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Abstract

Autoregressive models have achieved impressive results over
a wide range of domains in terms of generation quality and
downstream task performance. In the continuous domain, a
key factor behind this success is the usage of quantized latent
spaces (e.g., obtained via VQ-VAE autoencoders), which al-
low for dimensionality reduction and faster inference times.
However, using existing pre-trained models to perform new
non-trivial tasks is difficult since it requires additional fine-
tuning or extensive training to elicit prompting. This paper
introduces LASS as a way to perform vector-quantized La-
tent Autoregressive Source Separation (i.e., de-mixing an in-
put signal into its constituent sources) without requiring ad-
ditional gradient-based optimization or modifications of ex-
isting models. Our separation method relies on the Bayesian
formulation in which the autoregressive models are the pri-
ors, and a discrete (non-parametric) likelihood function is
constructed by performing frequency counts over latent sums
of addend tokens. We test our method on images and au-
dio with several sampling strategies (e.g., ancestral, beam
search) showing competitive results with existing approaches
in terms of separation quality while offering at the same time
significant speedups in terms of inference time and scalability
to higher dimensional data.

Introduction
Autoregressive models have achieved impressive results in a
plethora of domains ranging from natural language (Brown
et al. 2020) to densely-valued domains such as audio (Dhari-
wal et al. 2020) and vision (Razavi, van den Oord, and
Vinyals 2019; Esser, Rombach, and Ommer 2021), includ-
ing multimodal joint spaces (Ramesh et al. 2021; Yu et al.
2022). In the dense setting, it is typical to train autore-
gressive models over discrete latent representations obtained
through the quantization of continuous data, possibly us-
ing VQ-VAE autoencoders (van den Oord, Vinyals, and
Kavukcuoglu 2017). This way, generating higher resolution
samples while simultaneously reducing inference time is
possible. Additionally, the learned latent representations are
useful for downstream tasks (Castellon, Donahue, and Liang
2021). However, in order to perform new non-trivial tasks,
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the standard practice is to fine-tune the model or, in alter-
native, elicit prompting by scaling training (Wei et al. 2021;
Sanh et al. 2022). The former is usually the default option,
but it requires additional optimization steps or modifications
to the model. The latter is challenging on non-trivial tasks,
especially in domains different from natural language (Yang
et al. 2022; Hertz et al. 2022).

This paper aims to tackle one of such tasks, namely
source separation, leveraging existing vector-quantized au-
toregressive models without requiring any gradient-based
optimization or architectural modifications. The task of sep-
arating two or more sources from a mixture signal has re-
cently received much attention following the success of
deep learning, especially in the audio domain, ranging
from speech (Dovrat, Nachmani, and Wolf 2021), music
(Défossez 2021), and universal source separation (Wisdom
et al. 2021; Postolache et al. 2022). Although not as promi-
nent as its audio counterpart, image source separation has
been addressed in literature (Halperin, Ephrat, and Hoshen
2019). Most successful approaches use explicit supervi-
sion to achieve notable results (Luo and Mesgarani 2019;
Défossez et al. 2019), or leverage large-scale unsupervised
regression (Wisdom et al. 2020).

We propose a generative approach to perform source sep-
aration via autoregressive prior distributions trained on a
latent VQ-VAE domain (when class information is used,
the approach is weakly supervised; otherwise, it is unsu-
pervised). A non-parametric sparse likelihood function is
learned by counting the occurrences of latent mixed tokens
with respect to the sources’ tokens, obtained by mapping the
data-domain sum signals and the relative addends via the
VQ-VAE. This module is not invasive, neither for the VQ-
VAE nor for the autoregressive priors, given that the repre-
sentation space of the VQ-VAE does not change while learn-
ing the likelihood function. Finally, the likelihood function
is combined with the estimations of the autoregressive pri-
ors at inference time via the Bayes formula, resulting in a
posterior distribution. The separations are obtained from the
posterior distributions via standard discrete samplers (e.g.,
ancestral, beam search). We call our method LASS (Latent
Autoregressive Source Separation).

