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Abstract

The problem of adversarial attacks to a black-box model when
no queries are allowed has posed a great challenge to the com-
munity and has been extensively investigated. In this setting,
one simple yet effective method is to transfer the obtained
adversarial examples from attacking surrogate models to fool
the target model. Previous works have studied what kind of
attacks to the surrogate model can generate more transfer-
able adversarial examples, but their performances are still
limited due to the mismatches between surrogate models and
the target model. In this paper, we tackle this problem from a
novel angle—instead of using the original surrogate models,
can we obtain a Meta-Surrogate Model (MSM) such that
attacks to this model can be easily transferred to other models?
We show that this goal can be mathematically formulated as
a bi-level optimization problem and design a differentiable
attacker to make training feasible. Given one or a set of sur-
rogate models, our method can thus obtain an MSM such
that adversarial examples generated on MSM enjoy eximious
transferability. Comprehensive experiments on Cifar-10 and
ImageNet demonstrate that by attacking the MSM, we can
obtain stronger transferable adversarial examples to deceive
black-box models including adversarially trained ones, with
much higher success rates than existing methods.

Introduction
The developments of Convolutional Neural Network (CNN)
have greatly promoted the advancements in Computer Vision.
However, previous works (Ganeshan, BS, and Babu 2019)
shown a critical robustness issue that CNN models are vulner-
able to human-imperceptible perturbations of input images,
also known as adversarial examples (AEs). The design of
AEs is useful for revealing the security threats on machine
learning systems (Croce and Hein 2020b) and for understand-
ing the representations learned by CNN (Ilyas et al. 2019).

In this paper, we consider the problem of black-box attack,
where the target victim model is entirely hidden from the
attacker. In this setting, standard white-box attacks (Moosavi-
Dezfooli, Fawzi, and Frossard 2016; Carlini and Wagner
2017) or even query-based black-box attacks (Cheng et al.
2020, 2019) cannot be used, and the prevailing way to attack
the victim is through transfer attack (Papernot et al. 2017; Wu
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et al. 2018). In transfer attack (Demontis et al. 2019; Dong
et al. 2018; Naseer et al. 2019; Wu et al. 2020b), the attackers
commonly generate AEs by attacking one or an ensemble
of surrogate models and expect the obtained AEs can also
successfully fool the victim black-box model.

Although great efforts have been made to improve the
transferability of adversarial attacks (Wu et al. 2020a; Wang
et al. 2021a; Huang and Kong 2022), the transfer attack-
based methods can only achieve poor success rates. This is
caused by a fundamental limitation of current approaches—
they all leverage the surrogate models trained by standard
learning tasks (e.g., classification, object detection), while
it is not always the case that attacks fooling such models
can be easily transferred, even though the optimization of
adversarial examples have been greatly improved. We thus
pose the following important question on transfer attack that
has not been well studied in the literature: Instead of using
standard (naturally trained) models as surrogate, can we find
a Meta-Surrogate Model (MSM) such that attacks to this
model can be easier transferred to other models?

We answer this question in the affirmative by develop-
ing a novel black-box attack pipeline called Meta-Transfer
Attack (MTA). Assume a set of source models (standard
surrogate models) are given, instead of directly attacking
these source models, our algorithm aims to obtain a “meta-
surrogate model (MSM)”, which is trained for the goal that
attacks to this model can be easier transferred to fool other
models, and conduct attacks on the MSM to obtain transfer-
able AEs. We show that this goal can be mathematically for-
mulated as a well-posed (bi-level-like) training objective by
unrolling the attacks on the MSM and defining an adversarial
loss to supervise the transferability of the resulting AEs. To
avoid discrete operations in the white-box attack, we propose
a Customized PGD attacker that enables back-propagation
through the whole MTA framework.

The proposed MTA differs greatly from existing trans-
fer attacks, especially ensemble-based methods (Dong et al.
2019; Lin et al. 2020). The key difference is: Existing meth-
ods commonly generate AEs by directly attacking source
models (optimizing AEs on source models), and to improve
the transferability of AEs, they commonly propose some
ideas (e.g., gradient momentum (Dong et al. 2018), gradi-
ent on skip-connections (Wu et al. 2020a)) to implicitly im-
prove the optimization of the AEs. Rather than implicitly
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improves the transferability of AEs, MTA explicitly opti-
mizes the transferability by bi-level training (Finn, Abbeel,
and Levine 2017; Qin et al. 2020) an MSM and generates AEs
by attacking the MSM (optimizing AEs on MSM rather than
source models). The bi-level training of MSM is a closed-
loop of 1) generating AEs by attacking MSM; 2) evaluating
transferability of AEs on source models; and 3) improving
transferability by optimizing MSM. This closed-loop train-
ing is the foremost reason why attacking the trained MSM
can produce stronger transferable AEs than existing methods,
no matter the number of source models. Through extensive
experiments on various models and datasets, we show that
the proposed MTA leads to clearly improved transfer attacks,
proving the effectiveness of MTA.

