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Abstract

Sarcasm is a sophisticated linguistic phenomenon that is
prevalent on today’s social media platforms. Multi-modal sar-
casm detection aims to identify whether a given sample with
multi-modal information (i.e., text and image) is sarcastic.
This task’s key lies in capturing both inter- and intra-modal
incongruities within the same context. Although existing
methods have achieved compelling success, they are dis-
turbed by irrelevant information extracted from the whole im-
age and text, or overlooking some important information due
to the incomplete input. To address these limitations, we pro-
pose a Mutual-enhanced Incongruity Learning Network for
multi-modal sarcasm detection, named MILNet. In particu-
lar, we design a local semantic-guided incongruity learning
module and a global incongruity learning module. Moreover,
we introduce a mutual enhancement module to take advan-
tage of the underlying consistency between the two mod-
ules to boost the performance. Extensive experiments on a
widely-used dataset demonstrate the superiority of our model
over cutting-edge methods.

Introduction
Sarcasm is a special linguistic phenomenon that aims to
express people’s emotions contrary to the normal inter-
pretations, which frequently appears on online social me-
dia platforms. Therefore, sarcasm detection is particularly
important in customer service, opinion mining, and var-
ious tasks that require understanding people’s emotions,
and has gained increasing research attention. Early sarcasm
detection methods (Davidov, Tsur, and Rappoport 2010;
González-Ibáñez, Muresan, and Wacholder 2011; Riloff
et al. 2013; Poria et al. 2016; Zhang, Zhang, and Fu 2016)
purely focus on the textual modality and the intra-modal in-
congruity. Nevertheless, with the advances of multimedia,
people tend to express their opinions by multi-modal posts
(e.g., text and image) (Lu et al. 2019; Cui et al. 2019; Wei
et al. 2019a; Sun et al. 2022). In this context, as shown
in Figure 1, if the model ignores the visual information,
it would miss the inter-modal incongruity and cannot de-
tect the sarcasm in the social post. Therefore, recent re-
search interests have been drawn to the task of multi-modal
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Figure 1: A multi-modal sarcasm sample from the public
dataset (Cai, Cai, and Wan 2019).

sarcasm detection, whose key is to accurately detect the
inter- and intra-modal incongruities within the same con-
text.

In existing works, some models focus on exploiting the
whole image feature for incongruity learning (Cai, Cai, and
Wan 2019; Xu, Zeng, and Mao 2020; Pan et al. 2020; Liang
et al. 2021). Despite their significant progress, they ignore
the fact that only some specific visual objects are relevant
to the textual context, and the information simply extracted
from the whole image is too general. Motivated by this, the
recent work (Liang et al. 2022) extracts the object-level fea-
ture rather than the global feature of the image, and proposes
a cross-modal graph convolutional network that links the vi-
sual objects with textual tokens by word similarity to utilize
the semantic relations for the multi-modal sarcasm detec-
tion. Although this method has achieved promising perfor-
mance, it suffers from two key limitations. 1) It only empha-
sizes the visual information in the detected object regions
(i.e. the area in bounding boxes of Figure 1), but overlooks
the contextual relationships between object regions, which
also benefit the sarcasm detection. For example, as shown
in Figure 1, if we can capture the relationship between the
“man” and “woman” in the “bus”, we can infer that “the
bus is crowded”, and find the sarcasm by referring to the
text description. 2) It highly depends on the pre-trained ob-
ject detection model, and thus is prone to missing objects
whose categories are not pre-defined in the object detec-
tion model. In light of this, it is inappropriate to abandon
the global image-level features, which can complement the
object-level feature more or less.
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To address these limitations, as shown in Figure 2, we pro-
pose a Mutual-enhanced Incongruity Learning Network for
multi-modal sarcasm detection, named MILNet, which aims
to fully exploit the object-level and global image-level fea-
tures. Specifically, we design MILNet with four key mod-
ules: multi-modal feature encoding, local semantic-guided
incongruity learning, global incongruity learning, and mu-
tual enhancement. The first module utilizes RoBERTa (Liu
et al. 2019) to encode the text, while Faster-RCNN (Ander-
son et al. 2018) and pre-trained Vision Transformer (ViT)
(Dosovitskiy et al. 2021) to encode the image into the image-
level and object-level features, respectively. The second
module devotes to fully utilizing the inter- and intra-modal
semantic relations among objects and text tokens and
fulfilling the local semantic-guided incongruity learning,
where three graphs (i.e., the text-modal, image-modal, and
cross-modal graphs) are built and graph convolutional net-
works are employed for incongruity learning. Beyond the
previous work (Liang et al. 2022), we emphasize the spa-
tial correlation between visual objects by the intersection
over union (IoU) scores since it can reflect the relations of
objects. Meanwhile, we use a knowledge graph which con-
tains comprehensive object-level semantic relationships to
connect visual objects to textual tokens rather than using the
conventional lexical similarity that only measures the word-
level similarity. The third module targets capturing the in-
congruity from the global perspective by fusing the text fea-
ture and the image-level feature with the multi-head atten-
tion mechanism. Ultimately, the fourth module aims to con-
duct knowledge transferring between the two incongruity
learning modules, which should share certain consistency
regarding the detection results to boost the performance. No-
tably, we introduce a sample screening mechanism to ensure
the correctness of the transferred knowledge.

