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Abstract

Learning a categorical distribution comes with its own set
of challenges. A successful approach taken by state-of-the-
art works is to cast the problem in a continuous domain to
take advantage of the impressive performance of the gener-
ative models for continuous data. Amongst them are the re-
cently emerging diffusion probabilistic models, which have
the observed advantage of generating high-quality samples.
Recent advances for categorical generative models have fo-
cused on log likelihood improvements. In this work, we pro-
pose a generative model for categorical data based on diffu-
sion models with a focus on high-quality sample generation,
and propose sampled-based evaluation methods. The efficacy
of our method stems from performing diffusion in the con-
tinuous domain while having its parameterization informed
by the structure of the categorical nature of the target distri-
bution. Our method of evaluation highlights the capabilities
and limitations of different generative models for generating
categorical data, and includes experiments on synthetic and
real-world protein datasets.

Introduction
There are numerous applications for generative models of
categorical random sequences; text generation, speech and
music synthesis, drug design and protein synthesis are all
important tasks that require modeling of high-dimensional
nominal data. Learning the structure and substructure under-
lying those complex high-dimensional distributions can be
useful for downstream tasks. For example, in drug synthesis,
studies have confirmed the important role that mutational co-
variation plays in determining protein function, and this has
found practical applications in drug design and drug resis-
tance prediction (McGee et al. 2021; Tubiana, Cocco, and
Monasson 2019; Socolich et al. 2005). As a result, recent
works have employed generative models to learn from ex-
isting proteins and generate new ones (Trinquier et al. 2021;
McGee et al. 2021; Jain et al. 2022). For this type of prob-
lem, the ability to generate quality samples is essential.

While the research on generative models for continuous
data has been flourishing (see (Bond-Taylor et al. 2022) for a
review), the literature on modeling nominal categorical data
is not as developed (Hoogeboom et al. 2021a).
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Figure 1: Overview of the architecture. On the left, a visu-
alisation of the diffusion process for the first element of a
sequence x(1) is depicted. The sequence is mapped to the
continuous space through the fixed Gaussian Mixture (GM)
encoder q(Z0|X = x), then is diffused through the itera-
tive application of noise distributions n(Zt|Zt−1) until the
signal is destroyed at ZT . The right depicts the generative
process. Starting from ZT , the denoising function models a
distribution x conditioned on zT , t which in turns models
the mixture component of the fixed GM that will be used
to produce Zt−1 conditioned on Zt, t. The final sequence is
generated from the decoder p(X|Z0).

Autoregressive (AR) methods are well suited for mod-
eling categorical data (Cooijmans et al. 2017). A notable
class of AR models that give impressive performance for this
problem are Transformers (Dai et al. 2019; Child et al. 2019;
Hua et al. 2022; Jun et al. 2020). Transformers are power-
ful, but generally suffer from the weaknesses associated with
autoregressive models; they are generally slow to train and
slow to sample from (Bond-Taylor et al. 2022). They also
suffer from quadratic complexity (w.r.t. sequence length),
and because of their impressive flexibility in modeling ca-
pability, are harder to apply to smaller datasets (Lin et al.
2021). As a result, many works have attempted to linearize
the time/memory complexity (Hua et al. 2022; Katharopou-
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los et al. 2020; Kitaev, Kaiser, and Levskaya 2020), but these
limitations still remain key challenges (Lin et al. 2021).

Discretization of continuous methods has been ex-
plored (Dinh, Sohl-Dickstein, and Bengio 2017; Ho et al.
2019; Theis, van den Oord, and Bethge 2016; Uria, Murray,
and Larochelle 2013). However the modeling assumptions
of these works are not suited to data that has no natural or-
dering of the categories. For the specific problem of nominal
data generation, current state-of-the-art works are based on
extending generative models that were initially developed
for continuous data: normalizing flow (Ziegler and Rush
2019; Lippe and Gavves 2021; Hoogeboom et al. 2021b)
and diffusion models (Hoogeboom et al. 2021a). Hooge-
boom et al. report results indicating that the diffusion models
can outperform Transformers. Diffusion probabilistic mod-
els (Sohl-Dickstein et al. 2015) are attractive for their gener-
ative capability. Compared to their competitors, such mod-
els have the characteristic of generating high quality samples
and are relatively fast to train. The general trade-off is that
they achieve lower likelihood and slower sampling (Bond-
Taylor et al. 2022; Ho, Jain, and Abbeel 2020). As a result,
substantial effort has been devoted to address these limita-
tions (Nichol and Dhariwal 2021; Kingma et al. 2021; Xiao,
Kreis, and Vahdat 2022; Salimans and Ho 2022).