Our contributions are summarized as follows:

• We introduce LASS as a Bayesian inference method for
source separation that can leverage existing pre-trained
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Figure 1: 256x256 separations obtained with LASS using pre-trained autoregressive models. Left: class-conditional ImageNet.
Right: unconditional CelebA-HQ.

autoregressive models in quantized latent domains.
• We experiment with LASS in the image domain and

showcase competitive results at a significantly smaller
cost in inference time with respect to competitors on
MNIST and CelebA (32×32). We also showcase quali-
tative results on ImageNet (256×256) and CelebA-HQ
(256×256), thanks to the scalability of LASS to pre-
trained models. To the best of our knowledge, this is
the first method to scale generative source separation to
higher resolution images.

• We experiment with LASS in the music source separation
task on the Slakh2100 dataset. LASS obtains performance
comparable to state-of-the-art supervised models, with a
significantly smaller cost in inference and training time
with respect to generative competitors.

Related Work
The problem of source separation has been classically tack-
led in an unsupervised fashion under the umbrella term of
blind source separation (Comon 1994; Hyvärinen and Oja
2000; Huang et al. 2012; Smaragdis et al. 2014). In this set-
ting, there is no information regarding the sources to be sep-
arated from a mixture signal. As such, these methods rely
on broad mathematical priors such as source independence
(Hyvärinen and Oja 2000) or repetition (Rafii and Pardo
2012) to perform separation. With the advent of deep learn-
ing, most prominent methods for source separation can be
classified as regression-based or generative-based methods.

Regression-Based Source Separation
In this setting, a mixture is fed to a parametric model (i.e., a
neural network) that outputs the separated sources. Training
is typically performed in a supervised manner by matching
the estimated separations with the ground truth sources with
a regression loss (e.g., L1 or L2) (Gusó et al. 2022). Super-
vised regression has been applied to image source separation
(Halperin, Ephrat, and Hoshen 2019), but it has been mainly
investigated in the audio domain, where two approaches are
prevalent: the mask-based approach and the waveform ap-
proach. In the mask-based approach, the model performs
separation by applying estimated masks on mixtures, typ-
ically in the STFT domain (Roweis 2000; Uhlich, Giron,
and Mitsufuji 2015; Huang et al. 2014; Nugraha, Liutkus,
and Vincent 2016; Liu and Yang 2018; Takahashi, Goswami,
and Mitsufuji 2018). In the waveform approach, the model
outputs the estimated sources directly in the time domain to
overcome phase estimation, which is required when trans-
forming the signal from the STFT domain to the waveform
domain (Lluı́s, Pons, and Serra 2019; Luo and Mesgarani
2019; Défossez et al. 2019).

Generative Source Separation
Following the success of deep generative models (Good-
fellow et al. 2014; Kingma and Welling 2014; Ho, Jain,
and Abbeel 2020; Song et al. 2021), a new class of gen-
erative source separation methods is gaining prominence.
This setting emphasizes the exploitation of broad genera-
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tive models (especially pre-trained ones) to solve the sep-
aration task without needing a specialized architecture (as
with regression-based models).

Following early work on deep generative separation based
on GANs (Subakan and Smaragdis 2018; Kong et al. 2019;
Narayanaswamy et al. 2020), Jayaram and Thickstun (2020)
propose the generative separation method BASIS in the
image setting using score-based models (Song and Ermon
2019) (BASIS-NCSN) and a noise-annealed version of flow-
based models (BASIS-Glow). The inference procedure is
performed in the image domain through Langevin dynam-
ics (Parisi 1981), obtaining good quantitative and qualitative
results. The authors extend the Langevin dynamics infer-
ence procedure to autoregressive models by re-training them
with a noise schedule, introducing the Parallel and Flexi-
ble (PnF) method (Jayaram and Thickstun 2021). Although
innovative, mainly when used for tasks such as inpainting,
this method cannot use pre-trained autoregressive models
directly, requiring fine-tuning under different noise levels.
Further, working directly on the data domain, it exhibits a
high inference time and scales with difficulty to higher res-
olutions. In this paper, we extend this line of research by
proposing a separation procedure for latent autoregressive
models that does not involve re-training, is scalable to ar-
bitrary pre-trained checkpoints and is compatible with stan-
dard discrete samplers.

