
Weighted Policy Constraints for Offline Reinforcement Learning

Zhiyong Peng, Changlin Han, Yadong Liu∗, Zongtan Zhou*

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
pengzhyong@qq.com, ytcnhan@foxmail.com, liuyadong@nudt.edu.cn, narcz@163.com

Abstract

Offline reinforcement learning (RL) aims to learn policy from
the passively collected offline dataset. Applying existing RL
methods on the static dataset straightforwardly will raise dis-
tribution shift, causing these unconstrained RL methods to
fail. To cope with the distribution shift problem, a common
practice in offline RL is to constrain the policy explicitly
or implicitly close to behavioral policy. However, the avail-
able dataset usually contains sub-optimal or inferior actions,
constraining the policy near all these actions will make the
policy inevitably learn inferior behaviors, limiting the perfor-
mance of the algorithm. Based on this observation, we pro-
pose a weighted policy constraints (wPC) method that only
constrains the learned policy to desirable behaviors, making
room for policy improvement on other parts. Our algorithm
outperforms existing state-of-the-art offline RL algorithms on
the D4RL offline gym datasets. Moreover, the proposed al-
gorithm is simple to implement with few hyper-parameters,
making the proposed wPC algorithm a robust offline RL
method with low computational complexity.

Introduction
RL has made great success in games, such as Atari games
(Mnih et al. 2015), Go (Silver et al. 2016, 2017; Schrit-
twieser et al. 2020), Starcraft2 (Vinyals et al. 2019), etc. An-
other widely applied domain of RL is robot learning, such
as quadrupedal robot (Hwangbo et al. 2019), robot manipu-
lation (Andrychowicz et al. 2020) and mobile robot naviga-
tion (Fan et al. 2018). These success cases share a common
characteristic of having perfect or near-perfect simulators,
which enables RL agents easily to explore and collect large
amounts of experience actively. In many real-world prob-
lems, however, it is difficult to model the environment dy-
namics, or requires a great deal of effort to construct a high-
fidelity simulator. Deploying RL directly in the real world
also faces several challenges: the time-consuming learning
process and high learning cost caused by low sample effi-
ciency. For example, it takes four months for a group of re-
ality robotic arms to learn grasping tasks (Kalashnikov et al.
2018). Another problem is the safety risk associated with ex-
ploration, such as medical and autonomous driving, where

*Corresponding authors.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unsafe exploration can be fatal. Offline RL directly utilizes
passively collected static datasets to learn policy, providing
a new approach to address the above challenges. Firstly, of-
fline datasets are relatively easy to collect, such as for au-
tonomous driving, where large amounts of data can be ob-
tained from the driving records of vehicles; secondly, pas-
sive data recording does not introduce any new risks to the
running systems.

The main challenge of offline RL is the distribution shift
problem, which leads to an overestimation on the values of
out-of-distribution (OOD) states. Due to the inability to in-
teract with the environment, the value estimation error on
OOD states cannot be corrected, which eventually leads to
failure if the policy is not been properly constrained. A com-
mon practice to resist distribution shift is constraining the
learned policy to be close to behavior policy explicitly (Ku-
mar et al. 2019; Wu, Tucker, and Nachum 2019), or implic-
itly (Fujimoto, Meger, and Precup 2019). However, offline
datasets often contain non-expert actions or even dangerous
actions, constraining the learned policy to all these actions
will force it to imitate undesirable behaviors and degrade the
performance of the algorithm. For example, in autonomous
driving, if the recorded dataset contains samples of accidents
that may be caused by a drunken driver, imitating these kinds
of behaviors will have catastrophic consequences. Based on
such an observation, a natural question is whether it is possi-
ble to construct a more reasonable policy constraint method
that only constrains the learned policy to desirable behav-
iors but not inferior behaviors by identifying the superiority
of state-action pairs in the dataset? To recognize desirable
actions, we borrow ideas from another class of methods in
offline RL, i.e., weighted behavior cloning methods (Peng
et al. 2019; Yang et al. 2021; Wang et al. 2020; Siegel et al.
2020). Weighted behavior cloning methods usually learn an
advantage function to recognize desirable actions and then
imitate them. However, weighted behavior cloning inherits
the disadvantage of imitation learning: imitation learning
is unable to outperform the demonstration policy, thus the
policy learned by weighted behavior cloning cannot outper-
form the best behavior among the offline dataset. Moreover,
weighted behavior cloning imitates only parts of states in
the dataset, and the behaviors in other not imitated states are
unknown, it may output unpredictable actions in these un-
considered states. In contrast, RL employs reward signals to