In this work, we propose a generative model based on a
diffusion process that can remain in the continuous space
without sacrificing our knowledge that the data is nominal.
To do so, we introduce a novel approach to encode nominal
data in the continuous space via a sphere packing algorithm
that places each category in the encoding space. We then
incorporate the structural knowledge that follows from this
construction into the denoising step of the diffusion using
a Gaussian mixture conditioned on the current state of the
diffusion. The advantages of such a design are threefold: 1)
Unlike previous work (Hoogeboom et al. 2021a; Lippe and
Gavves 2021; Hoogeboom et al. 2021b), this fixed encoding
allows flexibility of the dimensionality of the representations
without added complexity; 2) the structured denoising step
requires significantly fewer diffusion steps, which greatly
improves sampling time (which is identified as one of the
main limitations of the diffusion model) while keeping the
benefit of the diffusion model; 3) the generated samples are
of higher quality.

Currently, the main method of evaluating a categorical
generative model is via the log likelihood of held-out data.
Although useful, this metric has some known drawbacks.
(Theis, van den Oord, and Bethge 2016) use a simple ex-
ample to show clearly how a good likelihood does not guar-
antee good sample generation. Proper evaluation of gener-
ative models is an ongoing research topic in many fields,
including text, image, and graph generation (Garbacea et al.
2019; Celikyilmaz, Clark, and Gao 2020; Zhou et al. 2019;
Borji 2019; Thompson et al. 2022; Theis, van den Oord, and
Bethge 2016; Wu et al. 2017).

The general consensus has been to push towards a more
comprehensive and task-oriented approach for assessing
performance. Candidate metrics do not necessarily corre-
late with each other (Theis, van den Oord, and Bethge 2016;
Zhou et al. 2019), so it can be important to measure per-

formance in multiple ways. Indeed, failure to follow a com-
prehensive evaluation methodology has been linked to dif-
ficulties in assessing which models are actually better and
to unexpected results (Caccia et al. 2020; Lucic et al. 2018;
Rabanser, Günnemann, and Lipton 2019). A notable exam-
ple is the finding by (Nagarajan, Andreassen, and Neyshabur
2021) that high likelihood on a dataset and good sample
generation does not guarantee good out-of-distribution de-
tection capability, one of the candidate uses of a good gen-
erative model.

With these observations in mind, in this work, we expand
on standard evaluation metrics to include distribution dis-
tance metrics. We propose a synthetic experiment with a
known ground truth distribution to aid performance evalua-
tion, with the goal of providing a more complete account of
the generative capability of the models considered. To sum-
marize, the major contributions of this paper are:

1. We introduce a novel procedure to represent nominal
data in the continuous space based on sphere packing.

2. This allows us to design a novel denoising function tai-
lored to model nominal data in the continuous space.

3. Our presented model offers state-of-the-art sample gen-
eration quality and is efficient in both sampling time
and training time, as demonstrated by our experiments
on both synthetic datasets and on protein datasets.

Related Work
Early approaches to handle the related problem of discrete
data generation were based on dequantization and thresh-
olding. The overall idea is to add noise to the discrete point
and treat it as a continuous generative modeling problem,
and then use thresholding to generate samples (Ho et al.
2019; Theis, van den Oord, and Bethge 2016; Dinh, Sohl-
Dickstein, and Bengio 2017). Current state-of-the-art meth-
ods avoid injecting an arbitrary ordering to the categories by
either adapting the methodology to stay in the categorical
domain, or modelling the data using a latent representation
in the continuous space that can be later mapped to the cat-
egorical space. In (Ziegler and Rush 2019) and (Lippe and
Gavves 2021), normalizing flows (NF) are used to model
such a latent representation. An encoder-decoder framework
is used to map from the categorical to the continuous space
and vice versa. The overall model is learned through vari-
ational inference. (Hoogeboom et al. 2021b) build on the
same idea as (Lippe and Gavves 2021), but rather than
learning the encoder/decoder, they fix the decoder with an
argmax function. This induces a constraint on the functional
space of the encoder that is maintained throughout training.
Both of these state-of-the-art works keep the mapping from
the continuous to the categorical space simple. In (Hooge-
boom et al. 2021a) this is done by using a fixed determin-
istic argmax function, and (Lippe and Gavves 2021) exper-
imented with learning the encoder/decoder of varying com-
plexity and found that a simple parameterization of the mean
and variance gave the optimal result. Unlike our approach,
once this mapping is done, nothing informs the NF that it is
treating a latent representation of a categorical variable.
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Moving away from the normalizing flow methods,
(Hoogeboom et al. 2021a) also presented a diffusion-based
model that operates directly on the categorical space. In-
stead of diffusing the signal with Gaussian distributions and
learning means and variance of parameterized Gaussian as
denoising process, they diffuse a one-hot encoded sequence
with a multinomial categorical distribution. As is the case
for the argmax, the dimension of the sequence representa-
tion scales linearly with the number of categories. Other re-
lated work that takes a similar approach to us by mapping to
an alternative space to perform diffusion includes (Vahdat,
Kreis, and Kautz 2021) and (Sinha et al. 2021). These works
tackle the tangential problems of generating ordinal data and
conditional generative modeling.