Our main contributions can be summarized as follows.

• To the best of our knowledge, we are the first to propose
a jointly model for multi-modal sarcasm detection from
both local semantic-guided and global aspects by utiliz-
ing mutual enhancement.

• We introduce a novel local semantic-guided incongruity
learning module by exploiting IoU scores and knowl-
edge graph to extract relations. In addition, we propose
a simple but effective global incongruity learning mod-
ule based on the attention mechanism.

• Extensive experiments demonstrate the superiority of our
model over cutting-edge methods. We released the codes
and parameters to facilitate the research community1.

Related Work
Multi-modal Sarcasm Detection. Early works usually
make efforts to sarcasm detection only based on text-modal,
while with the development of multi-media platforms,
multi-modal sarcasm detection has gained a rapid pro-
liferation of interests recently. Schifanella et al. (2016)
firstly utilized both textual and visual information to tackle
multi-modal sarcasm detection. Cai, Cai, and Wan (2019)

1https://frd1228.wixsite.com/milnet.

created a new dataset from tweet and designed a hierarchi-
cal fusion model for the task. Thereafter, Xu, Zeng, and
Mao (2020) and Pan et al. (2020) proposed the key of sar-
casm detection is capturing incongruities inter-intra-modal.
They constructed a decomposition and relation network and
a BERT-based model to capture the contradiction, respec-
tively. Liang et al. (2021) realized that sarcastic information
is included in some regions of image and some phases in
text, and exploited a graph model for drawing incongruous
relations between text and image modalities. But this work
still utilizes features from the whole image, and is limited
by the irrelevant information like all global detection meth-
ods above. To alleviate this limitation, Liang et al. (2022)
explored a local semantic-guided detection method that they
built a cross-modal graph based on visual objects and textual
tokens. However, this method heavily depends on the object-
extracted technique and misses contextual information. In
light of this, we devise a novel model to unify these meth-
ods, capturing the underlying consistency between them to
boost the performance.

Mutual Learning. Knowledge distillation (Hinton,
Vinyals, and Dean 2015; Song et al. 2017; Wen et al. 2021),
is a widely used and efficient technique to transfer knowl-
edge from a teacher network to a student network, first in-
troduced by Hinton, Vinyals, and Dean (2015). And then
Zhang et al. (2018) extended the form of knowledge distilla-
tion and designed mutual learning, which no longer requires
a good teacher model, but encourages an ensemble of stu-
dents to learn collaboratively and teach each other through-
out the training process. Due to the fact that mutual learn-
ing has achieved better results than traditional distillation, it
has gained the attention of many researchers. For example,
Wen et al. (2021) resorted to mutual learning to compose the
multi-modal query to retrieve the target image. In this work,
we propose a mutual enhancement module to encourage
consistency between the local semantic-guided incongruity
learning module and the global incongruity learning mod-
ule. In addition, to ensure the correctness of the transferred
knowledge, we design a sample screening mechanism.

Methodology
In this section, we first formulate the research problem and
then detail the proposed MILNet illustrated in Figure 2.

Problem Formulation
Suppose that we have a set of N training samples D =
{s1, s2, · · · , sN}, where each samples si = (T i, Ii, Y i)
involves three elements. Thereinto, T i = {ti1, ti2, · · · , tini

g
}

and Ii denote the textual sentence and image of the i-th sam-
ple, respectively, where tij refers to the j-th token of T i and
ni
g is the total number of tokens in the sentence T i. Y i is

the ground truth label of the i-th sample, where Y i = 1
if the sample is sarcastic, and Y i = 0 otherwise. Notably,
images may contain embedded text, which usually conveys
vital information for capturing the sacarsm. Therefore, we
use the optical character recognition text (OCR-text) ex-
tracted by Pan et al. (2020), i.e., Oi = {oi1, oi2, · · · , oini

o
},
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Figure 2: The proposed MILNet consists of four key modules: (a) multi-modal feature encoding, (b) local semantic-guided
incongruity learning (LIL), (c) global incongruity learning (GIL), and (d) mutual enhancement.