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9435

(a) (b)

(c)

Figure 1: An intuitive comparison of a) constant policy con-
straint, b) weighted behavior cloning and c) weighted pol-
icy constraint methods. The task is to reach the goal (’star’)
and avoid being stuck (’net’). The constant policy constraint
method constrains the learned policy not only to desirable
actions but also dangerous ones. Behaviors in the danger-
ous area are unconsidered in the weighted behavior cloning
method. Our weighted policy constraint method can imitate
desirable actions while staying away from bad actions.

learn a value function, making it not only learns desirable
behaviors but also stays away from inferior states. We argue
that policy constraints-based approaches and weighted be-
havior cloning are complementary, and an appropriate com-
bination of these two kinds of methods will benefit from
each other. Figure 1 provides an intuitive comparison of the
aforementioned methods and explains the motivation of our
proposed method.

The main contributions of this paper are twofold. Firstly,
we propose an offline RL framework: weighted policy con-
straints (wPC), which combines the advantages of policy
constraints and weighted behavior cloning. The proposed
framework slacks adverse constraints on the learned policy
while retaining necessary constraints for desirable behav-
iors, improving the upper bound of the algorithm’s perfor-
mance. Secondly, a minimalist robust implementation is pro-
posed. Experimental results on the offline RL datasets D4RL
show that the proposed algorithm improves performance
significantly upon both direct policy constraints counter-
part and the weighted behavior cloning method, and out-
performs existing state-of-the-art offline RL algorithms. Our
algorithm implementation makes only minor modifications
to the basic online RL method and introduces few hyper-
parameters.

Preliminaries
RL aims to solve sequential decision problems and is usu-
ally defined in the framework of Markov decision processes
(MDPs). An infinite horizon discount MDP process is de-
fined by (S,A, P, r, ρ, γ) the tuple, where S is the state
space, A is the action space, P is the dynamic transition
function, r is the immediate reward, ρ defines the initial state
distribution, and γ is the discount factor. Policy π : a ∼ π(s)
defines the distribution of actions at a given state. The objec-
tive of the RL agent is to maximize the expected cumulative

discounted reward:

J(π) = Es0∼ρ,at∼π(st),st∼P (·|st,at)[
∞∑
t=1

γtrt(st, at)]. (1)

Behavior cloning is a supervised learning method, which
aims to reproduce behaviors given by expert demonstrations:

πθ := argmin
πθ

D(πθ, πb), (2)

where πθ is the learned policy and πb is expert policy, D is a
divergence metric such as KL divergence, least square error,
etc.

Compared to behavior cloning, offline RL takes advan-
tage of additional reward signals to learn policy and thus
be able to outperform behavior policy. However, policy im-
provement on a static dataset will raise distribution shift, an
unconstrained learning process tends to push the value func-
tion to infinity. One line of offline RL research alleviates
distribution shift by directly constraining the learned policy
to behavior policy, via an additional penalty term attached to
the original RL optimization objective:

πθ := argmax
πθ

Es∼B [Q(S, πθ(s))]− αD(πθ(s), πb(s)),

(3)
where B is the dataset batch, α is a constant weighting fac-
tor that regulates the strength of constraint. Equation 3 is a
combination of RL and imitation learning objectives. Intu-
itively, the first term aims to improve the learned policy so
that it can outperform the behavior policy, and the second
term guarantees the policy improved within a safety region.