Lastly, related works that target a similar task connected
to generating quality proteins include (Jain et al. 2022;
Brookes, Park, and Listgarten 2019; Kumar and Levine
2020; Hoffman et al. 2022). This literature focuses on gen-
erating high score protein sequences, which are evaluated
by an oracle. Even though these models are generative in
nature, the end task is still somewhat supervised. The mod-
els explicitly aim to maximize a quantity, whereas for our
purposes we remain in the traditional generative modeling
problem formulation of learning a distribution.

Methodology

Problem Setting. Consider a categorical multivariate ran-
dom variable X = [X(1), . . . X(S)] where each element be-
longs to one of K categories: X(j) ∈ C, C = {C1, . . . , CK}
with associated pmf p(X). Given a dataset of realizations
D = {xi}Ni=1,xi ∼ X, the task is to learn p(X).

Encoding the categorical sequences and sphere packing.
We lift the problem to the continuous space by introducing
a latent continuous random variable Z0 that is mapped from
and to the categorical sequence X ∈ CS with an encoder,
q(Z0|X), and decoder, p(X|Z0), respectively. The log like-
lihood and its variational lower bound are given by:

log p(X) = log

∫
p(X,Z0)

q(Z0|X)
q(Z0|X) dZ0,

log p(X) ≥ Eq(Z0|X)

[
log
(
p(Z0)

)
+ log

(p(X|Z0)

q(Z0|X)

)]
. (1)

It is desirable to focus complexity into learning p(Z0), so
we make the mappings from Z0 to X simple and tractable.
Consequently, we use a fixed, factorized encoding distribu-
tion to associate each categorical element X(s) of the se-
quence with a random vector in a d-dimensional continuous
space Z0

(s) ∈ Rd. The mapping depends on the category;
each category Ck is assigned a distribution f(·;µCk

, σ) that
is clearly distinguishable from others by its mean µCk

∈ Rd

and variance σ2 ∈ R. We use a Gaussian f(·) for simplic-
ity, and similarly to (Lippe and Gavves 2021) we obtain the

decoder p(X|Z0) through Bayes’ rule, so we have:

q(Z0|X) =

S∏
s=1

N (Z0
(s);µX(s)

, Iσ2) as the encoder and

p(X|Z0) =

S∏
s=1

N (Z0
(s);µX(s)

, Iσ2)∑K
k=1 N (Z0

(s);µCk
, Iσ2)

as the decoder.

(The prior on X does not appear as we assume uniformity).
The advantages are twofold: 1) it imposes a structure on the
target distribution p(Z0) that can be used in modeling the
learnable pθ(Z

0), as we will show shortly; and 2) it simpli-
fies the learning objective since only p(Z0) is learnable.

Our aim is to make it as easy as possible for the decoder to
distinguish between categories. This implies that we should
strive to identify maximally separated means. This leads to
a sphere packing problem — finding the emplacement of K
points on the surface of a d-dimensional sphere Sd(1) that
maximizes the minimum distance between any two points:

µ∗
1, . . . ,µ

∗
K = argmax

µ1,...,µK∈Sd(1)

(
min
i ̸=j

||µi − µj ||
2
2

)
Hence we can use solutions of this problem, e.g., (Gamal

et al. 1987), to 1) set the means of the encoding distributions
{µCk

}Kk=1; and 2) determine, based on the minimum dis-
tance dµ∗ = mini̸=j ||µ∗

i −µ∗
j ||22, a value for the variance σ2

such that the Gaussian distributions N (µCk
, Iσ2); k ∈ [K]

have limited overlap but are not too concentrated. Denoting
dµ∗ = mini̸=j ||µ∗

i − µ∗
j ||22, we have:

µCk
= µ∗

k; k ∈ [K] and σ =
dµ∗

2K d
√
3
. (2)