Background
This section briefly introduces vector-quantized autoen-
coders (VQ-VAE) and autoregressive models, since they are
core components of the separation procedure used in LASS.

VQ-VAE

A data point x ∈ RN (N is the total length of the data
point, e.g., the length of the audio sequence or the number
of pixel channels in an image) can be mapped to a discrete
latent domain via a VQ-VAE (van den Oord, Vinyals, and
Kavukcuoglu 2017). First an encoder Eθ : RN → RS×C
maps x to Eθ(x) = (h1, . . . ,hS), where C denotes the
number of latent channels and S the length of the latent se-
quence. A bottleneck block B : RS×C → [K]S casts the
encoding into a discrete sequence z = (z1, . . . , zS) by map-
ping each hs into the index (also called token) zs = B(hs)
of the nearest neighbor ezs contained in an (ordered) set
C = {ek}Kk=1 of learned vectors in RC (called codes). A
decoder Dψ : [K]S → RN maps the latent sequence back
into the data domain, obtaining a reconstruction x̂ = Dψ(z).
VQ-GAN (Esser, Rombach, and Ommer 2021) is an en-
hanced version of the VQ-VAE, where the training loss is
augmented with a discriminator and a perceptual loss, that
improve reconstruction quality while increasing the com-
pression rate of the autoencoder. We refer the reader to
(van den Oord, Vinyals, and Kavukcuoglu 2017) and (Esser,
Rombach, and Ommer 2021) for more details on VQ-VAE
and VQ-GAN. In the remainder of the article, we will re-
fer to both models as VQ-VAE and make distinctions when
necessary.

Autoregressive Models
An autoregressive model defines a probability distribution
over a discrete domain [K]S (in our case, the latent domain
of the VQ-VAE). The joint probability of a sequence z =
(z1, . . . , zS) is decomposed via the chain rule:

pϕ(z) =
S∏
s=1

pϕ(zs|z<s),

where pϕ(·) is a learned parametric model, generally a neu-
ral network such as CNNs (van den Oord et al. 2016; Sali-
mans et al. 2017) or Transformers (Vaswani et al. 2017). At
inference time, samples can be obtained depending on the
choice of a sampling procedure. Generally, ancestral sam-
pling is used, where at each step, the token zs is drawn
stochastically from the conditional pϕ(zs|z<s), possibly em-
ploying top-k (Kool, van Hoof, and Welling 2020) filtering
to increase the diversity of the generated data (Holtzman
et al. 2020). When the goal is instead to maximize the proba-
bility of the whole sequence (w.r.t. all the sequences), heuris-
tics like beam search are used (Reddy et al. 1977). Beam
search maintains B possible hypotheses (beams) z1, . . . , zB
in parallel during inference. At each step s, it computes the
conditional distributions pϕ(z

b
s|zb<s) for each beam and se-

lects the B new hypotheses that maximize the joint distribu-
tions pϕ(zb<s)pϕ(zs|zb<s).

Method
Let x = (x1,x2) ∈ R2×N denote two sources distributed
according to pdata = (p1

data, p
2

data) and y = (x1 + x2)/2 an
observable mixture. The goal of generative source separa-
tion is to estimate the sources x given the mixture y, using
the Bayesian posterior (assuming independent sources):

p(x1,x2|y) ∝ p1

data(x
1)p2

data(x
2)p(y|x1,x2). (1)

Working directly with Eq. (1) in the continuous data domain
is inefficient. To overcome this problem, we first model pdata
with autoregressive models in the latent space of a VQ-VAE.
By changing the domain, we subsequentially redefine the
likelihood function p(y|x1,x2) such that no gradient-based
optimization or model re-training is required. We address the
first issue in the following subsection and the second in the
subsequent one. We then describe how to perform inference
using LASS to separate data and propose a post-inference
refinement procedure.