The main contributions of our work are the follows. 1)
We propose a novel bi-level training framework MTA to
train an MSM to improve transfer attack. To the best of our
knowledge, our work is the first attempt to explore a bet-
ter surrogate model for producing stronger transferable AEs.
2) We carefully design a Customized PGD to enable back-
propagation in MTA, and we analyze the necessity of Cus-
tomized PGD in Gradient Calculation (page 4) and Appendix.
3) We compare MTA with state-of-the-art transfer attack
methods (e.g., MI (Dong et al. 2018), DI (Xie et al. 2019),
TI (Dong et al. 2019), SGM (Wu et al. 2020a), AEG (Bose
et al. 2020), IR (Wang et al. 2021a), SI-NI (Lin et al. 2020),
FIA (Wang et al. 2021b), DA (Huang et al. 2022)) on Cifar-
10 (Krizhevsky, Hinton et al. 2009) and Imagenet (Deng et al.
2009). The comparisons demonstrate the effectiveness of
MTA—the AEs generated by attacking MSM significantly
outperform previous methods, in attacking both naturally
trained and adversarially trained black-box target models.

Background
Adversarial Attacks. Szegedy et al. (2014) reveals the in-
teresting phenomenon that CNN models are vunerable to
adversarial attacks. After that, many attacks have been de-
veloped (Kaidi et al. 2019; Gao et al. 2020; Wu, Wang, and
Yu 2020; Li, Guo, and Chen 2020; Sriramanan et al. 2020;
Naseer et al. 2019). Adversarial attacks can be mainly clas-
sified into white-box and black-box attacks (Maksym et al.
2020) according to how much information about the target
model is exposed to the attacker. White-box attacks (Kurakin,
Goodfellow, and Bengio 2018) are often more effective than
black-box attacks (Brendel, Rauber, and Bethge 2017) as
they can leverage full knowledge of the target model includ-
ing the model weights and architecture. For example, Fast
Gradient Sign Method (FGSM) (Goodfellow, Shlens, and
Szegedy 2014) uses 1-step gradient ascent to produce ad-
versarial examples that enlarge the model’s loss. Projected
gradient descent (PGD) attack can be viewed as a multi-step
FGSM attack (Madry et al. 2018). Many other white-box at-
tacks have also been developed by leveraging full information
of the target model (Croce and Hein 2020a). In the black-box
setting, query-based black-box attacks (Huang and Zhang
2020; Du et al. 2020) assume model information is hidden but
attackers can query the model and observe the correspond-
ing hard-label or soft-label predictions. Among them, (Chen
et al. 2017; Ilyas et al. 2018) considered soft-label probability

predictions and (Chen, Jordan, and Wainwright 2020; Cheng
et al. 2018) considered hard-label decision-based predictions.
Considering that using a large number of queries to attack an
image is impractical, several works try to further reduce the
query counts (Li et al. 2020a; Wang et al. 2020).

Transferable Adversarial Attacks. In this paper, we con-
sider the black-box attack scenario when the attacker can-
not make any query to the target model (Huang et al. 2019;
Huang and Kong 2022). In this case, the common attack
method is based on transfer attack—the attacker generates
AEs by attacking one or few surrogate models and hopes
the AEs can also fool the target model (Liu et al. 2017; Liu,
Jiang, and Jiang 2022). Compared with query-based attacks,
crafting AEs from the surrogate model consumes less com-
putational resources and is more realistic in practice. Along
this direction, subsequent works have attempted to improve
the transferability of AEs (Guo, Li, and Chen 2020; Wang
and He 2021; Zhou et al. 2018; Li et al. 2020b). For instance,
MI boosted the transferability by integrating the momen-
tum term into the iterative process. Other techniques like
data augmentations (Xie et al. 2019), exploiting gradients of
skip-connection (Wu et al. 2020a), and negative interaction
between pixels (Wang et al. 2021a) also contribute to stronger
transferable attacks. DA (Huang et al. 2022) utilizes aggre-
gated gradient direction during the attack process to avoid the
generated adversarial examples overfitting to white-box surro-
gate models. MGAA (Yuan et al. 2021) shows that narrowing
the direction gap between white-box gradient and black-box
gradient improves transferability as well. Although MGAA
also uses meta-learning, the proposed MTA differs greatly
from MGAA because at each gradient ascent step, MGAA
samples multiple source models from a source-model zoo to
construct a meta-task to improve the optimization of AE. In
addition to using the original surrogate models, AEG (Bose
et al. 2020) adversarially trains a robust classifier together
with an encoder-decoder-based perturbation generator. After
the training, AEG uses the generator to generate transferable
AEs. Compared to all the existing works, our method is the
first that meta-trains a new meta-surrogate model (MSM)
such that attacks on MSM can be easier transferred to other
models. This not only differs from all the previous methods
that attack standard surrogate models but also differs from
the encoder-decoder based method such as AEG.