where oij denotes the j-token of Oi and ni
o is the total num-

ber of tokens in Oi. In a sense, we aim to devise a novel
multi-modal sarcasm detection model F which can precisely
identify whether a given text and its attached image deliver
the sarcasm as follows,

F(T i, Ii, Oi | Θ) → Ŷ i, (1)

where Θ denotes all the parameters of F , Ŷ i is the binary
classification prediction result of the model F . We tempo-
rally omit the superscript i that indexes the training samples.

MILNet
As shown in Figure 2, the MILNet comprises four
vital components: multi-modal feature encoding, local
semantic-guided incongruity learning, global incongruity
learning, and mutual enhancement.

Multi-modal Feature Encoding. In this work,
multi-modal samples involve two modalities: the text
and the image.

Text Encoding. To thoroughly capture the underlying mes-
sage of the text in multi-modal samples, we concatenate the
OCR-text O with the original text T and feed them into
RoBERTa, which has achieved compelling success in many
textual tasks (Dai et al. 2021; Wang et al. 2020), as follows,

Ht =
[
ht
1,h

t
2, · · · ,ht

n

]
= RoBERTa(T ⊕ O), (2)

where ht
j ∈ Rdh denotes the hidden state vector of j-

token, dh denotes the dimension of the hidden representa-
tions, n = ng + no is the total number of tokens after merg-
ing the original text and OCR-text, and ⊕ refers to the con-
catenation operation. Ht is the encoded text representation
for the input original text and OCR-text.

Image Encoding. To facilitate the following local
semantic-guided and global incongruity learning, we extract
both object-level and image-level visual features.

Regarding object-level feature extraction, we resort to the
Faster-RCNN, which can encode the input image into a set

of regional features. To ensure the quality of extracted fea-
tures, we only select the top k regions with the highest con-
fidence for object-level feature extraction. For each region,
we can obtain a visual feature vj ∈ Rdv , a positional fea-
ture pj ∈ Rdp , an object class ej (i.e.,“bus” in Figure 1) and
an object attribute aj (i.e.,“white” in Figure 1) by Faster-
RCNN. dv and dp denote the dimension of visual and po-
sitional features, respectively. As the visual and positional
features characterize the object coherently, we fuse them by
the linear projections to enrich the visual feature as follows,

hf
j = Wf (Wvvj + pjWp) + bf , (3)

where hf
j ∈ Rdh is the final visual representation of the j-th

region. Wv ∈ Rdv×dv , Wp ∈ Rdp×dv , Wf ∈ Rdh×dv and
bf ∈ Rdh are trainable parameters. In addition, the object
class ej and the object attribute aj are transformed into vec-
tors he

j ∈ Rdh and ha
j ∈ Rdh through RoBERTa according

to Eqn.(2). The image can be finally represented as follows,
Hv

o = [I1, I2, . . . , Ik] ,

Ij =
[
he

j , h
a
j ,h

f
j

]⊤
,

(4)

where Ij ∈ R3×dh and Hv
o ∈ R3k×dh are the representa-

tions of the j-th region and the final object-level representa-
tion of the input image, respectively.

Regarding the image-level features, we adopt the widely-
used ViT as the encoder, which splits the input image into
r non-overlapping patches and yields r patch embeddings
as well as a global embedding corresponding to the special
[CLS] token as follows,

Hv
m = [hm

cls,h
m
1 ,hm

2 , · · · ,hm
r ] = V iT PE(I), (5)

where V iT PE is the patch embedding layer, hm
j ∈ Rdh

represents the j-th patch embedding, hcls ∈ Rdh denotes
the embedding of the [CLS] token, and Hv

m ∈ R(r+1)×dh

refers to the final image-level representation.
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Local Semantic-guided Incongruity Learning (LIL). In
fact, there are rich semantic relations among the given
multi-modal input. For example, tokens in the textual sen-
tence have semantic associations; objects in the given im-
age have spatial correlations; and moreover, there can be
semantic correspondence between tokens in the sentence
and objects in the image. These semantic relations un-
doubtedly would benefit the sarcasm reasoning. In light of
this, we build a text-modal graph, an image-modal graph
and a cross-modal graph, where edges reflect the above
intra- /inter-modal relationships.