A minimalist approach (Fujimoto and Gu 2021) of
the aforementioned method combines TD3 (Fujimoto,
Hoof, and Meger 2018) algorithm and behavior cloning
(TD3+BC), which only adds few modifications to the origi-
nal RL implementation:

πθ := argmax
πθ

Es,a∼B [λQ(S, πθ(s))− (πθ(s)−a)2]. (4)

Despite the simplicity, this algorithm works effectively and
matches the performance of previous state-of-the-art offline
RL algorithms. We build our wPC algorithm on top of this
minimalist approach and regard it as a baseline.

Proposed Framework
In general policy constraint offline RL algorithms, the con-
straint weighting factor is a constant scalar, meaning that all
actions are constrained equally. In order to make the learned
policy only imitate desirable behaviors while get rid of infe-
rior actions, we propose a new offline RL optimization ob-
jective as follows:

πθ := argmax
πθ

Es,a∼B [Q(s, πθ(s))− w(s, a)D(πθ, πb)],

(5)
where w(s, a) is a weighting function depending on state
and action, which can be calculated dynamically during
the policy learning process. A suitable weighting function
should assign greater weights to desirable state-action pairs
and smaller weights to inferior behaviors. Equation 5 defines

9436

Algorithm 1: Weighted Policy Constraints
Initialize: Initialize value networks Qϕ1 , Qϕ2 , Vψ ,
target networks via ϕ1 ← ϕ1, ϕ2 ← ϕ2, actor πθ,
target actor θ ← θ, and replay buffer D

Setting hyper-parameter {c, σ, γ, τ}, α
for i=1 to N do

Sample batch B = (s, a, r, s′, d) from dataset D
a′(s′) = clip(πθ̄(s

′) +
clip(ϵ,−c, c), amin, amax), ϵ ∼ N (0, σ)
y = r + γ(1− d)minϕ1,2 Qϕ̄1,2

(s′, a′(s′))

ϕ1,2 ← argminϕ1,2

1
|B|

∑
B(Qϕ1,2(s, a)− y)2

ψ ← argminψ
1

|B|
∑
B(Vψ(s)− y)2

if i mod policy update freqence == 0 then
w(s, a)← I[Qϕ1

(s, a)− Vψ(s) > 0]
λ← α/Qϕ1

.mean
θ ← argmaxθ

1
|B|

∑
B λQϕ1

(s, πθ(s))−
w(s, a)(πθ(s)− a)2
ϕ1,2 ← (1− τ)ϕ1,2 + τϕ1,2
θ ← (1− τ)θ + τθ

end
end

a general learning framework, this framework can be instan-
tiated by different weight functions, divergence metrics, or
implemented by implicit policy constraints approaches.

For the concrete implementation of this framework, we
prefer to use simpler approaches rather than elaborate ones.
Inspired by (Fujimoto and Gu 2021), we make minimal
modifications on TD3 algorithm, and proposed a weighted
policy constraints optimization objective:

πθ := argmax
πθ

Es,a∼B [λQ(s, πθ(s))− w(s, a)(πθ(s)− a)2],
(6)

w(s, a) = I[Â(s, a) > 0] = I[Q̂ϕ(s, a)− V̂ψ(s) > 0],
(7)

where I is the indicator function, Â(s, a), Q̂ϕ(s, a) and
V̂ψ(s, a) are estimated advantage, state-action value func-
tion, and state value function respectively. The function is
updated via double target network, and the V function fits
the expectation of Q value. In practical implementation, we
approximate the expectation of Q value by sampling and fit
the function to target Q value for stability. This forms the
weighted Policy constraints (wPC) algorithm, the pseudo-
code is presented in Algorithm 1. The source code is avail-
able at https://github.com/qsa-fox/wPC.

It is crucial to calculate the weights on the fly. If us-
ing a fixed binary weight, which means we always employ
behavior cloning on the same part of the dataset, and ap-
ply unconstrained policy iteration on the others, the uncon-
strained policy iterations will push Q values to infinite large
and eventually lead to failure. While dynamically updating
the weights, the overestimated Q values will give these cor-
responding state-action pairs a positive advantage, forcing

them to imitate the behavior policy, and preventing further
error exploitation. Our later experiments confirm this claim
and more details are given in the next section.