Methodology
We consider the black-box attack setting where the target
model is hidden to the attacker and queries are not allowed.
This setting is also known as the transfer attack setting (Dong
et al. 2018, 2019) and the attacker 1) cannot access the weight,
the architecture, and the gradient of the target model; and 2)
cannot query the target model. The attacker can access 1) the
dataset used by the target model; and 2) a single or a set of
surrogate models (also known as source models) that may
share the dataset with the target model. For example, it is
common to assume that the attacker can access one or multi-
ple well-performed (pretrained) image classification models.
Existing transferable adversarial attack methods conduct var-
ious attacks to these models and hope to get transferable AEs
that can fool an unknown target model. Instead of proposing

9517



𝐿  𝑥 , 𝑦

+ =

Source model  
ℱ

Source model 
ℱ

𝐿 ℱ 𝑥 , 𝑦

𝜖*𝐶𝑙𝑖𝑝

Optimizer

…

…

𝑥 𝑥𝐺

Meta‐surrogate 
model 

𝐿 𝑋, 𝑌; 𝜃

Meta‐surrogate 
model (𝜃)

(a)
(b)

𝐿 ℱ 𝑥 , 𝑦

Figure 1: The framework of the proposed MTA when T = 1
and A(Mθ(x)) = x1adv . The clean image x is first feed into
the MSM Mθ and obtain the loss L(Mθ(x), y). Next we
back-propagate the loss and use Eq 4 to obtain the noise
g0ens. Then, via Eq 5, we obtain the adversarial example x1adv
which will be feed into the source models F1, F2, ..., and
FN . Finally, by maximizing the source models’ loss, we can
optimize the MSM to learn a particular weight so that the
adversarial example x1adv attacking it can fool source models.

another attack method on surrogate models, we propose a
novel framework MTA to train a Meta-Surrogate Model
(MSM) with the goal that attacking the MSM can generate
stronger transferable AEs than directly attacking the original
surrogate models. When evaluating, the transferable AEs are
generated by attacking the MSM with standard white-box
attack methods (e.g., PGD attack). In the following, we will
first review exiting attacks and then show how to form a
bi-level optimization objective to train the MSM model.

Reviews of FGSM and PGD
We follow existing works (Xie et al. 2019; Wu et al. 2020a;
Wang et al. 2021a) to focus on untargeted attack, where the
attack is considered successful as long as the perturbed image
is wrongly predicted.
FGSM conducts one-step gradient ascent to generate AEs to
enlarge the prediction loss. The formulation is

xadv = Clip
(
x+ ε · sign(∇xL(f(x), y))

)
, (1)

where x is a clean image and y is the corresponding label; ε is
the attack step size that determines the maximum L∞ pertur-
bation of each pixel; f is the victim model that is transparent
to the FGSM attacker; Clip is the function that clipping the
values of xadv to the legal range (e.g., clipping the RGB AEs
to the range of [0, 255]); L is usually the cross-entropy loss.
PGD (Kurakin, Goodfellow, and Bengio 2018), also known
as I-FGSM, is a multi-step extension of FGSM. The formula-
tion of PGD is

xkadv=Clip
(
xk−1
adv +

ε

T
· sign(∇

xk−1
adv

L(f(xk−1
adv ), y))

)
. (2)

xkadv is the AEs generated in the k-th gradient ascent step.
Note that x0adv is the clean image equals to x. Eq 2 will be
run for T iterations to obtain xTadv with perturbation size ε.

Meta-Transfer Attack
How to train the MSM where attacks to this model can be
easier transferred to other models? We show this can be

Algorithm 1: Training of Meta-Transfer Attack
input: N source models F1, . . . ,FN , Training set D, batch
size b, initialized MSMMθ.
output: Optimized weight θ.
1 : while not done do
2 : sample data (X=[x1, . . . , xb], Y =[y1, . . . , yb]) ∈ D
3 : X0

adv = X
4 : for k in [1, 2, ..., T]:
5 : Gk = ∇Xk−1

adv
L(Mθ(X

k−1
adv ), Y )

6 : obtain Gkens via Eq 4
7 : obtain Xk

adv via Eq 5
8 : end for
9 : for each source model Fi ∈ [F1,F2, . . . ,FN ], do
10: evaluate XT

adv on Fi and obtain L(Fi(XT
adv), Y )

11: end for
12: θ = θ + α · ∇θ

∑N
i L(Fi(XT

adv), Y )
13: return θ

formulated as a bi-level training objective. Let A denote
an attack algorithm (e.g., FGSM or PGD) andMθ denote
the MSM parameterized by θ. For a given image x, the AE
generated by attackingMθ can be denoted as A(Mθ, x, y).
For example, if A is FGSM, then A(Mθ, x, y) = xadv =
Clip

(
x+ ε · sign(∇xL(Mθ(x), y))

)
. Since in the attack time

we only have access to a set of source models F1, . . . ,FN ,
we can evaluate the transferability of the adversarial example
A(Mθ, x, y) on the source models and optimize the MSM
via maximizing the adversarial losses of those N source
models, leading to the following training objective:

argmax
θ

E(x,y)∼D
[∑N

i=1 L(Fi(

AE︷ ︸︸ ︷
A(Mθ, x, y))︸ ︷︷ ︸

F′is prediction for AE

, y)
]
, (3)

where D is the distribution of training data. The structure of
this objective and the training procedure can be illustrated
in Figure 1, where we can view it as a meta-learning or
bi-level optimization method. At the lower level, the AE is
generated by a white-box attack (usually gradient ascent) on
MSM, while at the higher level, we feed the AE to the source
models to compute the robust loss. Solving Eq 3 will find an
MSM where attacking it leads to stronger transferable AEs.
The optimization steps of Eq 3 are detailed below.