Text-modal graph. To capture the semantic relationships
existing in textual modality, we build a text-modal graph
Gt, whose set of nodes can be denoted as {vt1, vt2, · · · , vtn},
where vtj corresponds to the j-th token in the given text,
and is initialized by the hidden representation extracted by
RoBERTa for the j-th token (i.e., ht

j), and the initial repre-
sentations of the nodes can be defined as Gt

1 = Ht. Inspired
by previous methods (Liang et al. 2021, 2022), the edges of
graph are defined by the dependency tree2, which can re-
flect the semantic relations among tokens and benefit the
textual internal logic reasoning. Concretely, the text-modal
adjacency matrix At ∈ Rn×n is constructed as follows,

At
ij =

{
1, if D(ti, tj), i, j ∈ [1, n]

0, otherwise,
(6)

where D(ti, tj) indicates that token ti (corresponding to the
node vt

i ) and token tj (corresponding to the node vt
j) have

certain dependency relationships in the dependency tree. To
enrich the dependency information of the text, we construct
the graph as an undirected graph, which means At

ij = At
ji.

Meanwhile, we set a self-loop for each token (i.e., At
ii = 1).

Notably, as the OCR-text can be not a complete sentence, for
which the extracted dependency relations can be unreliable,
we do not consider the OCR-text in the image for mining the
token relationship.

Image-modal graph. To model the semantic re-
lations existing in image modality, we build an
image-modal graph Gv , which has 3k nodes, denoted
as {vv1 , vv2 , vv3 , · · · , ve3k−2, v

v
3k−1, v

v
3k}, and their initial rep-

resentations are defined as Gv
1 = {he

1,h
a
1 ,h

f
1 , · · · ,he

k,h
a
k,

hf
k}. Namely, for each object region, we have three nodes,

corresponding to the three feature vectors of the region. As
the three vectors essentially describe the same region from
different aspects, we fully connect them. Since the spatial
relationship between two objects is likely to reflect their
semantic correlation, we use the intersection over union
(IoU) scores between two object regions to represent their
correlations. As the three nodes of each object are mutually
connected, we simply select the node referring to the object
class as the representative node for linking the different
object regions. Mathematically, the image-modal adjacency
matrix Av ∈ R3k×3k can be summarized as follows,

Av
ij =


1, if i mod 3 = j mod 3,

Si,j , if i rem 3 = 1, j rem 3 = 1,

0, otherwise,

(7)

2https://spacy.io/.

where mod denotes the modulo operation, which helps link
the three nodes for the same object. rem denotes the remain-
der operation, used for linking different object regions. Si,j

is the IoU score between (i mod 3)-th and (j mod 3)-th
object regions, i, j ∈ [1, 3k].

Cross-modal graph. To learn semantic relations across
different modalities, we construct a cross-modal graph Gc,
whose nodes of this graph cover all text token and vi-
sual object representations, denoted as {vc1, · · · , vcn+3k},
and their initial representations are defined as Gc

1 =

{ht
1, · · · ,ht

n,h
e
1,h

a
1 ,h

f
1 , · · · ,he

k,h
a
k,h

f
k}). To build the

cross-modal edges, we resort to the knowledge graph Con-
ceptNet53, to obtain the semantic relationships between
textual tokens and object classes/attributes. Specifically,
if a textual token has certain relation with a visual ob-
ject’s class/attribute label according to the ConceptNet5,
we will link their corresponding nodes with the weight
of 1. Notably, to enrich the information contained in the
cross-modal graph, we also integrate the edges of the two
single-modal graphs (i.e., At and Av) into it (Liang et al.
2021, 2022). Ultimately, the cross-modal adjacency matrix
Ac ∈ R(n+3k)×(n+3k) for each input multi-modal sample
can be formulated as follows,

Ac
ij =



At
ij , if At

ij > 0, i, j ∈ [1, n],

Av
ij , if Av

ij > 0, i, j ∈ [n+ 1, n+ 3k],

1, if K(ti, e(j−n−1)/3+1)

or K(ti, a(j−n−2)/3+1)),

0, otherwise,

(8)

where At
ij and Av

ij are the integrated edges in text-/image-
modal graphs, respectively. K(ti, e(j−n−1)/3+1) indicates
that the token ti and the object class e(j−n−1)/3+1 have
certain relation in the ConceptNet5, where i ∈ [1, ng],
j ∈ {j ∈ [n + 1, n + 3k]|(j − n)rem3 = 1}. Similarly,
K(ti, a(j−n−2)/3+1)) denotes that the token ti and the ob-
ject attribute have certain relation in the ConceptNet5, where
i ∈ [1, ng], j ∈ {j ∈ [n+ 1, n+ 3k]|(j − n)rem3 = 2}.