Almost all (99.7%) of the mass of a d-dimensional m.v.
Gaussian R.V. is within d

√
3 standard deviations, so we set σ

to half that radius, and divide by the number of categories.
Learning the latent distributions pθ(Z0). The complex

correlation structure of the categorical distribution must be
captured in pθ(Z

0). We propose to use a diffusion proba-
bilistic model (DPM) (Sohl-Dickstein et al. 2015) with a
novel denoising component, tailored to our encoding scheme
and categorical data, based on Gaussian Mixtures. The DPM
introduces T latent random variables Z1, . . . ,ZT . Com-
mencing with the targeted encoded sequence Z0, the vari-
ables are derived by gradually adding known Gaussian noise
of increasing variance to the variable from the previous
timestep: n(Zt|Zt−1) = N (Zt;

√
1− βtZ

t−1, βtI);βi <
βi+1 ∈ (0, 1). At the end of the chain, only noise should
remain ZT ∼ N (ZT ; 0, 1). The task of the DPM is to learn
the denoising process dθ(Zt−1|Zt); t ∈ [T ].

This leads to construction of the generative model for Z0:

pθ(Z
0)

m
= dθ(Z

0) =

∫
d(ZT )

T∏
t=1

dθ(Z
t−1|Zt)dZ1:T . (3)

See (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020)
for more detailed discussion of the diffusion process.

Exploiting the structure. In most denoising approaches,
the distributions dθ(Zt−1|Zt) are modelled as normal distri-
butions with learnable means and (usually fixed) variances.
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In our case, we take advantage of the known structure. By
our construction, the target distribution is a mixture of Gaus-
sians; conditioned on knowledge of the target sequence, the
distribution p(Zt−1|Zt,X) is Gaussian, and the mean and
variance can be evaluated analytically.

If we are at a point in the chain zt, then if we are given
an element of the sequence x(s), Z

t−1
(s) is conditionally inde-

pendent of other Zt−1
(s′) , and we can derive the conditional of

the next denoising step in closed-form:

p(Zt−1
(s) |Zt

(s), x(s)) =

∫
p(Zt−1

(s) |Zt
(s),Z

0
(s))p(Z

0
(s)|x(s))dZ

0
(s)

= N (Zt−1
(s) ;µZt,t

x(s)
, Iσ2

t ) (4)

where µZt,t
x(s)

=

√
ᾱt−1βt

1− ᾱt
µx(s)

+

√
αt(1− ᾱt−1)

1− ᾱt
Zt

(s),

σ2
t =

1− ᾱt−1

1− ᾱt
βt + (

√
ᾱt−1βt

1− ᾱt
σ)2.

(See the supplementary for the detailed derivation.) Hence
if we have a predictor pθ(X|Zt, t) of the distribution of the
sequence X based on the current state zt and the diffusion
step t, we can model the denoising step as:

dθ(Z
t−1|Zt) =

∑
X∈CS

(
S∏

s=1

p(Zt−1
(s) |Zt

(s), X(s))

)
pθ(X|Zt, t) .

(5)

If pθ(X|Zt, t) is structured to assume independence among
the elements of X, we can factorize pθ(X|Zt, t) =∏S

s=1 pθ(X(s)|Zt, t) and write:

dθ(Z
t−1|Zt) =

S∏
s=1

K∑
k=1

p(Zt−1
(s) |Z

t
(s), Ck)pθ(X(s) = Ck|Zt, t)

=
S∏

s=1

d(s),θ(Z
t−1
(s) |Z

t). (6)

Replacing the Gaussian denoising term used in (Sohl-
Dickstein et al. 2015; Ho, Jain, and Abbeel 2020) with this
more complex denoising model results in a more involved
loss expression, but the denoising process can be successful
with far fewer diffusion steps (10-40 versus thousands). This
effect was also observed in (Xiao, Kreis, and Vahdat 2022).

Loss objective. Since the encoder and decoder are fixed,
optimization of the loss function (Eqn. (1)) simplifies to:

θ∗ = argmax
θ∈Θ

Eq(Z0|X)

[
log
(
pθ(Z

0)
)]

, (7)

i.e., the log likelihood of the diffusion model under the ex-
pectation of the encoder. Since the DPM is a latent variable
model, its log likelihood is also optimized via a lower bound:

log
(
pθ(Z

0)
)
≥= En

[
− log

n
(
ZT | Z0

)
d (ZT )

−
T∑

t=2

log
n
(
Zt−1 | Zt,Z0

)
dθ(Zt−1|Zt)

+ log dθ
(
Z0 | Z1) ].