First, A should be some strong white-box attacks, such as
FGSM or PGD. However, directly using those attacks will
make the gradient of meta training objective Eq 3 ill-defined
since the sign function in both FGSM and PGD introduce
a discrete operation. This results in that the gradient back-
propagating through sign be zero and further prohibits the
training of the MSM.

To overcome this challenge, we design A as an approx-
imation of PGD and denote it as Customized PGD. Gradi-
ent Calculation subsection will show more analysis about
how the sign function in PGD prohibits back-propagation
and how Customized PGD enables the back-propagation.
The crucial difference between PGD and the Customized
PGD is the operation to the gradient∇xk−1

adv
L(Mθ(x

k−1
adv ), y),

where L is cross entropy. We simplify the vanilla gradient
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∇xk
adv

L(Mθ(x
k
adv), y) at the k-th step as gk, and generate

another map gkens via Eq 4:
gk1 = gk

sum(abs(gk))

gkt = 2
π
· arctan( gk

mean(abs(gk)) )

gks = sign(gk)
gkens = gk1 + γ1 · gkt + γ2 · gks

(4)

Note that we set γ1 = γ2 = 0.01 as default for all experi-
ments. Both gk1 and gkt ensure the objective in Eq 3 be dif-
ferentiable with respect to the MSM’s weight θ; arctan(·) is
a smooth approximation of sign and 1

mean(abs(gk)) prevents
arctan from falling into the saturation or linear region. The
item γ2 · gks provides the lower-bound for each pixel’s pertur-
bation in gkens. Experiments in Ablation Study demonstrate
the importances of gkt and gks for Customized PGD. With
Eq 4, the Customized PGD conducts the following update to
generate AE:

xkadv = Clip(xk−1
adv +

εc
T
· gk−1
ens ). (5)

Note that εc differs from the perturbation ε in FGSM and
PGD because gk−1ens in our update is not a sign vector and its
size will depend on the magnitude of the original gradient.
Finally, we get xTadv after T iterations of Eq 5.

Second, we feed xTadv into N source models and calculate
the corresponding adversarial losses L(Fi(xTadv), y) for all
i = 1, . . . , N . Larger losses of the N source models indicate
a higher likelihood that xTadv fooling the MSM can transfer
to other models.

Third, we optimize the MSM by maximizing the objective
function defined in Eq 3, which can be written as

θ
′
= θ + α ·

∑N
i=1∇θL(Fi(xTadv), y), (6)

where xTadv can be written as a function of θ by unrolling the
attack update rule Eq 5 T times. We will show how to explic-
itly compute the gradient in Gradient Calculation subsection.
With this training procedure, the MSM is trained to learn a
particular weight with which the white-box AEs fooling it
can also fool other models. We summarize the training and
testing of MTA in Algorithm 1 and Appendix, respectively.
Each capitalized notation represents a batch of the variable
denoted with lower case (i.e., X denotes a batch of x). Note
that Customized PGD is just a continuous approximation of
PGD used to train the MSM. In the inference phase, we use
standard attacks such as PGD to craft AEs on the MSM.

Gradient Calculation
In the calculation we set both N and T in Eq 6 to 1, so the
gradient in Eq 6 is∇θL(F1(x

1
adv), y). According to Eq 5, we

can replace x1adv in Eq 6 with Clip(x0adv + εc · g0ens), where
x0adv equals to x. For simplicity, we ignore the clip function
in the analysis and simplify the derivation as ∇θL(F1(x +
εc · g0ens), y). By chain rule and since x is independent to θ,
we can further rewrite this as

∂L(F1(x+ εc · g0ens), y)
∂g0ens

· ∂g
0
ens

∂θ
. (7)

By replacing g0ens with Eq 4, the second term of Eq 7 can be
expanded as

∇θg0ens = ∇θg01 + γ1 · ∇θg0t + γ2 · ∇θg0s . (8)
Note that g0s equals to sign(g0) and the sign function in-
troduces discrete operation so that the gradient of g0s with
respect to θ becomes 0 (unless g0 = 0). Therefore, ∇θg0ens
can be further written as
∇θg0ens = ∇θg01 + γ1 · ∇θg0t (9)

= ∇θ(
∇xL(Mθ(x), y)

sum(abs(∇xL(Mθ(x), Y )))
)

+ γ1 · ∇θ(arctan(
∇xL(Mθ(x), y)

mean(abs(∇xL(Mθ(x), y)))
)),

where ∇xL(Mθ(x), y) depends on θ and the second-order
derivative of ∇xL(Mθ(x), y) w.r.t θ can be obtained with
lots of deep learning libraries. In summary, by integrating
Eqs.6-9, the MSM can be optimized by an SGD-based opti-
mizer. Eqs.6-9 can also clearly explain why Customized PGD
enables the training of MSM and why vanilla PGD blocks
that. When using vanilla PGD to attack the MSM and gener-
ate AE, Eq.7 will turn to ∂L(F1(x+εc·g0s),y)

∂g0s
· ∂g

0
s

∂θ , where ∂g0s
∂θ

is zero because g0s is the signed discrete gradient sign(g0).