Latent Autoregressive Source Separation
This paper explores the case in which pdata is estimated by
a unique autoregressive model pϕ for all the sources (unsu-
pervised1) and the case in which we have two independent
ones, pϕ = (pϕ1

, pϕ2
), for each of the two sources (weakly

supervised), either in terms of class-conditioned or indepen-
dently trained models. We will focus on this latter case in
the following, since the former can be generalized setting
pϕ1 = pϕ2 .

1Not to be confused with the unsupervised blind setting, i.e., in
our unsupervised setting we have access to sources but we do not
have class labels.
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Figure 2: Schematic of the LASS separation procedure. The picture shows the separation procedure at s = 3 and is repeated
until s = S. At the end of inference, we obtain x1 and x2 decoding z1 and z2 via the VQ-VAE decoder (not depicted in the
picture). We refer the reader to Algorithm 1 for more details.

We denote the latent sources and mixtures, respectively,
with z = (z1, z2) = B(Eθ(x)) and m = B(Eθ(y)). The
posterior distribution in Eq. (1) can be locally expressed in
the latent domain as:

p(zs|z<s,m≤s) ∝ pϕ(zs|z<s)p(m≤s|z≤s), (2)
for all s = 1, . . . , S. The first factor is the (joint) Bayesian
prior, modeled with autoregressive distributions. The second
factor is the likelihood function, which quantifies the likeli-
hood of the sequences z1

≤s, z
2

≤s to combine into m≤s.
Since each code in the convolutional VQ-VAE describes

a local portion of the data, and given that the mixing oper-
ation is point-wise in the data domain, the mixing relation
between latent codes is local also in the latent domain. As
such, we can drop the dependency on the previous context
inside the likelihood function in Eq. (2), approximating it as:

p(m≤s|z≤s) ≈ p(ms|zs). (3)
Notice that not depending on the global context and thus
on the specific position in the sequence, we can drop the
position index s:

p(ms|zs) = p(ms|z1

s, z
2

s) = p(m|z1, z2). (4)
The following subsection describes how LASS models the

likelihood function.

Discrete Likelihoods for Source Separation
Previous works in generative source separation (Jayaram
and Thickstun 2020, 2021) model likelihood functions di-
rectly in the data domain, typically employing a σ-isotropic
Gaussian term:

p(y|x) = N (y|(x1 + x2)/2, σ2I).

In our setting, we cannot combine z1
s and z2

s (or the associate
dense codes ez1s and ez2s ) with the canonical sum operation,
given that the VQ-VAE does not impose an explicit arith-
metic structure on the latent space.

To cope with this, we model the likelihood function in
Eq. (4) using discrete conditionals, represented with rank-3
tensors2 P ∈ RK×K×K :

p(· |z1, z2) = Pz1,z2,:.

In order to learn P, we perform frequency counts on la-
tent mixed tokens given the latent sources’ tokens, by it-
erating over a dataset X . We first initialize a null integer
tensor F0 ∈ NK×K×K . Iterating over x1,x2 ∈ X , we com-
pute y = (x1 + x2)/2, then obtain the latent sequences
z1 = B(Eθ(x

1)), z2 = B(Eθ(x
2)) and m = B(Eθ(y)).

For each entry (z1
s, z

2
s,ms) ∈ (z1, z2,m), at step t, we sim-

ply increment the previous count by one:

Ftz1s ,z2s ,ms
= Ft−1

z1s ,z
2
s ,ms

+ 1 ,

Ftz2s ,z1s ,ms
= Ft−1

z2s ,z
1
s ,ms

+ 1 .

We permute the order of the addends in order to enforce
the commutative property of the sum. After performing the
statistics, we can define P as:

Pz1,z2,: =
1∑K

k=1 Fz1,z2,k
Fz1,z2,:.