The wPC algorithm is a combination of the direct policy
constraints method and weighted behavior cloning. If setting
the weights to be a constant one, it reduces to TD3+BC, if
setting the hyper-parameter λ to zero, then we get a stan-
dalone weighted behavior cloning (wBC) algorithm. Com-
pared to the weighted behavior cloning method, the first item
in Equation 6 encourages the agent to explore actions that
maximize Q values, if we remove this item, there will be no
”exploration” but only imitation left. The standalone wBC
algorithm is similar to several existing weighted behavior
cloning algorithms such as CRR, BAIL, and AWR, but with
a different advantage estimation method. What surprised us
is that the wBC itself performs pretty well, and matches
several prior state-of-the-art methods. We regard wBC as a
strong baseline and compare it with wPC in the experiments
section.

Experiments
The purpose of our experiments is to answer the follow-
ing questions: 1) How does the proposed algorithm perform
compared to existing state-of-the-art offline RL methods?
In this regard, we compare our algorithm with several re-
cently proposed state-of-the-art offline RL methods, includ-
ing TD3+BC (Fujimoto and Gu 2021), CQL (Kumar et al.
2020), OneStep (Brandfonbrener et al. 2021), DT (Chen
et al. 2021), Rvs-R (Emmons et al. 2021) and baseline al-
gorithms such as behavior clone (BC), best trajectories be-
havior clone (10%BC) and our own baseline wBC. 2) Does
wPC algorithm effectively slack the constraints compare to
the constant weight counterpart? We answer this question
by comparing their Q-values during the learning process.
3) How do different policy constraint weight functions in-
fluence the performance? We compare four weight func-
tions: pre-determined static weight function, exponential ad-
vantage weight function, binary advantage weight function
(wPC), and randomized advantage binary weight function.

Performance on Offline RL Benchmarks
D4RL (Fu et al. 2020) is one of the main evaluation environ-
ments for offline RL, which consists of a wide of tasks and
diverse datasets. We compare the performance of our algo-
rithm to several prior offline RL methods (see Table 1). The
results for BC, 10%BC, DT, Rvs-R, OneStep, and CQL are
based on numbers summarized in the recent work by Em-
mons et al (Emmons et al. 2021), all experiments are eval-
uated on the ”-v2” environments since there are major bugs
in the old ”-v0” version.

Our motivation for weighting the policy constraints item
is to combine both advantages of policy constraint methods
and weighted behavior learning methods, the results in Ta-
ble 1 suggest that our algorithm does achieve this purpose.
When taking a closer look at the results, we find wPC im-
proves the baselines most notably on the ”medium-replay”
tasks. This phenomenon supports our argument well. The
”medium” datasets are collected by a partially-trained pol-
icy and the ”medium-replay” datasets consist of recording

9437

Task name (-v2) BC 10%BC DT RvS-R OneStep TD3+BC wBC(ours) CQL wPC(ours)
halfcheetah-random 2.3 2.0 2.2 3.9 6.9 11.7 2.2 18.6 19.6
hopper-random 4.8 4.1 7.5 0.2 7.8 8.6 10.5 9.1 19.9
walker2d-random 1.7 1.7 2.0 7.7 6.1 0.9 12.1 2.5 0.7
halfcheetah-medium 42.6 42.5 42.6 41.6 55.6 48.2 45.6 49.1 53.3
hopper-medium 52.9 56.9 67.6 60.2 83.3 57.7 64.2 64.6 86.5
walker2d-medium 75.3 75.0 74.0 71.7 85.6 83.2 81.0 82.9 86.0
halfcheetah-medium-replay 36.6 40.6 36.6 38.0 42.4 44.6 41.1 47.3 48.3
hopper-medium-replay 18.1 75.9 82.7 73.5 71.0 67.4 86.6 97.8 97.0
walker2d-medium-replay 26.0 62.5 66.6 60.6 71.6 83.7 61.2 86.1 89.9
halfcheetah-medium-expert 55.2 92.9 86.8 92.2 93.5 90.7 92.5 85.8 93.7
hopper-medium-expert 52.5 110.9 107.6 101.7 102.1 106.1 105.8 102.0 95.7
walker2d-medium-expert 107.5 109.0 108.1 106 110.9 110.1 109.9 109.5 110.1
Total 475.5 674.0 684.3 657.3 736.8 712.9 711.4 755.5 800.7