Experiment
We conduct experiments to show that the proposed method,
under the same set of source models, can generate stronger
transferable AEs than existing transfer attack methods.

Our general experimental settings: 1) We conduct exper-
iments on both Cifar-10 and ImageNet. 2) We compare the
proposed MTA with ten state-of-the-art transferable adversar-
ial attack methods, including MI, DI, TI, SGM, SI-NI-TIDIM,
AEG, IR, MGAA, FIA and DA-TIM. AEG is compared only
on Cifar-10 because the official AEG is evaluated only on
small scale datasets (Mnist and Cifar-10), and it is computa-
tional costly to train the perturbation generator on large-scale
datasets. 3) Since the number of attack iterations T is dif-
ferent between training and testing, we denote it as Tt in
training and Tv in testing respectively to avoid confusion.
4) When training the MSM, we use the Customized PGD
with γ1=γ2=0.01 to attack the MSM, which is shown in Al-
gorithm 1. When evaluating, we use PGD with Tv=10 and
ε=15 to attack the MSM, which is shown in Algorithm 2 in
Appendix. 5) When using the baseline methods to generate
AEs on multiple source models, we follow MI to ensemble
the logits of the source models before loss calculation. 6)
We use source models to train the MSM and use target mod-
els to evaluate the transferability of the AEs generated on
MSM. 7) For fair comparisons between MTA and baselines,
we implement baselines with the number of iterations T=10
and ε=15, and other hyper-parameters are tuned for their
best possible performances (implementations are detailed in
Appendix). 8) Visualizations, computational cost analyses,
simplified tensorflow code, more implementation details of
MTA and baselines, and more experiments (e.g., targeted
transfer attack, attacks with ε=8, comparison between MTA
and TAIG(Huang and Kong 2022), attacking ViT (Dosovit-
skiy et al. 2021), no overlapping training images between
source and target models) will be presented in Appendix.
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Figure 2: (a) Structures of ResNet-13 and -19. ResNet-13 contains the top four solid-line blocks and the classifier. ResNet-19
contains all the six blocks and the classifier. The parameter M∗ of each block denotes the number of filters of its convolution
layers. (b) Detailed structure of residual block. Orange cube is convolution layer and the number on it denotes its number of
filters. Pool in the sixth block is global-average pooling while all the other pool is max-pooling with both stride and kernel size
of 2×2. The convolution layer in the shortcut path uses 1×1 kernel size while all the other convolution layers use 3×3.

Method MN-V3 SN-V1 SN-V2 SN-A SN-B Res-34adv SE-50adv FAST
DI 57.8% 72.5% 56.4% 65.7% 64.6% 18.1% 18.7% 8.1%
MI 70.2% 85.6% 72.6% 83.7% 83.0% 28.6% 38.0% 15.9%

AEG 90.8% 92.5% 85.8% 91.3% 91.0% 62.5% 53.3% 17.3%
IR 59.3% 77.9% 62.5% 71.6% 69.1% 21.7% 23.2% 11.5%

MGAA 71.0% 74.3% 69.7% 84.3% 82.6% 55.2% 52.9% 17.9%
MTA 91.8% 98.4% 90.9% 94.9% 93.8% 56.1% 58.8% 17.0%

MTAγ1=0 70.0% 80.9% 68.5% 58.5% 59.4% 30.4% 35.1% 13.2%
MTAγ2=0 90.0% 98.2% 90.5% 93.9% 93.1% 55.8% 57.2% 16.5%
MTAdense 86.9% 96.2% 87.1% 89.0% 87.6% 53.0% 55.9% 16.1%

Table 1: Results on eight Cifar-10 target models: MobileNet-V3 (MN-V3), ShuffleNet-V1 (SN-V1), -V2 (SN-V2), SqueezeNet-A
(SN-A), -B (SN-B), adversarially trained ResNet-34 (Res-34adv) and SeResNet-50 (SeRes-50adv), and the robust model FAST.

Experiments on Cifar-10
Source and Target Models . We use 8 source models in-
cluding ResNet-10, -18, -34 (He et al. 2016), SeResNet-14,
-26, -50 (Hu, Shen, and Sun 2018), MobileNet-V1 (Howard
et al. 2017), and -V2 (Sandler et al. 2018) to train the MSM.
To ensure mismatches between the source and target models
and to avoid saturated transfer attack performances (i.e., at-
tack success rates close to 100%), we select the 8 target mod-
els including MobileNet-V3 (Howard et al. 2019), ShuffleNet-
V1, -V2 (Zhang et al. 2018), SqueezeNet-A, -B (Iandola et al.
2016), adversarially trained ResNet-34 and SeResNet-50, and
robust model FAST(Wong, Rice, and Kolter 2020). FAST is a
public robust model available at RobustBench1. The network
architectures of all the other 15 source and target models
are defined on GitHub repositories2,3,4. We train these 15
models and describe the training details of these models in
Appendix. The trained models and the code will be released
to the community for reproducibility.