At inference time, the likelihood function (parametric in z1

and z2, with m fixed) can be obtained by slicing the tensor
2We follow the notation for tensors as in Goodfellow, Bengio,

and Courville (2016).
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Algorithm 1: LASS inference
Input: y
Output: x1,x2

1: m← B(Eθ(y))
2: z1 ← []
3: z2 ← []
4: for s = 1 to S do
5: prior← log(pϕ1

(· |z1)⊗ pϕ2
(· |z2))

6: likelihood← log(P:,:,ms
)

7: posterior← prior + λ likelihood
8: (z1

s, z
2
s)← Sampler(posterior)

9: z1 ← concat(z1, z1
s)

10: z2 ← concat(z2, z2
s)

11: end for
12: x1 ← Dψ(z

1)
13: x2 ← Dψ(z

2)
14: return x1, x2

along m, namely:

p(m|·, ·) = P:,:,m.

At first glance, modeling the conditional distributions
without parameters could seem memory inefficient, with a
complexity of O(K3). In practice, the tensor P is highly
sparse. We showcase this in Table 1 for all our experi-
ments, where the density of P is defined as the percentage
of nonzero elements in P.

Employing discrete likelihood functions for source sep-
aration in the latent domain of a VQ-VAE is a flexible ap-
proach; there is no need to change the VQ-VAE representa-
tion, the non-parametric learning procedure does not depend
on hyperparameters, and the autoregressive priors do not re-
quire re-training.

Inference Procedure
Given an observable mixture y, the autoregressive priors
pϕ1

, pϕ2
and the learned likelihood tensor P, it is possible to

perform inference and estimate x1,x2, as described in Algo-
rithm 1 and depicted in Figure 2.

We start by mapping y to the latent domain obtaining
m = B(Eθ(y)) and initializing the estimates z1, z2 with the
empty sequences. The algorithm iterates over s = 1, . . . , S.

At each step, the joint prior (a K×K matrix) is computed
(Line 5) by taking the outer product of the two distributions
predicted by the autoregressive models conditioned over the
past context. We use the logarithms of the distributions for
numerical stability. The log-likelihood function is computed
next (Line 6), applying the logarithm on P:,:,ms

. In our ex-
periments, we can apply different scaling factors λ to the
log-likelihood to balance it to the priors. The two matrices
are then combined to form the posterior on Line 7.

Finally (Lines 8-10), different techniques can be em-
ployed to sample the best candidate tokens (z1

s, z
2
s) from the

posterior. In our experiments, we used ancestral sampling
(with and without top-k filtering) and beam search. After
the inference loop ends, the estimated sequences are mapped
back to the data domain with the decoder of the VQ-VAE
(Lines 12-13), obtaining x1 and x2.

Dataset K Density (%)

MNIST 256 1.49× 100

CelebA 512 6.06× 100

CelebA-HQ 1024 3.80× 10−1

ImageNet 16384 3.90× 10−3

Slakh (Drum + Bass) 2048 7.60× 10−2

Table 1: Statistics on likelihood functions over different
datasets. K is the number of VQ-VAE (or VQ-GAN) latent
codes. Density is the percentage of nonzero elements in the
likelihood function.

Post-inference Refinement The quality of the separated
images is limited by the quality of the images obtained via
the VQ-VAE decoder. To enhance the separations we can
adopt an additional refinement step by iteratively optimizing
the VQ-VAE latent representations of the samples:

e1

t+1 = e1

t + α∇e1
t
∥Dψ(e

1

t) +Dψ(e
2

t)− 2y∥2 (5)

e2

t+1 = e2

t + α∇e2
t
∥Dψ(e

1

t) +Dψ(e
2

t)− 2y∥2 (6)

for t = 1, . . . , T − 1 and e1
1 = Eθ(x

1), e2
1 = Eθ(x

2).
In simple words, we optimize for dense latent embeddings
such that their decodings better sum to the mixture, initializ-
ing them to the output of Algorithm 1. We found this strat-
egy particularly helpful on the MNIST datset, where we as-
sess the quality of the separation through a pixel-wise metric
(PSNR) and the VQ-VAE tends to produce smooth images.