Graph Convolutional Network. Thereafter, we resort to
the graph convolution networks (GCNs) (Kipf and Welling
2017) to mine the above-defined relationship and learn the
multi-modal incongruity. GCNs work on updating node fea-
tures with their neighborhoods according to the adjacency
matrix and show their superiority on several tasks (Wei et al.
2019b; Jing et al. 2022; Zhuang and Hasan 2022; Wang et al.
2022a; He et al. 2022; Wang et al. 2022b). Specifically, we
utilize the GCNs to iteratively learn the intra-modal incon-
gruities and the inter-modal incongruities. The process is de-
fined as follows,

Gt
u′ = ReLU(ÃtGt

u−1W
t
u + btu),

Gv
u′ = ReLU(ÃvGv

u−1W
v
u + bvu),

Gc
u = Gt

u ⊕Gv
u = ReLU(Ãc(Gt

u′ ⊕Gv
u′)W c

u + bcu),
(9)

where Ãx = (Dx)−
1
2Ax(Dx)−

1
2 is the normalized sym-

metric adjacency matrix, and Dx is the degree matrix of Ax.
Gx

u are the representations of nodes in corresponding graphs
after the u-th GCN process, where x ∈ {t, v, c}, u ∈ [1, U ],

3https://github.com/commonsense/conceptnet5.
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and U denotes the total number of iterations. In addition,
{W t

l ,W
v
l ,W

c
l } ∈ Rdh×dh and {btl , bvl , bcl } ∈ Rdh are

trainable parameters of the l-th GCN layer.
Subsequently, following (Liang et al. 2022; Zhang, Li,

and Song 2019), we utilize a retrieval-based attention mech-
anism to obtain a graph-oriented cross-modal representation
for detection. The intention is to retrieve the crucial repre-
sentation in inter-/intra-graph. Specifically, we feed the ini-
tial node representations of cross-modal graph (i.e., H =
{v1,v2, · · · ,vn+3k}) and the final outputs of the GCN lay-
ers (i.e., Gc

L = {g1, g2, · · · , gn+3k}) into attention mecha-
nism. The process is defined by following transformation,

αi = softmax(

n+3k∑
j=1

v⊤
j gj),

fl =

n+3k∑
i=1

αihi,

(10)

where αi refers to attention scores, fl is the final sarcasm
representation of LIL for sarcasm detection. And then we
feed it into fully connected layers to gain the predicted prob-
ability distributions as follows,

pl = softmax(Wlfl + bl), (11)

where pl ∈ R2 is the predicted probability vector of LIL,
Wl ∈ Rd×2, bl ∈ R2 are trainable parameters. Ultimately,
we calculate the cross-entropy loss to supervise our LIL
module as follows,

Ll
ce = yilogpil + (1− yi)log(1− pil) + λ1 ∥ Θl ∥2, (12)

where Θl denotes all trainable parameters in the LIL mod-
ule. yi and pil are the i-th elements of the ground truth y and
pl, respectively. λ1 represents the weight coefficients of the
Frobenius norm to prevent modules from overfitting.

Global Incongruity Learning (GIL). As for GIL, to en-
force the module focus on the input image-level features that
are highly correlated with sarcasm, we construct it based
on the widely-used attention mechanism (Vaswani et al.
2017). In particular, we use image-level feature Hv

m defined
in Eqn.(5) as original query, the text feature Ht defined in
Eqn.(2) as key and value. In this way, the image features
guide our model to pay more attention to the incongruous
text phases by the attention mechanism layer follows,

Q = Hv
mWQ,K = HtWK ,V = HtW V

H ′ = softmax(
KQ⊤
√
dh

V ),

Ĥ = LN(H ′ +Hv
m),

Ȟ = LN(Ĥ + (WMĤ + bM )),

(13)

where the query Q ∈ R(r+1)×dh is projected from the en-
coded visual feature Hv

m, the key K ∈ Rn×dh and the
value V ∈ Rn×dh are both projected from the encoded tex-
tual feature Ht. LN(·) refers to layer normalization opera-
tion (Ba, Kiros, and Hinton 2016), and H ′ ∈ R(r+1)×dh

is the output of attention mechanism, Ĥ ∈ R(r+1)×dh

represents the hidden representations of the residual con-
nection, and Ȟ ∈ R(r+1)×dh which includes textual