Training the MSM . The default network architecture of
the MSM is ResNet-13 shown in Figure 2, with M1, M2,
M3, and M4 set to 64, 128, 256, and 512, respectively. We
use the 8 source models to train the MSM for 60 epochs with
the number of attack steps Tt of 7. εc of the Customized PGD
is initialized to 1,600 and is exponentially decayed by 0.9×
for every 4,000 iterations. The learning rate α and the batch
size are set to 0.001 and 64, respectively.

1https://github.com/RobustBench/robustbench
2https://github.com/yxlijun/cifar-tensorflow
3https://github.com/TropComplique/ShuffleNet-tensorflow
4https://github.com/TropComplique/shufflenet-v2-tensorflow

Evaluating the MSM . On each target model, we only
attack the correctly classified test images because attacking
wrongly classified clean images is less meaningful.

Experimental Results . As Table 1 shows, MTA performs
the best on almost all target models. On Res-34adv and FAST,
MTA performs comparably to AEG and MGAA, and out-
performs the other methods. The possible reason why AEG
outperforms MTA on Res-34adv is that it trains a perturba-
tion generator to fool robust classifiers and simultaneously
adversarially trains the robust classifiers to be robust to the
generated perturbations. So it naturally transfers better to
some adversarially trained target models as it already “sees”
adversarially trained models in its training phase. However
it performs worse in all other models. MTAγ1=0, MTAγ2=0,
and MTAdense will be discussed in Ablation Study.

Experiments on Imagenet
Source and Target Models . We directly use the public
trained ImageNet models5,6,7 including ResNet-50, -101,
-152, DenseNet-121, -161 (Huang et al. 2017), Inception-
V3 (Szegedy et al. 2016), -V4 (Szegedy et al. 2017),
Inception-ResNet-V2, Inception-V3ens3, Inception-V3ens4,
and Inception-ResNet-V2ens. The former eight models are
normally trained models while the latter three are secure
models trained by ensemble adversarial training (Tramèr et al.
2017). We shorten these models as Res-50, Res-101, Res-152,

5https://github.com/pudae/tensorflow-densenet
6https://github.com/tensorflow/models/tree/r1.12.0/research/slim
7https://github.com/tensorflow/models/tree/r1.12.0/research/

adv_imagenet_models
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Source Method Inc-V3 Inc-V4 IncRes-V2 Res-152 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Inc-V3

DI 99.3% 35.2% 28.2% 22.3% 5.1% 4.3% 2.5%
MI 99.9% 38.1% 35.8% 29.6% 9.1% 8.8% 4.5%

MI-DI 99.1% 61.7% 57.3% 48.0% 13.6% 12.0% 6.5%
IR 95.6% 33.6% 28.1% 15.9% 5.1% 5.5% 3.0%

FIA 95.2% 69.0% 66.8% 52.5% 29.3% 27.7% 14.9%
DA-TIM 99.2% 62.9% 58.3% 50.6% 46.9% 43.4% 31.7%

SI-NI-TIDIM 99.0% 79.6% 73.5% 69.3% 58.1% 53.8% 37.0%
MTA 99.9% 90.9% 87.3% 74.1% 67.7% 39.3% 26.1%

MTA-IR 95.6% 95.5% 93.2% 85.0% 83.5% 56.9% 40.7%

Inc-V4

DI 44.9% 97.6% 30.5% 26.7% 5.9% 5.5% 3.3%
MI 52.7% 99.6% 41.8% 37.3% 12.4% 11.0% 5.8%

MI-DI 69.1% 97.1% 58.7% 49.3% 16.6% 14.1% 8.2%
IR 46.5% 94.9% 33.2% 18.9% 8.1% 8.8% 4.9%

FIA 63.6% 87.5% 55.2% 45.9% 28.5% 26.1% 16.8%
DA-TIM 69.5% 99.3% 63.7% 55.7% 49.1% 44.3% 37.2%

SI-NI-TIDIM 82.5% 98.3% 76.1% 69.1% 61.3% 56.8% 43.6%
MTA 87.3% 99.5% 84.7% 73.1% 61.7% 38.2% 29.0%

MTA-IR 93.3% 94.9% 90.5% 82.0% 77.2% 57.7% 44.9%

IncRes-V2

DI 46.9% 42.0% 90.7% 29.5% 8.6% 6.5% 5.5%
MI 53.2% 45.2% 97.3% 38.8% 16.2% 13.3% 9.7%

MI-DI 64.7% 61.7% 90.3% 50.6% 23.7% 18.6% 13.6%
IR 49.7% 44.9% 90.2% 25.2% 13.6% 11.2% 10.9%

FIA 63.2% 57.8% 79.6% 51.3% 35.1% 30.3% 25.0%
DA-TIM 70.3% 66.7% 96.8% 58.1% 52.8% 45.6% 44.3%

SI-NI-TIDIM 79.6% 78.5% 97.8% 71.0% 63.1% 60.8% 53.6%
MTA 44.7% 41.7% 98.0% 57.9% 23.5% 19.4% 17.5%

MTAInc 64.3% 51.7% 98.0% 76.0% 46.2% 39.3% 27.5%
MTA-IRInc 66.2% 52.3% 90.2% 78.3% 49.0% 42.2% 31.7%