Employing this bound in Eqn. (7), substituting with (6),
and removing terms that are independent of θ, we can iden-
tify the final optimization task:

θ∗ = argmax
θ∈Θ

Eq,n

[
−

T∑
t=2

Lt−1 + L0

]
(8)

where Lt−1 = KL
(
n
(
Zt−1 | Zt,Z0

)
||dθ(Zt−1|Zt)

)
and

L0 = log dθ
(
Z0 | Z1

)
.

Architecture and training. In practice, it has been shown
beneficial for this type of loss to randomly optimize one of
the terms Lt at a time (Ho, Jain, and Abbeel 2020) (Nichol
and Dhariwal 2021). The objective then becomes to either
maximize the log likelihood of the final step for t = 0, or
to minimize the KL divergence between a Gaussian mixture
with learnable mixture weights for time step t > 0:

Lt−1 = KL
(
n
(
Zt−1 | Zt,Z0) ||dθ(Zt−1|Zt)

)
=

S∑
s=1

KL
(
n
(
Zt−1

(s) | Zt
(s),Z

0
(s)

)
||d(s),θ(Zt−1

(s) |Zt)
)

Using the variational approximation of the KL divergence
between Gaussian mixtures from (Hershey and Olsen 2007),
we can approximate the individual step loss as follow:

Lt−1 ≈ −
S∑

s=1

log

K∑
k=1

pθ(X(s) = Ck|Zt, t)ws
Zt,0(Ck)

where ws
Zt,0(Ck) = exp

−KL

(
n(·|Zt

(s),Z
0
(s))||N (·;µZt,t

Ck
,σ2

t I)

)
.

Details of the derivation are provided in the supplementary.
At this point, we can see that the optimization of this term

is reached when pθ(X(s)|Zt, t) gives maximum weight to
the highest term of the sum ws

Zt,0(Ck), which is the initial
sequence Ck = x(s). As a result, we approximate this op-
timization by maximizing the log likelihood of pθ(X(s) =
x(s)|Zt, t) , as both isolated optimization problems have the
same solution:

argmax
θ∈Θ

Lt−1 ≈ argmax
θ∈Θ

log pθ(X = x|Zt, t) (9)

As a result, learning hinges on the modeling capability of
pθ(X|Zt, t). We employ a transformer-based architecture.
The vector zt and an embedding of time t serve as inputs.
We adopt a sampling approach for the training. For each se-
quence in the training data, we sample z0 ∼ q(Z0|X = x),
and then draw a time t, we sample zt ∼ n(Zt|z0) to evalu-
ate the loss. It is important to emphasize that this transformer
does not have an autoregressive structure — all elements of
a sequence are generated in parallel. The correlations are in-
duced by the denoising diffusion process.

Data Augmentation. In practice, we observe that
pθ(X|Zt, t) learns to be increasingly certain of its prediction
as we approach the end of the chain Z0. This behavior can be
seen in Figure 2 where we show an example of the entropy
at every time step H(pθ(X|ZT , T )), . . . ,H(pθ(X|Z1, 1)).

We can imagine that alongside the gradually noisy Zt,
there is also a corresponding noisy categorical sequence X̃t
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Figure 2: Average entropy of pθ(X|Zt, t) along the diffu-
sion process during sampling. The model becomes more and
more certain (lower entropy) as we approach t = 0.

that pθ(X|Zt, t) aims to predict. As a result, instead of train-
ing on the ground truth sequence at the beginning of the dif-
fusion T, T − 1, . . . , we inject some noise by training on
a “diffused” version of x, denoted by x̃t, and thus modify
Eqn. (9) to:

argmax
θ∈Θ

Lt−1 ≈ argmax
θ∈Θ

log pθ(X = x̃t|Zt, t) (10)

x̃t ∼ pz
t,t(X̃), where pz

t,t
(
X̃
)
s
=

(ws
Zt,0(x(s)))

ω∑K
k=1(w

s
Zt,0(Ck))ω

Algorithms detailing the training and sampling procedures
are provided in the supplementary.

Experiments
In this section, we first present the evaluation metrics, the
datasets and the experimental set-up. We then report the per-
formance of our proposed GMCD model and conduct abla-
tion studies to validate the effectiveness of its modules.

Evaluation metrics. Many of the difficulties and limi-
tations associated with evaluating generative models stem
from the fact that we do not have access to the ground truth
distribution. With access to ground truth, the problem for-
mulation changes and the previously mentioned problems
associated with log likelihood (LL) and sampled-based met-
rics disappear. Instead of:

• Maximizing the LL of unseen samples →, we aim to as-
sign the correct probability mass to unseen samples,

• Generating “good” samples → we aim to generate sam-
ples that are distributed according to the ground truth,

• Maximizing a heuristic for sample quality (novelty, di-
versity, etc.) → we aim to generate samples with the
same heuristic value as the expected value from ground
truth.