Experiments
We perform quantitative and qualitative experiments on var-
ious datasets to demonstrate the efficacy and scalability of
LASS. In the image domain, we evaluate on MNIST (Le-
cun et al. 1998) and CelebA (32×32) (Liu et al. 2015) and
present qualitative results on the higher resolution datasets
CelebA-HQ (256×256) (Karras et al. 2018) and ImageNet
(256×256) (Deng et al. 2009). In the audio domain, we test
on Slakh2100 (Manilow et al. 2019), a large dataset for mu-
sic source separation suitable for generative modeling. We
conducted all our experiments on a single Nvidia RTX 3090
GPU with 24 GB of VRAM. Implementation details for all
the models are listed on the companion website3.

Image Source Separation
We choose the Transformer architecture (Vaswani et al.
2017) as the autoregressive backbone for all image source
separation experiments. With MNIST and CelebA, we first
train a VQ-VAE, then train the autoregressive Transformer
on its latent space. We use K = 256 codes on MNIST
and K = 512 on CelebA, given that CelebA presents
more variability, requiring more information to reconstruct
data. On CelebA-HQ and ImageNet, we leverage pre-trained
VQ-GANs (Esser, Rombach, and Ommer 2021) along-
side the pre-trained Transformers published by the authors4

3github.com/gladia-research-group/
latent-autoregressive-source-separation

4github.com/CompVis/taming-transformers
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Figure 3: Results on MNIST with top-k sampling (k = 32)
over a random batch of examples. Top-k sampling produces
more defined digits, in agreement with the results in Table 3.

Separation Method MNIST (PSNR) CelebA (FID)

Average 14.9 15.19
NMF 9.4 -
S-D 18.5 -
BASIS Glow 22.7 -
BASIS NCSN 29.3 7.55
LASS (Ours) 24.2 8.96

Table 2: Comparison with other methods on MNIST and
CelebA test set. Results are reported in PSNR (higher is bet-
ter) and FID (lower is better).

(celebahq transformer checkpoint for CelebA-HQ
and cin transformer for ImageNet). Given the flexibil-
ity of LASS , they are employed inside the separation algo-
rithm without modifications. On CelebA-HQ the VQ-GAN
has K = 1024 codes, while on ImageNet has K = 16384.
As a first step, in all image-based experiments we learn
the P tensor using the procedure presented in the section
“Method”. As shown in Table 1, CelebA presents the lowest
sparsity (highest density) while ImageNet has the highest. In
all cases, density is below 7%, and the inference procedure
is not affected by memory issues.

Quantitative Results To assess the quality of image sep-
arations produced by LASS, we compare our method with
different baselines on MNIST and CelebA.

On MNIST, we compare LASS with results reported for
the two generative separation methods “BASIS NCSN”
(score-based) and “BASIS Glow” (noise-annealed flow-
based) from (Jayaram and Thickstun 2020), the GAN-based
“S-D” method (Kong et al. 2019), the fully supervised ver-
sion of Neural Egg “NES” and the “Average” baseline,
where separations are obtained directly from the mixture
x1 = x2 = y/2. In all these cases, the evaluation metric
is the PSNR (Peak Signal to Noise Ration) (Horé and Ziou
2010). We follow the experimental procedure of (Jayaram
and Thickstun 2020) on MNIST and perform separation on
a set of 6,000 mixtures obtained by combining 12,000 test
sources. In order to choose the best sampler for this dataset,
we validate the set of samplers in Table 3 on 1,000 mixtures

Sampling Method MNIST (PSNR) Slakh (SDR)

Greedy 17.36 ± 5.90 1.23 ± 2.33
Beam Search 16.96 ± 5.78 5.01 ± 2.39
Ancestral Sampl. 24.03 ± 6.37 4.23 ± 2.29
Top-k (k = 16) 23.74 ± 6.55 3.13 ± 2.53
Top-k (k = 32) 24.23 ± 6.23 2.93 ± 2.20
Top-k (k = 64) 23.85 ± 6.13 3.24 ± 3.29