Res-152

DI 51.8% 48.1% 40.6% 99.5% 9.7% 8.3% 6.2%
MI 50.2% 44.9% 39.4% 99.6% 13.9% 12.0% 7.8%

MI-DI 76.2% 73.3% 69.5% 99.6% 24.6% 21.1% 12.7%
IR 42.3% 33.8% 34.1% 95.3% 22.0% 20.6% 16.2%

FIA 73.8% 67.2% 67.9% 99.3% 48.0% 43.7% 30.4%
DA-TIM 69.0% 65.1% 66.3% 99.0% 60.7% 56.9% 52.5%

SI-NI-TIDIM 75.1% 71.8% 67.3% 98.8% 66.0% 61.5% 54.9%
MTA 70.7% 77.5% 62.8% 99.1% 53.0% 59.2% 56.3%

MTA-IR 72.8% 78.0% 64.3% 95.3% 54.9% 63.0% 59.3%

Table 2: Transfer attack results on seven black-box networks when using one source model.

DN-121, DN-161, Inc-V3, Inc-V4, IncRes-V2, Inc-V3ens3,
Inc-V3ens4, and IncRes-V3ens.

Training the MSM . The default network architecture of
the MSM is ResNet-19 shown in Figure 2, with M1, M2,
M3, and M4 set to 32, 80, 200, and 500, respectively. We
follow previous works MI and SGM to evaluate the transfer-
ability of AEs in two settings: using a single source model
and using multiple source models. We set the input shape
of the MSM to 224×224. When the resolution of the source
model differs from that of the MSM, we resize the AE xTadv
to the resolution of the source model before feeding it into
the source model. Appendix will show more training details.

Evaluating the MSM . Following the official testing data
settings in the papers of DI and SGM, we also randomly
choose 5,000 validation images from ImageNet that are cor-
rectly classified by all models for evaluation. Note that, when
the resolutions of the MSM and the target model are dif-
ferent, we resize the AE xTadv to the resolution of the target
model. For instance, when attacking Inc-V3 whose resolution

is 299×299, we first resize xTadv from 224×224 to 299×299
and then use the resized xTadv to attack Inc-V3.

Using One Source Model. Table 2 reports the experimen-
tal results. MI-DI is a combination of MI and DI. SI-NI-
TIDIM is a combination of SI-NI, TI, DI, and MI. DA-TIM
is a combination of DA, TI, and MI. MGAA is not com-
pared here because it needs a model zoo containing several
source models to construct meta-tasks, which is costly. Obvi-
ously, MTA outperforms the baselines on most of the testing
scenes. Compared with FIA, MTA improves the transfer at-
tack success rates by about 31.7%, 30.7%, 41.1%, 131.1%,
41.9%, and 75.2% when using the Inc-V3 source model and
attacking the target models (Inc-V4, IncRes-152, Res-152,
Inc-V3ens3, Inc-V3ens4, IncRes-V2ens). MTA-IR combines
MTA with IR. In evaluation, MTA generates AEs by attack-
ing the MSM using vanilla PGD while MTA-IR generates
AEs by attacking the MSM using IR. Compared with MTA,
MTA-IR improves the attack success rates by about 5.1%,
6.8%, 14.7%, 23.3%, 44.8%, and 55.9% on the target models
when using the Inc-V3 source model, indicating that existing
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Source Method Inc-V3 Inc-V4 IncRes-V2 Res-101 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Res-50
+