In this work, we are interested in evaluating how close a
generative model is to the true probability measure based
on its samples in the discrete domain.

With known ground truth distribution. The distance be-
tween two distributions p, q on a discrete sample space Ω can

be measured by the total variation and Hellinger distances:

dTV (p, q) ≜
1

2
||p− q||1 =

1

2

∑
x∈Ω

|px − qx|,

Hel(p, q) ≜
1√
2
||√p−√

q||2 =
1√
2

√∑
x∈Ω

(
√
px −√

qx)2.

(with px used as a shorthand for p(x)). These are principled
metrics but they can rapidly become impractical as Ω grows,
especially as we must usually rely on samples to estimate px.
Alternatively, we can consider a partitioning of the sample
space: P = {Ai;Ai ⊂ Ω, Ai ∩ Aj = ∅} and estimate the
probability mass of these events p(Ai) =

∑
x∈Ai

px. It is
less precise but can be more informative if Ω is large and/or
if the partitioning has a particular meaning. One obvious par-
titioning of interest would be to divide the sample space into
positive-support elements (in distribution - ID) and the zero
support elements (out-of-distribution - OOD); the partition-
ing is then Pod = {Ao, A+}; where {x ∈ A+; px > 0, x ∈
Ω}, {x ∈ Ao; px = 0, x ∈ Ω}.

As our focus is on sample quality, we compare the ground
truth distribution p to the empirical distribution p̂θ con-
structed from the samples of a generative model. For the
synthetic experiments where we have access to p, we report:

• Hel(p, p̂θ) and dTV (p, p̂θ),

• dTV + ≜ 1
2

∑
x∈A+

|px − p̂θx| , dTV o ≜ 1
2

∑
x∈Ao

|px − p̂θx| ,

• p̂θ(A+) =
∑

x∈A+

p̂θx ; prob. estimates of valid sequences,

• p̂θ(Ai) =
∑
x∈Ai

p̂θx ; prob. estimates of specified Ai.

Without ground truth distribution. In practice, p is not
available. We still focus on generating samples that are rep-
resentative of the distribution by comparing statistics of the
ground truth distribution with those derived from generated
samples. A major capability of interest of a generative model
is its ability to properly capture patterns in the data; as such
we can compare the higher order covariation of patterns of
a generated set of samples to that of a test set. Such evalu-
ation metrics are commonly used in the generative protein
sequence modeling literature (Trinquier et al. 2021; McGee
et al. 2021). Given a pattern of size p, described by positions
and corresponding categories ({s1, . . . , sp}, {k1, . . . , kp}),
and a set of M sequences xM , the higher order pattern co-
variation C

s1,...,sp
k1,...,kp

(xM ) is the frequency of the appearance
of the pattern in xM minus the product of the frequencies of
each individual element of the pattern:

f̂
s1,...,sp
k1,...,kp

(xM ) =
1

M

M∑
i=1

⊮[xi
(s1) = k1, . . . , x

i
(sp) = kp] ,

C
s1,...,sp
k1,...,kp

(xM ) = f̂
s1,...,sp
k1,...,kp

(xM )−
p∏

j=1

f̂
sj
kj
(xM ). (11)

For a given pattern length p, we select a random sub-
set of all possible patterns {patternp

1, . . . } by following
the procedure described in (McGee et al. 2021), which
focuses on the most likely patterns (the detailed selec-
tion procedure is described in the supplementary). We
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Hel dTV (dTV + dTV ood) p(Alikely) p(Arare) p(A+)

K
=

6

CNF+ 37.02 34.63 25.59 9.04 40.91 41.01 81.92
argmaxAR+ 24.22 17.90 13.55 4.35 66.32 24.97 91.29
CDM 19.27 16.19 14.34 1.84 66.33 29.98 96.31
GMCD 16.62∗ 16.07 15.56 0.51 75.71∗ 23.27∗ 98.98∗

K
=

8
CNF+ 81.86 83.63 69.79 13.84 35.98 36.34 72.32
argmaxAR+ 73.48 76.06 73.19 2.87 66.94 27.32 94.27
CDM 73.65 76.36 73.81 2.55 62.70 32.20 94.90
GMCD 72.30∗ 74.98∗ 73.34 1.64 71.77∗ 24.94∗ 96.71∗

K
=

1
0 CNF+ 98.28 99.81 83.43 16.38 33.64 33.59 67.23

argmaxAR+ 98.43 99.81 76.95 22.86 40.38 13.89 54.27
CDM 97.32 99.69 97.39 2.30 64.62 30.77 95.40
GMCD 97.27∗ 99.68∗ 97.71 1.98 66.99∗ 29.05∗ 96.05∗
optimal 0 0 75 25 100