Table 3: Performance of LASS with different sampling meth-
ods. On MNIST, the reported score is PSNR (dB) (higher
is better), while on Slakh is SDR (dB) (higher is better).
When stochastic samplers are used (ancestral or top-k), the
selected solution in the batch is the one whose sum mini-
mizes the L2 distance to the input mixture.

constructed from the test split. We find that stochastic sam-
plers perform best (PSNR > 20 dB) while MAP methods do
not reach a satisfactory performance. We hypothesize that
beam search tends to fall into sub-optimal solutions by per-
forming incorrect choices in early inference over sparse im-
ages such as MNIST digits. Top-k sampling with k = 32
performs best, so we choose it to perform the evaluation
(a qualitative comparison is shown in Figure 3). For each
mixture in the test set we sample a candidate batch of 512
separations, select the separation whose sum better matches
the mixture (w.r.t. the L2 distance), and finally perform the
refinement procedure in Eqs. (5), (6) with T = 500 and
α = 0.1. Evaluation metrics on this experiment are shown
in Table 2, while inference time is reported in Table 4. Our
method achieves higher metrics than “NMF”, “S-D” and
“BASIS Glow” and is faster than “BASIS NCSN”, thanks
to the latent quantization. The higher PSNR achieved by the
later method can be attributed to the fact that, in their case,
the underlying generative models perform sampling directly
in the image domain; in our case, the VQ-VAE compression
can hinder the metrics.

We compare our method to “BASIS NCSN”, using
the pre-trained NCSN model (Song and Ermon 2019) on
CelebA. In this case, we evaluate against the FID metric
(Heusel et al. 2017) instead of PSNR, given that for datasets
that feature more variability than MNIST, source separa-
tion can be an underdetermined task (Jayaram and Thick-
stun 2020): semantically good separations can receive a low
PSNR score since the generative models may alter features
such as color and cues (an effect amplified by a VQ-GAN
decoder). The FID metric better quantifies if the separa-
tions belong to the distribution of the sources. We test on
10,000 mixtures computed from pair of images in the vali-
dation split using a top-k sampler with k = 32. We scale the
likelihood term by multiplying it by λ = 3. It is a known
fact in the literature that score-based models outperform au-
toregressive models on FID metrics (Dockhorn, Vahdat, and
Kreis 2021) on different datasets, yet our method paired with
an autoregressive model shows competitive results with re-
spect to the score-based “BASIS NCSN”.

Qualitative Results To demonstrate the flexibility of
LASS in using existing models without any modification, we
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Method Time

MNIST LASS (Ours) 4.49 s ± 0.27 s
BASIS NCSN 53.34 s ± 0.51 s

Slakh LASS (Ours) 1.33 min ± 0.87 s
PnF 42.29 min ± 1.08 s

Table 4: Inference speed comparisons for computing one
separation. To estimate variance, we repeat inference 10
times on MINST and 3 times on Slakh. We consider 3-
second-long mixtures on Slakh.

Separation Method Avg Drums Bass

rPCA 0.82 0.60 1.05
ICA -1.26 -0.99 -1.53
HPSS -0.45 -0.56 -0.33
REPET 1.04 0.53 1.54
FT2D 0.95 0.59 1.31

LASS (Ours) 4.86 4.73 4.98

Demucs 5.39 5.42 5.36
Conv-Tasnet 5.47 5.51 5.43

Table 5: Comparison with other source separation methods
on Slakh (“Drums” and “Bass” classes). Results are reported
in SDR (dB) (higher is better). Lower part of the table shows
supervised methods. With “Avg” we refer to the mean be-
tween the results over the two classes.

leverage pre-trained checkpoints on CelebA-HQ and Ima-
geNet. In this case, only the likelihood tensor P is learned.
We showcase a curated results list in Figure 1 and a more
extensive list on the companion website. To the best of our
knowledge, our method is the first to scale up to 256×256
resolutions and can be used with more powerful latent au-
toregressive models without re-training (which is cumber-
some for very large models). As such, end-users can per-
form generative separation without having access to exten-
sive computational resources for training these large models.