and visual information becomes the new queries to lead
the model to extract important information. In addition,
{WQ,WK ,W V ,WM} ∈ Rdh×dh and bM ∈ Rd

h are
to-be-learned parameters. We stack B such attention mech-
anism layers, get the output of the last layer as ȞB and
treat encoding of [CLS] token in the output ȞB as the fi-
nal representation fg . Similar to the LIL, we utilize fully
connected layers to obtain the predicted probability distri-
butions of GIL pg ∈ R2 as follows,

pg = softmax(Wgfg + bg), (14)

where Wg ∈ Rd×2, bg ∈ R2 are to-be-learned parameters
and the cross-entropy loss can be defined as follows,

Lg
ce = yilogpil + (1− yi)log(1− pil) + λ2 ∥ Θg ∥2, (15)

where yi and pig are the i-th elements of the ground truth y
and pg , respectively.Θg denotes all trainable parameters in
GIL module and λ2 denotes the weight coefficients.

Mutual Enhancement. As both local semantic-guided
and global incongruity learning modules aim to capture the
inter- and intra-modality incongruities, there should be cer-
tain intrinsic consistency between the two modules. In view
of this, we make the two modules share knowledge with
each other by adopting mutual learning (Zhang et al. 2018).
Specifically, we employ the Kullback Leibler (KL) Diver-
gence between pl and pg , which can measure the differences
between two distributions to encourage consistency between
the two learning modules. To avoid incorrect knowledge
being transferred, different from the existing methods that
transfer knowledge regardless of samples, we propose to
only transfer reliable knowledge. In particular, we introduce
an indicator controlling whether to transfer the prediction
result of this sample. Formally, the objective function for
knowledge transferring can be written as follows,{

Lg→l
kl = η1DKL(pg ∥ pl),

Ll→g
kl = η2DKL(pl ∥ pg),

(16)

where (g → l) denotes the knowledge transferring from the
GIL to LIL, and similarly, (l → g) denotes the knowledge
transferring from the LIL to GIL. η1/2 are the control pa-
rameters to avoid incorrect knowledge transferring which is
defined as follows,

η1/2 =

{
1, if argmax(pg/l) = Y

0, otherwise
(17)

where argmax denotes the operation that gains the pre-
dicted labels from the predicted result pg/l, and pg/l is the
predicted probability distribution of the mudule GIL/LIL
which shares the knowledge (i.e., pg for Lg→l

kl and pl for
Ll→g
kl ). Similar to (Hinton, Vinyals, and Dean 2015), we also

sharpen the predicted distribution of the model with a tem-
perature parameter τ for knowledge transfer.

We combine all loss functions as follows,{
Ll = Ll

ce + δ1Lg→l
kl ,

Lg = Lg
ce + δ2Ll→g

kl ,
(18)
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F1-score Macro-averageMODALITY METHOD Acc (%) Pre (%) Rec (%) F1 (%) Pre (%) Rec (%) F1 (%)
Image (Cai, Cai, and Wan 2019)†‡ 64.76 54.41 70.80 61.53 60.12 73.08 65.97
ViT (Dosovitskiy et al. 2021)‡ 73.72 65.56 71.64 68.46 72.78 73.37 72.97
TextCNN (Kim 2014)†∗ 80.03 74.29 76.39 75.32 78.03 78.28 78.15
Bi-LSTM†∗ 81.90 76.66 78.42 77.53 80.97 80.13 80.55
SIARN (Tay et al. 2018)†∗ 80.57 75.55 75.70 75.63 80.34 78.81 79.57
SMSD (Xiong et al. 2019)†∗ 80.90 76.46 75.18 75.82 80.87 78.20 79.51
BERT (Devlin et al. 2019)†∗ 83.85 78.72 82.27 80.22 81.31 80.87 81.09

single-modal

RoBERTa (Liu et al. 2019)∗ 85.51 78.24 88.11 82.88 84.83 85.95 85.16
HFM (Cai, Cai, and Wan 2019) † 83.44 76.57 84.15 80.18 79.40 82.45 80.90
D&R Net (Xu, Zeng, and Mao 2020) † 84.02 77.97 83.42 80.60 - - -
Res-BERT (Pan et al. 2020) † 84.80 77.80 84.15 80.85 78.87 84.46 81.57
Att-BERT (Pan et al. 2020) † 86.05 78.63 83.31 80.90 80.87 85.08 82.92
InCrossMGs (Liang et al. 2021) † 86.10 81.38 84.36 82.84 85.39 85.80 85.60
CMGCN (Liang et al. 2022) † 87.55 83.63 84.69 84.16 87.02 86.97 87.00

multi-modal

MILNet 89.50 85.16 89.16 87.11 88.88 89.44 89.12

Table 1: Performance comparison among different methods on the multi-modal sarcasm dataset in terms of Acc, F1-score
and Macro-average F1-score. † indicates the results are cited from (Liang et al. 2022). ‡ denotes models only utilize visual
information as input and ∗ denotes modes only utilize textual information as input. The best results are highlighted in boldface,
while the second-best results are underlined.