Table 1: Distances metrics and probability estimates for partitionings P,Pod for the synthetic datasets.∗ indicates significance
w.r.t. to the Wilcoxon signed-rank test at the 5% level. + indicates that more epochs were required to reach competitive results.

report the Pearson correlation ρp between the pattern
higher order covariations computed on the test set Cp =

[Cpatternp
1 (x), . . . ],x ∼ D and the set of generated samples

Cp̂θ
= [Cpatternp

1 (x), . . . ],x ∼ p̂θ.

Datasets
We design a ground truth distribution to generate a synthetic
dataset of sequences of length S = K. We define the sample
space ΩK = CK and only assign probability mass on per-
mutations of C, i.e., A+ = {x;x(i) ̸= x(j) ∀i ̸= j}. Finally,
we separate the positive sets in two and assign 3 times more
mass to sequences with a “smaller” category at the start of
the sequence than at the end, i.e.:

p(x) =


3

2K!
if x ∈ Alikely = {x;x ∈ A+ ∧ x(1) < x(S)},

1
2K!

if x ∈ Arare = {x;x ∈ A+ ∧ x(1) > x(S)},
0 otherwise .

This synthetic dataset is designed to emulate characteris-
tics of a real world dataset. In practice, the distributions that
we wish to model are likely to have positive support on a
very small fraction of the probability space. Whether we are
trying to generate text, images or proteins, the likelihood of
stumbling across a “valid” sample when drawing from a uni-
form distribution is extremely small.

Natural partitionings of interest for this type of dataset
are: 1) Pod as previously described where we can see a
model’s ability to grasp the positive support of the sample
space; and 2) P = {Alikely, Arare, Ao} where we can see
a model’s ability to assign the right amount of probability
mass to the different sets.

argmaxAR+ CNF+ CDM GMCD

num. params 250K 180K 40K 40K
epoch time 1.9x 1.6x 1x 1x
sampling time 1.2x 1.2x 1.1x 1x

Table 2: Timing with K = 8. Experiments are conducted on
GPU machines NVIDIA GeForce RTX 2060 .

We consider a small scale experiment K = 6 where the
models are exposed to the entire ID set A+ multiple times,
a medium scale experiment K = 8 where the models are
exposed to a sizeable fraction of the ID set, and a larger scale
experiment K = 10 where the models are exposed to less
than 1% of A+ (see Table ?? for additional details).

As a real world application, we measure the performance
of the models on two protein datasets from the Pfam protein
family : PF00076, which contains N = 137, 605 proteins of
length S = 70 and PF00014, which contains N = 13, 600
proteins of length S = 53. The number of categories for
both datasets corresponds to the list of amino acids K = 21.

Experiment Details
Baselines.We compare our GMCD approach to three state-
of-the-art baselines; 1) CNF (Lippe and Gavves 2021), a
normalizing flow method that learns a mapping to/from the
categorical space; 2) CDM (Hoogeboom et al. 2021a), a
diffusion-based model; and 3) argmaxAR (Hoogeboom et al.
2021b), a normalizing flow method that uses an argmax op-
eration to map to the discrete space. We select the autore-
gressive version because it was reported as the best alterna-
tive.

Experimental set-up. We train all models using the
RAdam optimizer (Liu et al. 2020) and early stopping and
keep the best model evaluated on the validation set. For the
proteins dataset and for the large scale synthetic experiment
K = 10, in order to avoid overfitting, we monitor to en-
sure that the model is not reproducing more than 1% of
the training dataset in its generated samples. Performance
metrics are averaged over 10 trials of M = 10, 000 gen-
erated samples. A split of 70/20/10 is used for the protein
datasets. The pθ(X|Zt, t) function is modeled using a non-
autoregressive transformer similar to that used in (Hooge-
boom et al. 2021a). Following (Ho, Jain, and Abbeel 2020),
we use sinusoidal position embedding to process the time
step t and concatenate it to Zt to form the input to the trans-
former. The means µ∗

1, . . . are computed using the proce-
dure from (Gamal et al. 1987) , which employs simulated
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ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

PF
00

07
6 CNF - - - - - - - -

argmaxAR 73.13 73.00 69.85 63.88 58.74 49.08 49.74 56.03
CDM 82.30 82.44 80.48 78.08 74.95 73.10 75.56 77.27
GMCD 84.19∗ 82.85 82.36∗ 81.04∗ 77.67∗ 78.09∗ 78.95∗ 80.39∗