Table 1: Performance of wPC and existing offline RL methods on D4RL gym locomotion-v2 datasets, measured by averaged
normalized scores (bold indicates highest score). Our wPC algorithm outperforms prior methods and receives a highest total
score.

all samples in the replay buffer observed during training
until the policy reaches “medium” level of performance.
Since the ”medium-replay” dataset is a mix-up of “medium”
and inferior “replay” trajectories, direct policy constraints
methods such as TD3+BC constrain the learned policy to
both “medium” quality and low-quality “replay” actions,
and these low quality “replay” actions impair performance.
As for weighted behavior cloning methods such as wBC,
the algorithm filters out ”medium” trajectories and imitates
them. However, these kinds of methods have two disadvan-
tages: the ”replay” samples are completely discarded, which
may also contain valuable information; behaviors on these
”replay” states are unconsidered, which may be arbitrarily
poor. Our proposed weighted policy constraint method can
filter out desirable samples (”medium” samples in ”medium-
replay” tasks) for imitation and also further improve the pol-
icy by making use of these inferior samples (”replay”).

The learning curves for wPC and two baselines (i.e.,
TD3+BC and wBC) are displayed in Figure 2. Curves are
averaged over 5 seeds with shaded areas presenting devia-
tion across seeds. We run 1 million steps for training, evalu-
ate policy every 5 thousand steps, and report the average nor-
malized returns of 10 evaluation episodes as the score. More
experimental details are provided in Appendix A. This com-
parison can also be seemed as an ablation experiment to ver-
ify whether the dynamically calculated weights make sense
compared to a constant weight and whether an additional Q-
learning item improves performance effectively compared to
the standalone weighted behavior cloning methods.

Constraint Strength Comparison via Q-value
Constraining the learned policy to behavior policy uniformly
is over conservative and may be unnecessary, we instead
employ weighted policy constraints and slack these unnec-
essary constraints, making room for policy improvement.
Since the wPC algorithm is supposed to impose fewer con-
straints on policy compared to constant policy constraints
counterparts like TD3+BC, allowing the policy more freely
to pursue a maximum Q-value, thus the Q-values of wPC are
expected to be higher. Figure 3 presents the Q-value learning

curves, wPC reaches a higher number consistently compares
to TD3+BC and wBC, which is well in line with our specu-
lation. For the wBC approach, it can be observed that there
are declining Q-value trends on ”medium-replay” datasets,
it is caused by a minimum operator on double Q, which is
a standard approach in many online RL for addressing Q-
value overestimation. We also try a mean operator on dou-
ble Q in wBC algorithm, but find the Q-value unstable and
reaches a very large number on some datasets.

Comparison of Different Weight Functions
Pre-determined static weight function The first thing we
are curious about is whether it is feasible to utilize a pre-
determined static weight instead of calculating it on the fly.
In the weighted policy constraints framework, a straightfor-
ward idea is to pick out high-quality samples beforehand,
then imitate these desirable samples while improving pol-
icy on others. We experiment on the ‘walker2d-medium-v2’
dataset (Figure 4) by filtering out one-half of the highest re-
turn trajectories as high-quality samples, assigning weight
one on these samples and weight zero to others,

The result suggests that directly employing a pre-
determined weight fails to combat the notorious extrapola-
tion error (Fujimoto, Meger, and Precup 2019), which gives
us a further inspection of the role dynamically updating
weights plays. In the policy iteration steps of wPC algo-
rithm, the overestimated out-of-distribution (OOD) actions
will have a larger Q-value than the average action value (i.e.,
the function value), which will force the policy to imitate
these state-action pairs by assigning them a positive weight,
and prevent the policy to exploit the overestimated Q-value
further. The importance of calculating weight dynamically
is not straightforward at the first glance, but it’s one of the
crucial components for the practical algorithm to learn ef-
fectively.

