (where H is the maximal tree
depth) and use the h-th network to predict the value of a
leaf in depth h. To improve generalization and data re-
use, the networks share initial layers (feature extractors).

2. Maintain a sorted replay buffer according to the distance
between the current value estimate and approximated op-
timal value (for efficiency we utilize a priority queue).

For Ṽ ⋆, we train a standard DQN (depth 0) agent for only
1M steps – a relatively quick process.

3. For a replay buffer of size N , maintain H quantiles
based on the above ordering. The quantile sizes are
θ1 ·N, . . . , θH ·N . The values θi are hyper-parameters.

4. Choosing tree depth: Per state during simulation, start by
spanning the 1st level of the tree. If the best leaf value
distance from the approximate optimal value is in the
1st quantile, end the tree-search. Otherwise, go one level
deeper, compare to the 2nd quantile, and re-iterate with
the same logic. Continue possibly until the max depth H
is reached. Notice that the tree-search is feasible in rea-
sonable run-time thanks to highly efficient parallel Atari
simulation on GPU (Hallak et al. 2021).

5. Choosing action given depth: After spanning the tree as
described above, return the first action (from the root)
that corresponds to the highest leaf value.

6. Store (state, action, cumulative reward to leaf, leaf state,
tree-depth) to the replay buffer.

7. For training, set the bootstrap target to be the cumulative
reward from the tree-search plus the Q-value correspond-
ing tree-depth calculated on the leaf-state.

We note that the per-depth Q-function is crucial in order to
keep online consistency and achieve convergence. We found
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Figure 6: Average and std of training reward of QL-DQN (in red) and DQN with fixed tree-depths 0, 1, 2, 3 in various Atari
environments. x-axis is time in hours (a plot with step-based x-axis is given in Appendix B).
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Figure 7: The QL-DQN algorithm. When choosing actions,
the policy uses a tree depth based on the ranking of s0’s
contraction coefficient in the replay buffer. The per-depth Q
network has a shared basis and depth-specific heads.

that in practice, the Q-function learned by DQN is not the
true cumulative reward of rollouts. Instead, it is some func-
tion that minimizes the Bellman error. This phenomenon
is orthogonal to our work and was also recently studied in
(Fujimoto et al. 2022). In our context of multiple-depth Q-
network, if we bootstrap using the target from one depth
for another, the above phenomenon causes inconsistencies
that lead to divergence. To handle this inconsistency, we in-
troduced the multi-head Q-network for multiple depths and
found that it solves the issue. All other parts of the algorithm
and hyper-parameter choices are taken as-is from the origi-
nal DQN paper (Mnih et al. 2013).

We train QL-DQN on several Atari environments (Belle-
mare et al. 2013). Since our work aims to improve sample
complexity over fixed-horizon baselines, our metric of inter-
est here is the reward as a function of training time. Hence,
in Figure 6 we present the convergence of QL-DQN versus
DQN with fixed depths 0 through 3, as a function of time.
The plots consist of the average score across 5 seeds together
with std values. Note that depth 0 corresponds to standard
DQN (the baseline). As seen, QL-DQN achieves better per-
formance on VideoPinball and Tutankham, while on Solaris
and Berzerk, it is on par with the best-fixed lookahead.

The conclusion here is again that we obtain a better or
similarly-performing agent to a pre-determined fixed plan-
ning horizon. This comes with the benefit of robustness to
the expensive hyper-parameter choice of the best-fixed hori-
zon per a given environment.

7 Discussion
In this paper we propose the first planning and learning algo-
rithms that dynamically adapt the multi-step lookahead hori-
zon as a function of the state and the current value function
estimate. We demonstrate the significant potential of adap-
tive lookahead both theoretically — proving convergence
with improved computational complexity, and empirically
— demonstrating their favorable performance in a maze and
Atari. Our algorithms often perform as well as the best-fixed
horizon in hindsight in almost all the experiments, while in
some cases they surpass it. Future work warrants an investi-
gation whether the best-fixed horizon can always be outper-
formed by an adaptive horizon.

Theoretically, our guarantees rely on prior knowledge of
an approximate optimal value, raising the question whether
one can choose lookahead horizons adaptively without any
prior knowledge, e.g., using transfer learning based on simi-
larity between domains. Moreover, when the forward model
performing the lookahead is inaccurate or learned from data,
the adaptive state-dependent lookahead itself may serve as a
quantifier for the level of trust in the value function estimate
(short lookahead) versus the model (long lookahead). This
can offer a way for state-wise regularization of the learning
or planning problem. Our work is also related to the growing
Sim2Real literature. In particular, when having several sim-
ulators with different computational costs and fidelity levels.
The lookahead problem then translates to choosing in which
states to use which simulator with which lookahead.

Our focus in this paper was reducing iteration and overall
complexity; we thus ignored more intricate details of the for-
ward search itself. Additional practical aspects such as CPU-
GPU planning efficiency trade-offs (Hallak et al. 2021) can
also affect the lookahead selection problem. One promising
direction is to expand at each step only the few most promis-
ing nodes, and keep the search width fixed after a certain
value. This gives linear complexity in the search depth in-
stead of exponential, at the risk of missing relevant paths.

9612



References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1): 1–43.
Efroni, Y.; Dalal, G.; Scherrer, B.; and Mannor, S. 2018. Be-
yond the one-step greedy approach in reinforcement learn-
ing. In International Conference on Machine Learning,
1387–1396. PMLR.
Efroni, Y.; Ghavamzadeh, M.; and Mannor, S. 2020. On-
line Planning with Lookahead Policies. Advances in Neural
Information Processing Systems, 33.
Fujimoto, S.; Meger, D.; Precup, D.; Nachum, O.; and Gu,
S. S. 2022. Why Should I Trust You, Bellman? The Bellman
Error is a Poor Replacement for Value Error. arXiv preprint
arXiv:2201.12417.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Hallak, A.; Dalal, G.; Dalton, S.; Mannor, S.; and Chechik,
G. 2021. Improve Agents without Retraining: Parallel Tree
Search with Off-Policy Correction. Advances in Neural In-
formation Processing Systems, 34.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Os-
trovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In Thirty-second AAAI conference
on artificial intelligence.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Moerland, T. M.; Deichler, A.; Baldi, S.; Broekens, J.; and
Jonker, C. M. 2020. Think too fast nor too slow: The compu-
tational trade-off between planning and reinforcement learn-
ing. arXiv preprint arXiv:2005.07404.
Scherrer, B. 2016. Improved and generalized upper bounds
on the complexity of policy iteration. Mathematics of Oper-
ations Research, 41(3): 758–774.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sikchi, H.; Zhou, W.; and Held, D. 2022. Learning off-
policy with online planning. In Conference on Robot Learn-
ing, 1622–1633. PMLR.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tennenholtz, G.; Hallak, A.; Dalal, G.; Mannor, S.; Chechik,
G.; and Shalit, U. 2022. On Covariate Shift of Latent Con-
founders in Imitation and Reinforcement Learning. In Inter-
national Conference on Learning Representations (ICLR).

9613