where δ1 and δ2 are non-negative hyper-parameters. Ulti-
mately, the binary classification prediction result Ŷ is de-
fined as follows,

Ŷ = argmax(
pg + pl

2
). (19)

We calculated the cross-entropy loss of the validating set and
reserved the model with the best performance for testing.

Experiment
Experimental Settings
Dataset. Following previous works, we evaluated our
model on a public available multi-modal sarcasm detec-
tion dataset (Cai, Cai, and Wan 2019) with English tweets.
Thereinto, tweets with some special hashtags (e.g. sarcasm)
are positive examples and those without such hashtags are
negative examples. Furthermore, the dataset is divided into
a training set, a validating set, and a testing set, which in-
cludes 19, 816, 2, 410, and 2, 409 samples, respectively. In
addition, we refer readers to the supplementary material for
the implementation details.

On Model Comparison (RQ1)
To validate the effectiveness of our MILNet, we compared it
with several state-of-art baselines which can be broadly cat-
egorized into two groups. (1) Single-modal Methods. These
methods simply take visual or textual information as input
for multi-modal sarcasm detection, including: Image (Cai,
Cai, and Wan 2019); ResNet-based (He et al. 2016); ViT
(Dosovitskiy et al. 2021); TEXTCNN; (Kim 2014); Bi-
LSTM; SIARN (Tay et al. 2018); SMSD (Xiong et al.
2019); BERT (Devlin et al. 2019) and RoBERTa (Liu et al.
2019). (2) Multi-modal Methods. These methods exploit
both visual and textual information as input for multi-modal
sarcasm detection, including: HFM (Cai, Cai, and Wan
2019); D&R Net (Xu, Zeng, and Mao 2020); Res-BERT

(Pan et al. 2020); Att-BERT (Pan et al. 2020); InCross-
MGs (Liang et al. 2021) and CMGCN (Liang et al. 2022).

Table 1 illustrates the performance comparison among
different methods. From this table, we had the following ob-
servations. 1) MILNet consistently outperforms both single-
modal and multi-modal baselines across different evalua-
tion metrics, which denotes that MILNet can significantly
improve the performance of sarcasm detection over state-
of-the-art methods. 2) Our model surpasses both InCross-
MGs (global) and CMGCN (local semantic-guided). This
implies the advantage of incorporating both global and local
semantic-guided methods and demonstrates these two kinds
of methods can complement each other. 3) Multi-modal
methods perform better than single-modal baselines overall,
which indicates that simultaneously extracting incongruities
from textual and visual information can improve the perfor-
mance of sarcasm detection. And 4) to justify the improve-
ment is statistically significant, we also conducted the sig-
nificant test between our results and the second best results,
and found that all the p-values are less than 0.01. This vali-
dates the superiority of MILNET over existing methods.

On Ablation Study (RQ2)
To explore the roles of different components in our proposed
model, we compared MILNet with the following deriva-
tions. 1) LIL-only and GIL-only. To explore the effect of
both local semantic-guided and global incongruity learn-
ing modules, we removed the local semantic-guided incon-
gruity learning module and the global incongruity learn-
ing module, respectively. 2) w/o-mutual-learning. To val-
idate the necessity of the mutual enhancement, we omit-
ted the knowledge distillation between the LIL and GIL
modules by directly averaging their output features. 3)
w/o-sample-screening. We disabled the sample screening
in the mutual enhancement to get more insight into it.
4) w/o-embedded-text. To verify the importance of the
OCR-text extracted from image, we discarded it and only

9512



MODEL Acc. (%) F1 (%) Macro-F1 (%)
LIL-only 88.00 84.70 87.41
GIL-only 88.25 85.49 87.81
w/o-embedded-text 89.29 86.67 88.86
w/o-mutual-learning 88.95 86.62 88.61
w/o-sample-screening 88.96 86.57 88.60
w/o-text-modal-relations 88.05 85.80 87.74
w/o-image-modal-relations 89.12 86.85 88.79
w/o-cross-modal-relations 88.96 86.65 88.62
w/-similarity 89.00 86.81 88.69
MILNet 89.50 87.11 89.12