Exponential advantage weight functions Exponential
advantage weight function is a popular choice in weighted
behavior cloning offline RL, which is formulated as follows:

w(s, a) = exp
Â(s, a)

β
= exp

Q̂ϕ(s, a)− V̂ψ(s)
β

, (8)

9438

Figure 2: Learning curves of wPC (blue) algorithm compares to two baselines TD3+BC (orange) and wBC (green).

where β is a positive temperature hyper-parameter. The ex-
ponential advantage weight function can be regarded as a
moderate version of the binary weight function, which con-
strains the policy to all actions in the dataset but with differ-
ent degrees. Since it can also reduce the strength of con-
straints on inferior actions, we expect a performance im-
provement on top of the constant policy constraint baseline.
The experimental results are presented in Fig 5, which shows
that the exponential advantage weight method outperforms
the constant policy constraint baseline method TD3+BC,
though not as good as the binary weight version wPC.

Randomized weight function The motivation of wPC al-
gorithm is to relieve undesirable constraints on policy while
maintaining necessary ones, but it is difficult to inspect
which actions in the dataset are desirable and whether the
algorithm assigns proper weights to these samples. Since
randomized binary weights can also slack constraints im-
posed on policy, the performance improvement of wPC may
just come from such a random relaxation effect. We shuf-
fle the calculated binary weights on wPC to get a random-
ized weight function, which eliminates preference on sam-
ples while maintaining the relaxation effects. Experimental
results (Fig 5) suggest that the randomized weight func-
tion cannot work well. Though improves the performance
slightly on several datasets compared to the constant policy
constraint baseline, it impairs performance on other datasets,
especially on ”medium-expert” tasks, and gets a low total

score. The performance of different weight functions is sum-
marized in Table 2, the hyper-parameter α is the same for
wPC-e, wPC-rnd and wPC, and for wPC-e, we set hyper-
parameter β=1.

Related Works
Policy constraints are prevalent in offline RL to mitigate dis-
tribution shift. Weighted behavior cloning is another kind of
method to learn policy from a non-expert dataset by selective
imitation. To the best of our knowledge, there is no research
that combines these two lines of work so far.

Policy Constraint
The policy constraints method measures the divergence of
learned policy and behavior policy and appends the diver-
gence as an additional penalty on the policy optimization
objective. Different algorithms consider different divergence
measurements. BEAR (Kumar et al. 2019) proposes sup-
port a set matching approach hat constrains actions to the
dataset support set via maximum mean discrepancy(MMD).
BRAC (Wu, Tucker, and Nachum 2019) utilizes KL diver-
gence constraint on both policy and value function, and per-
forms detailed experiments to validate the effects of differ-
ent divergence metrics, such as KL divergence, MMD and
Wasserstein Distance. TD3+BC (Fujimoto and Gu 2021)
proposes a minimalist offline RL method that directly adds
the behavioral cloning loss to the policy optimization ob-

9439

Figure 3: Q-value curves of wPC (blue), TD3+BC (orange) and wBC (green).

Task name (-v2) TD3+BC wPC-e wPC-rnd wPC
halfcheetah-random 11.7 16.0 15.5 19.6
hopper-random 8.6 9.1 7.9 19.9
walker2d-random 0.9 4.4 0.2 0.7
halfcheetah-medium 48.2 48.6 50.5 53.3
hopper-medium 57.7 67.0 66.5 86.5
walker2d-medium 83.2 83.8 59.3 86.0
halfcheetah-medium-replay 44.6 44.6 47.0 48.3
hopper-medium-replay 67.4 88.9 78.5 97.0
walker2d-medium-replay 83.7 85.6 77.1 89.9
halfcheetah-medium-expert 90.7 91.5 75.0 93.7
hopper-medium-expert 106.1 103.0 59.6 95.7
walker2d-medium-expert 110.1 110.2 103.1 110.1
Total 712.9 752.7 640.2 800.7

Table 2: Performance of different weight functions on D4RL gym datasets, scores are averaged on 5 seeds.