PF
00

01
4 CNF - - - - - - - -

argmaxAR 78.06 79.05 80.89 83.57 84.97 88.51 91.26 91.46
CDM 81.28∗ 80.48 78.98 78.76 77.35 80.40 85.31 89.90
GMCD 80.41 80.81∗ 82.01∗ 84.09∗ 85.83 88.39 91.50 93.04

ab
l. GMCD random 69.21 69.04 71.69 78.81 80.26 87.65 90.54 93.20

GMCD sharp 79.86 79.13 81.07 82.96 83.85 85.26 88.78 89.80

Table 3: Proteins experiment results. − indicates that the pearson coefficient was not significant at the 5% level.

ρ2 ρ3 ρ4 ρ5

K
=

6

argmaxAR+ 63.16 58.38 59.22 63.66
CNF+ −12.97 14.61 −5.05 −21.10
CDM 54.00 58.26 59.07 63.52
GMCD 64.03 63.88 66.22 67.64

K
=

8

argmaxAR+ 30.93 21.49 13.90 14.24
CNF+ −10.13 − 3.20 −1.31
CDM 20.19 16.61 12.03 6.98
GMCD 32.70 26.83∗ 16.31 10.71

K
=

1
0 argmaxAR+ 11.85 6.54 4.57 1.55

CNF+ − −4.68 −1.62 −
CDM 22.46 13.40 7.80 4.55
GMCD 25.19 18.67 6.60 4.79

Table 4: Pattern covariance metrics.

annealing. We provide a complete description of architec-
tures, the hyperparameters selection procedure in the sup-
plementary. The source code is available at https://github.
com/networkslab/gmcd.

Results. Experiments on the synthetic dataset highlight
the modeling capability of GMCD. For every scale that we
consider, K = 6, 8, 10, GMCD outperforms at every dis-
tribution granularity: Ω,P,Pod (Table 1). This is reflected
in the covariance pattern metrics (Table 4). The decomposi-
tion of dTV into the two regions dTV+ and dTV o shows that
most of the error for all baselines comes from dTV+, which
is the error in estimating the probability mass of the valid se-
quences in A+. This is to be expected as it is a harder task.
CDM is the closest competitor and its generated samples are

S,K |Ω| |A+| % A+ in training set

6 66 = 46, 656 6! = 720 100%
8 88 = 16, 777, 2164 8! = 40, 320 21.34%
10 1010 3, 628, 800 0.28%

Table 5: Size of the sample space |Ω|, of the positive sup-
port set |A+|(number of valid sequences) and the fraction of
valid sequence contained in the training set of the synthetic
datasets. We generate 10K sequences for the train/valid/test
set for a total size N = 30K.

almost all valid (p(A+) is close to 100). Its deficiency is in
assigning a probability mass ratio of approximately 2:1 to
the two sets Alikely and Arare. This results in higher sta-
tistical distance metrics dTV and Hel. argmaxAR struggles
to identify A+ and requires additional training to reach a
competitive result, but given more training time it can as-
sign slightly better mass to the two sets, except for the larger
scale experiment K = 10. CNF is unable to distinguish be-
tween the likely and rare sets, which greatly impedes its
performance for all metrics. As expected, as the problem
grows harder, the fine-grained metrics dTV , Hel cannot be
meaningfully estimated with this sample size. For the pro-
tein dataset, GMCD is the best method overall and performs
consistently for every pattern size (Table 3).

Ablation study and Time Analysis. We report abla-
tion studies to verify the relative contribution of two model
components. We compare with a GMCD version with no
sphere packing algorithm. The category distributions are
randomly placed with no optimization (GMCD random).
We also report GMCD trained with the initial sequence as
in (9) (GMCD sharp). This eliminates data augmentation.
As shown in the bottom of Table 3 the ablation experiment
conducted on the PF00014 datasets confirms the relative im-
portance of the components. We also include time and mem-
ory complexity of training and sampling of the models in the
abl. section of Table 2. GMCD requires the least time both
for training and sampling because we can reduce the number
of steps in the diffusion due to the more structured denoising
procedure.

Conclusion

In conclusion, we introduced the GMCD model; a continu-
ous diffusion-based model for nominal data. We introduced
a novel novel fixed encoding procedure to map categorical
data to the continuous space and gain representation flexi-
bility. This also leads to a novel continuous denoising pro-
cess that is cognizant of the categorical nature of the targeted
distribution. The GMCD is fast to train, fast to sample from
and generates representative samples of the ground truth dis-
tribution as demonstrated on synthetic and on a real world
datasets.
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