Music Source Separation
We perform experiments on the Slakh2100 dataset (Manilow
et al. 2019) for the music source separation task. This dataset
contains 2100 songs with separated sources belonging to
34 instrument categories, for a total of 145 hours of mix-
tures. We focus on the “Drums” and “Bass” data classes,
with tracks sampled at 22kHz. We use the public checkpoint
of Dhariwal et al. (2020) for the VQ-VAE model, taking
advantage of its expressivity in modeling audio data over
a quantized domain. Given that such a model is trained at
44kHz, we upsample input data linearly, then downsample
the output back at 22kHz. For the two autoregressive priors,
we train two Transformer models, one for “Drums” and an-
other for “Bass” and learn the likelihood function over the
VQ-VAE (statistics are reported in Table 1). We compare
LASS to a set of unsupervised blind source separation meth-
ods -“rPCA” (Huang et al. 2012), “ICA” (Hyvärinen and Oja

2000), “HPSS” (Rafii and Pardo 2012), “FT2D” (Seethara-
man, Pishdadian, and Pardo 2017) - and to two supervised
baselines Demucs (Défossez et al. 2019) and Conv-Tasnet
(Luo and Mesgarani 2019) using the SDR (dB) evaluation
metric computed with the museval library (Stöter, Liutkus,
and Ito 2018). To evaluate the methods, we select 900 mu-
sic chunks of 3 seconds from the test splits of the “Drums”
and “Bass” classes, combining them to form 450 mixtures.
The validation dataset is constructed similarly (with differ-
ent music chunks). As a sampling strategy, we use beam
search since it shows the best results on a validation of 50
mixtures (Table 3), using B = 100 beams. Evaluation re-
sults are reported in Table 5: LASS clearly performs better
than all the blind unsupervised baselines and is comparable
with the results obtained by methods that use supervision.
Furthermore, we compare the time performance of LASS
against the generative source separation method “PnF” (Ja-
yaram and Thickstun 2021) by evaluating the time required
to separate a mixture of 3 seconds sampled at 22 kHz (piano
vs. voice on “PnF”). Results in Table 4 show that LASS is
significantly faster, and as such, it can be adopted in more
realistic inference scenarios.

Limitations

In this paper we limit our analysis to the separation of two
sources. Even if this is a common setup especially in image
separation (Jayaram and Thickstun 2021; Halperin, Ephrat,
and Hoshen 2019), dealing with multiple sources is a pos-
sible line of future work. Under our framework, this would
require to increase the dimensions of the discrete distribu-
tions (both the priors and the likelihood function). To alle-
viate this problem, techniques such as recursive separation
may be employed (Takahashi et al. 2019).

Another limitation of the proposed method is the locality
assumption taken in Eq. (3). Different tasks such as coloriza-
tion and super-resolution would require a larger condition-
ing context, and newer quantization schemes to aggregate
latent codes on global contexts (using self-attention in the
encoder and the decoder of the VQ-VAE) (Yu et al. 2021).
Adopting a VQ-VAE quantized with respect to the latent
channels (Xu et al. 2021) combined with a parametric likeli-
hood function could be a way to solve this limitation, while
still maintaining the flexible separation between VQ-VAE,
priors, and likelihoods presented in the paper.

Conclusion

In this paper, we proposed LASS as a source separation
method for latent autoregressive models that does not mod-
ify the structure of the priors. We have tested our method
on different datasets and have shown results comparable
to state-of-the-art methods while being more scalable and
faster at inference time. Additionally, we have shown qual-
itative results at a higher resolution than those proposed by
the competitors. We believe our method will benefit from the
improved quality of newer autoregressive models, improv-
ing both the quantitative metrics and the perceptive results.
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