Figure 4: Q-value and performance of a pre-determined
weight policy constraints approach on the ”walk2d-medium-
v2” dataset

jective, and matches the state-of-the-art methods despite its
simplicity. Besides direct policy constraints as mentioned
above, many offline RL algorithms perform implicit policy
constraints to match the dataset distribution. CQL (Kumar
et al. 2020) learns a conservative value function, which im-
plies being constrained to behavior policy. BCQ (Fujimoto,
Meger, and Precup 2019) learns a generative model to im-
plicitly constrain the generated actions to the dataset distri-
bution.

Weighted Imitation Learning
The basic idea of weighted imitation learning is to filter out
inferior state-action pairs and imitate only desirable ones,
which is first utilized in RL to improve RL performance.
Self-imitation learning (Oh et al. 2018) imitates past high-
returned trajectories to speed up learning in hard exploration
problems. AWR (Peng et al. 2019) constructs an advantage
function and to weight the loss of behavior cloning. ABM
(Siegel et al. 2020) and CRR (Wang et al. 2020) construct
different advantage functions from AWR. BAIL (Chen et al.
2020) defines the concept of dataset upper envelope and ap-
plies the upper bound envelope to select best actions for imi-
tating. EVL (Ma et al. 2021) and IQL (Kostrikov et al. 2021)
employ expectile regression to first learn the optimal value
function and then perform behavior cloning based on ad-
vantage weighted regression. Separating the optimal value
function regression and policy learning steps can avoid vis-
iting the OOD actions thus making the learning process not
affected by the distribution shift problem.

Conclusion
We propose a weighted policy constraint offline RL algo-
rithm (wPC), which combines the advantages of policy con-
straint methods and weighted behavior cloning. Our algo-

9440

Figure 5: Learning curves of different policy constraint weight functions, where ”wPC-e” and ”wPC-rnd” represents exponential
wPC and randomized wPC respectively.

rithm slacks constraints on the learned policy effectively and
outperforms prior state-of-the-state offline RL methods on
the D4RL gym datasets, via a minimal modification on the
standard online RL method. Experiments suggest the im-
portance of calculating the weights dynamically. The practi-
cal implementation builds on another minimalist offline RL
approach TD3+BC, and improves the performance while
introducing no additional hyper-parameters. The simplicity
and efficiency make our algorithm a worthwhile attempt for
many real-world offline RL problems.

Experimental Details
The practical wPC algorithm implementation builds on top
of TD3+BC. The only hyper-parameter attached to standard
online RL is the α, which regulates the constraint strength.
We set α to 0.1 for ”medium-expert” datasets and 2.5 for
others. For TD3+BC, we follow the original implementa-
tion, keep it for all datasets and find it works better than
other settings. There are no additional hyper-parameters to
set for wBC, since it only has the standalone weighted be-
havior cloning item. Other hyper-parameters for TD3 com-
ponents are presented in Table 3, and the neural network ar-
chitectures are presented in Table 4. For hyperparameters
choice, we determine α using grid search in [0.1, 1.0, 2.5,
5.0], the value 2.5 refers to TD3+BC. For the wPC-e exper-
iments, we used β=1.0, which is selected using grid search

in [0.1, 1.0, 10.0].

Hyperparameter Value
Exploitation noise 0.1

Batch size 256
Discount 0.99

Tau 0.005
Policy noise 0.2
Noise clip 0.5

Policy updating frequency 2
Policy learning rate 3e-4

Q network learning rate 3e-4
V network learning rate 3e-4

Table 3: Hyperparameters for TD3 component.