Table 2: Experiment results of ablation study.

fed the original sentence from text modality into our MIL-
Net framework. 5) w/o-text-modal-relations, w/o-image-
modal-relations and w/o-cross-modal-relations. To check
the effect of text-modal relations, image-modal relations and
cross-modal relations, we removed these relations by replac-
ing the inter-/intra-adjacency matrix with identity matrix, re-
spectively. And 6) w/-similarity. To demonstrate the supe-
riority of the semantic relationships in knowledge graphs,
we adopted lexical similarity4 instead of knowledge graph
to fulfill cross-modal relations for comparison.

Table 2 summarizes the performance of MILNet with
its derivations. From this table, we can draw the follow-
ing observations. 1) Our MILNet surpasses both LIL-only
and GIL-only, demonstrating that removing either the global
incongruity learning module or the local semantic-guided
incongruity learning module will hurt the performance of
MILNet. 2) Both the LIL-only and GIL-only surpass the
state-of-art local semantic-guided sarcasm detection base-
lines(i.e., CMGCN and InCrossMGs). This suggests that
the semantic-guided incongruities and global sarcasm de-
tection incongruities can be well captured by MILNet in
an efficient way. 3) MILNet exceeds w/o-embedded-text,
denoting that the text embedded in image does evolve vi-
tal semantic for multi-modal sarcasm detection. 4) MILNet
outperforms w/o-mutual-learning. This verifies the knowl-
edge does share between LIL and GIL modules, and the ad-
vantage of integrating the two compositions via the mutual
learning. 5) Some of the indicators in w/o-sample-screening
are even lower than those in w/o-mutual-learning, indicat-
ing that choosing the right knowledge to transfer is nec-
essary. 6) All of the w/o-text-modal-relations, w/o-image-
modal-relations, w/o-cross-modal-relations perform worse
than MILNet, demonstrating that inter/intra-modalities re-
lations do contribute to the multi-modal sarcasm detection,
which can be well captured by the proposed MILNet. And
7) w/-similarity exceeds w/o-cross-modal-relations but still
performs worse than our MILNet, confirming that the lex-
ical similarity can capture partially effective semantic rela-
tionships but is not as comprehensive as knowledge graphs.

On Case Study (RQ3)
To get an intuitive understanding of how the MILNet works
on multi-modal sarcasm detection, we exhibited two testing

4https://www.nltk.org/.

Figure 3: Example of case study, where (a) is the sample
misclassified by LIL-only, (b) is the sample misclassified by
GIL-only. The bars on the top of the image represent the
predictions of the corresponding models. The dark and light
colors denote probabilities of 1 and 0, respectively.

samples in Figure 3. In the case (a), the LIL-only module
gets the object classes like “head” and “hair”, and even
finds the man in the middle is bald but it still fails to cap-
ture the funny relationship between their beards and their
hair since the LIL-only overlooks the abstract contextual re-
lations out of the boxes. However, extracting these abstract
contextual relations is easy for the GIL-only module and it
does work great on this sample. In addition, the “beard” in
(a) is misclassified as “grasses”, which interferes with the
model classification and reconfirms that the performance of
object extraction techniques would limit the semantic-based
incongruity learning module. As for sample (b), we omit-
ted the object classes and object attributes for brief. The
GIL-only module is unable to label this example correctly
while the LIL-only module does it well, mainly because the
LIL-only model concentrates on the people’s faces that can
easily capture their expression. As shown in the bars, our
MILNet achieves excellent results on both samples, which
shows that the knowledge of LIL module and GIL module is
indeed shared with each other, and our MILNet successfully
combines the advantages of the two modules.

Conclusion and Future Work

In this work, we present a mutual-enhanced incongruity
learning network for multi-modal sarcasm detection (MIL-
Net), which seamlessly unifies the local semantic-guided in-
congruity learning module and the global incongruity learn-
ing module. Extensive experiments on the public available
multi-modal sarcasm detection dataset demonstrate the su-
periority of our model over state-of-art methods. In particu-
lar, we notice that even the LIL-only and GIL-only outper-
form the state-of-art models, which suggests the way that
we construct the two modules is effective. Meanwhile, the
ablation study justifies the necessity of mutual enhancement
that simultaneously incorporation the two incongruity learn-
ing modules and verifies the importance of inter- and intra-
relations. To take it further, we will explore more techniques
to align different modalities.
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