Res-152
+

DN-161

TI-DI 60.6% 59.2% 50.2% 86.8% 54.9% 56.2% 46.9%
SGM 81.8% 74.7% 73.9% 98.7% 54.9% 50.1% 38.7%

SGM-DI 86.2% 83.9% 81.6% 98.3% 69.8% 64.9% 54.4%
SGM-MI 86.5% 84.3% 82.7% 98.2% 71.1% 67.4% 60.8%

IR 75.2% 70.3% 67.9% 90.6% 51.7% 49.1% 37.5%
MTA 90.4% 94.3% 87.6% 97.5% 75.5% 79.7% 79.0%

MTA-IR 93.1% 95.8% 90.5% 98.3% 83.6% 87.2% 85.0%

Res-50
+

Inc-V1
+

DN-121

TI-DI 61.9% 58.5% 49.0% 79.7% 53.1% 54.1% 41.9%
SGM 62.7% 53.5% 50.9% 89.1% 33.8% 30.4% 19.3%

SGM-DI 87.2% 83.6% 79.5% 95.1% 59.6% 54.9% 37.9%
SGM-MI 82.8% 76.0% 74.3% 95.9% 62.2% 59.7% 45.3%

IR 76.5% 70.9% 64.0% 92.1% 51.3% 44.9% 31.5%
MTA 91.7% 86.4% 76.0% 93.6% 81.7% 79.6% 61.6%

MTA-IR 92.8% 87.9% 77.2% 93.8% 82.6% 79.3% 61.5%

Res-50
+

Inc-V1

TI-DI 51.6% 46.9% 38.4% 73.4% 43.4% 44.2% 32.8%
SGM 46.1% 35.6% 33.3% 82.0% 22.1% 19.5% 12.3%

SGM-DI 79.2% 70.6% 68.7% 91.9% 47.9% 42.0% 28.1%
SGM-MI 71.9% 62.0% 61.3% 94.3% 49.6% 47.2% 33.8%

IR 60.2% 49.0% 46.2% 93.0% 36.5% 30.6% 21.0%
MTA 84.1% 88.8% 78.4% 93.9% 60.6% 61.1% 55.1%

MTA-IR 87.6% 91.8% 83.9% 95.2% 71.5% 72.6% 63.7%

Table 3: Transfer attack results on seven black-box models when using multiple source models.

transferable attack methods can further improve MTA.
When using IncRes-V2 source model, MTA sometimes

performs not good, possibly because the MSM with ResNet-
19 backbone is unsuitable to be trained to attack IncRes-V2.
We then replace the backbone ResNet-19 with another sim-
plified Inception network (the architecture will be shown in
Appendix) and retrain the MSM, and denote the newly trained
MSM as MTAInc. Compared with ResNet-19, the simplified
Inception backbone is more similar to IncRes-V2 so that
MTAInc turns to be easier to generate adversarial attacks
to fool IncRes-V2 than MTA, leading to easier convergence
of MTAInc. The results show that MTAInc outperforms not
only MTA but also most of the compared methods, indicating
1) the effectiveness of the proposed MTA and 2) MTA can be
further improved by using more suitable backbones.

Using Multiple Source Models . Table 3 reports the exper-
imental results of using multiple source models. We use three
source model groups (Res-50+Res-152+DN161, Res-50+Inc-
V1+DN-121, Res-50+Inc-V1) to train the MSM, respectively,
and use seven target models (Inc-V3, Inc-V4, InvRes-V2,
Res-101, Inc-V3ens3, Inc-V3ens4, IncRes-V2ens) to evalu-
ate the transferability of the attacks to the MSM. SGM-X is
the combination of SGM and X (X=DI or MI). TI-DI is the
combination of TI and DI. The results show that MTA out-
performs the baselines in almost all testing scenes, especially
when attacking defensive models. For instance, compared
with SGM-DI, MTA improves the transfer attack success
rates by 6.2%, 25.8%, 14.1%, 2.2%, 26.5%, 45.5%, and
96.1% on the seven target models when using Res-50 and
Inc-V1 source models. Besides, MTA-IR outperforms MTA.

Ablation Study
Network Structure . The comparison between MTA and
MTAInc in Table 2 has validated the effect of backbone on

the MSM. Here we further verify the effect of backbone
by replacing the backbone from ResNet-13 to DenseNet-
22BC (Appendix shows the structure of DenseNet-22BC)
and denote the newly trained MSM as MTAdense(in Table 1).
The comparisons among MTA, MTAdense, and the baselines
indicate that 1) backbone affects the performance of MTA;
2) MTA outperforms the baselines with various backbones.

The Effects of γ1 and γ2 . We verify how γ1 and γ2 in
Eq. 5 affect the transfer attack performance on Cifar-10. Here
we set γ1 and γ2 to zero respectively, and amplify εc appropri-
ately to offset the decrease of the perturbation size caused by
zeroing γ1 or γ2. We denote the two newly performed MTA
as MTAγ1=0 and MTAγ2=0. The results shown in Table 1
indicate that the performances of MTA are greatly damaged
by setting γ1 to zero. Setting γ2 to zero also decreases MTA’s
performances, but the effect is smaller than that of γ1. Over-
all, the two experiments demonstrate the indispensability of
Customized PGD for the proposed MTA framework.

Conclusion
Existing query free black-box adversarial attack methods di-
rectly use image classification models as surrogate models
to generate transferable adversarial attacks to attack black-
box models neglecting the study of surrogate models. In this
paper, we propose a novel framework called meta-transfer
attack (MTA) to improve the transferability of adversarial
attacks via training an MSM using these surrogate models.
To enable and improve the training of the MSM, a novel
Customized PGD is also developed. Through extensive ex-
periments, we validate that by attacking the trained MSM, we
can get transferable adversarial attacks that are generalizable
to attack black-box target models with much higher success
rates than existing methods, demonstrating the effectiveness
of the proposed MTA framework.
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