Neural network Hidden size Activation function
Policy network [256, 256] ReLU, Tanh

Q network [256, 256] ReLU
V network [256, 256] ReLU

Table 4: Neural network architectures.

9441

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grant U19A2083.

References
Andrychowicz, O. M.; Baker, B.; Chociej, M.; Jozefowicz,
R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Pow-
ell, G.; Ray, A.; et al. 2020. Learning dexterous in-hand ma-
nipulation. The International Journal of Robotics Research,
39(1): 3–20.
Brandfonbrener, D.; Whitney, W.; Ranganath, R.; and
Bruna, J. 2021. Offline rl without off-policy evaluation.
Advances in Neural Information Processing Systems, 34:
4933–4946.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems, 34: 15084–15097.
Chen, X.; Zhou, Z.; Wang, Z.; Wang, C.; Wu, Y.; and Ross,
K. 2020. BAIL: Best-action imitation learning for batch
deep reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33: 18353–18363.
Emmons, S.; Eysenbach, B.; Kostrikov, I.; and Levine, S.
2021. RvS: What is Essential for Offline RL via Supervised
Learning? arXiv preprint arXiv:2112.10751.
Fan, T.; Cheng, X.; Pan, J.; Manocha, D.; and Yang, R. 2018.
Crowdmove: Autonomous mapless navigation in crowded
scenarios. arXiv preprint arXiv:1807.07870.
Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219.
Fujimoto, S.; and Gu, S. S. 2021. A minimalist approach to
offline reinforcement learning. Advances in neural informa-
tion processing systems, 34: 20132–20145.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In
International conference on machine learning, 1587–1596.
PMLR.
Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. In Interna-
tional conference on machine learning, 2052–2062. PMLR.
Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsou-
nis, V.; Koltun, V.; and Hutter, M. 2019. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26): eaau5872.
Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.;
Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Van-
houcke, V.; et al. 2018. Scalable deep reinforcement learn-
ing for vision-based robotic manipulation. In Conference on
Robot Learning, 651–673. PMLR.
Kostrikov, I.; Fergus, R.; Tompson, J.; and Nachum, O.
2021. Offline reinforcement learning with fisher divergence
critic regularization. In International Conference on Ma-
chine Learning, 5774–5783. PMLR.

Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
Stabilizing off-policy q-learning via bootstrapping error re-
duction. Advances in Neural Information Processing Sys-
tems, 32.
Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020.
Conservative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191.
Ma, X.; Yang, Y.; Hu, H.; Liu, Q.; Yang, J.; Zhang, C.;
Zhao, Q.; and Liang, B. 2021. Offline Reinforcement Learn-
ing with Value-based Episodic Memory. arXiv preprint
arXiv:2110.09796.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Oh, J.; Guo, Y.; Singh, S.; and Lee, H. 2018. Self-imitation
learning. In International Conference on Machine Learning,
3878–3887. PMLR.
Peng, X. B.; Kumar, A.; Zhang, G.; and Levine, S.
2019. Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Siegel, N. Y.; Springenberg, J. T.; Berkenkamp, F.; Abdol-
maleki, A.; Neunert, M.; Lampe, T.; Hafner, R.; Heess, N.;
and Riedmiller, M. 2020. Keep doing what worked: Be-
havioral modelling priors for offline reinforcement learning.
arXiv preprint arXiv:2002.08396.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wang, Z.; Novikov, A.; Zolna, K.; Merel, J. S.; Springen-
berg, J. T.; Reed, S. E.; Shahriari, B.; Siegel, N.; Gulcehre,
C.; Heess, N.; et al. 2020. Critic regularized regression.
Advances in Neural Information Processing Systems, 33:
7768–7778.
Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior
regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361.

9442

Yang, Y.; Ma, X.; Chenghao, L.; Zheng, Z.; Zhang, Q.;
Huang, G.; Yang, J.; and Zhao, Q. 2021. Believe what you
see: Implicit constraint approach for offline multi-agent re-
inforcement learning. Advances in Neural Information Pro-
cessing Systems, 34: 10299–10312.

9443

