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Abstract
Despite the broad application of deep reinforcement learn-
ing (RL), transferring and adapting the policy to unseen
but similar environments is still a significant challenge. Re-
cently, the language-conditioned policy is proposed to fa-
cilitate policy transfer through learning the joint representa-
tion of observation and text that catches the compact and in-
variant information across environments. Existing studies of
language-conditioned RL methods often learn the joint rep-
resentation as a simple latent layer for the given instances
(episode-specific observation and text), which inevitably in-
cludes noisy or irrelevant information and cause spurious cor-
relations that are dependent on instances, thus hurting gener-
alization performance and training efficiency. To address this
issue, we propose a conceptual reinforcement learning (CRL)
framework to learn the concept-like joint representation for
language-conditioned policy. The key insight is that concepts
are compact and invariant representations in human cogni-
tion through extracting similarities from numerous instances
in real-world. In CRL, we propose a multi-level attention en-
coder and two mutual information constraints for learning
compact and invariant concepts. Verified in two challenging
environments, RTFM and Messenger, CRL significantly im-
proves the training efficiency (up to 70%) and generalization
ability (up to 30%) to the new environment dynamics.

Introduction
Deep reinforcement learning has been successfully applied
in various areas such as video games (Mnih et al. 2013) and
robot control (Lillicrap et al. 2016). However, it is still a
significant challenge to transfer and adapt the policy to un-
seen but similar environments (Kirk et al. 2021). Recently,
researchers propose language-conditioned policy that adopts
the language as an intermediate information channel to fa-
cilitate policy transfer (Narasimhan et al. 2018; Oh et al.
2017). Based on extra-textual descriptions that specify en-
vironment dynamics, the language-conditioned policy can
learn the connection between training and testing environ-
ments to promote generalization ability.

The key challenge of language-conditioned policy is how
to learn the joint representation of observation and textual
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description. The joint representation should catch the com-
pact and invariant information about the actual cause of the
reward that is shared in various training environments, so
that the policy can generalize to unseen environments. Exist-
ing studies of language-conditioned reinforcement learning
methods often implicitly learn the joint representation as a
simple latent layer for the given instances (episode-specific
observation and text), which cannot guarantee to catch the
invariant factors across different instances (Zhong et al.
2020; Hanjie et al. 2021; Branavan et al. 2011; Narasimhan
et al. 2018). Such a strategy inevitably includes noisy or ir-
relevant information and causes spurious correlations that
are dependent on instances, thus hurting generalization per-
formance and training efficiency (Zhong et al. 2021).

Inspired by the human activities that extract the similar-
ities across numerous instances in the real-world to form
“concept” for better understanding the world from the ab-
stract perspective and solving similar tasks efficiently, we
propose to explicitly learn the concept-like representation
for language-conditioned policy. Concretely, we mainly con-
sider two important features for such representation, invari-
ance and compactness, which boost both transfer perfor-
mance and training efficiency. Based on the invariance of
concepts, policies can be quickly transferred between sim-
ilar environments. Meanwhile, based on the abstraction of
concepts, the learned joint representation is more compact,
and thus the complexity of policies can be reduced to im-
prove training efficiency. For example, when playing video
games, we can treat various monster instances with different
names or appearances as the same concept “enemy”, and
handle them in a similar policy such as attacking them to get
drops, thereby adapting to an unseen environment quickly.

Based on the above analyses, we propose a concep-
tual reinforcement learning (CRL) framework which learns
concept-based representation (referred as concepts) for
language-conditioned policy to promote sample efficiency
and generalization performance in unseen testing environ-
ments. In CRL, we propose a multi-level attention concept
encoder and two mutual information constraints for learning
concepts. Specifically, in the concept encoder, each level of
the attention module generates one concept, and the gener-
ated concepts participate in subsequent levels of the atten-
tion module. All outputs of the concept encoder are con-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9426



catenated as the final concept-based representation. Such a
mechanism simulates the multi-step reasoning process and
guarantees that the encoder can extract concept-related in-
formation from text and observation. More importantly, we
augment two mutual information constraints to guarantee
the invariance and compactness of the learned concepts,
which is the major difference from latent representation
learned implicitly by existing methods. We minimize mu-
tual information between concepts and entities of observa-
tion in different environments, which guides the concepts to
catch the shared properties and keep them invariant across
different tasks. Besides, we leverage an information bottle-
neck between the textual description and concepts to ensure
the compactness of the concepts. Finally, we train the policy
upon the generated concept-based representation to drive the
learning of concepts by the RL objective. In conclusion, the
concept-based representation learned by CRL has three evi-
dent advantages, invariance, compactness, and better inter-
pretability. First, the invariance significantly promotes the
generalization performance of the policy in unseen environ-
ments. Second, the compactness makes the training process
of the policy more efficient. Third, the language-conditioned
policy constructed upon concepts has higher interpretability
to make the policy easier to employ and understand.

We verify CRL on two challenge environments with tex-
tual descriptions, RTFM (Zhong et al. 2020) and Messen-
ger (Hanjie et al. 2021), both of which are benchmarks to
evaluate the generalization ability of language-conditioned
policy to new environment dynamics. The former focus on
multi-step reasoning across observation and textual descrip-
tion, while the latter focus on Out-Of-Distribution (OOD)
settings of test environments. Compared with state-of-the-
art methods, the proposed CRL gains significant generaliza-
tion performance (up to 30%) and training efficiency promo-
tion (up to 70%) on both RTFM and Messenger.

Background
In this paper, we focused on conceptual reinforcement learn-
ing in the language-conditioned policy that applied to the
environment with textual description. The text in such envi-
ronments specifies the relation of entities, goals, and some
environment dynamics, and it is regenerated every episode
to initialize different but similar environments. For exam-
ple, Read To Fight Monsters (RTFM) is a well-known envi-
ronment where the agent needs reading and multi-step rela-
tion reasoning to understand the relation between tools and
monsters. Compared with other RL environments, the input
of the policy in such environments includes two parts, the
world observation o and the additional textual description t:

• World observation o ∈ Rh×w×d: h and w represent
the height and width of the grid world. A d-word sym-
bolic name represents the content in the grid. Some non-
overlapping entities e ∈ Rn×d are scatted in the grid
world, including the agent and other interactive objects.
The entities in o except the agent are sampled from an in-
visible large candidate set and thus may change in every
episode. In different episodes, the property of the same
entities is unfixed and needs to be inferred from the tex-

tual description of the current episode. Figure 2 shows an
example of world observation. There are five entities in
o, including the agent, monsters, and tools.

• Text t ∈ Rnumsent×lsent×dt : The textual description of
the environment contains less than numsent sentences,
and each sentence consists of less than lsent tokens. dt is
the embedding dimension of each token. The text keeps
fixed in an episode but changes between episodes. t
describes the goal, the entities’ property, and the relation
between entities. Figure 2 shows an example of textual
description in the RTFM environment. “The Star
Alliance team is made up of beetle,
jackal, and shaman. Defeat the Star
Alliance.” explains that the entity “shaman” is the
enemy, and the goal of the agent is to defeat it.

The language-conditioned policy π(a|o, t) takes world
observation o and text t as inputs and outputs an action a. As
the text t described some dynamics of the environment and
changes every episode, the reward function rπ(o, t, a, o

′)
also takes text t as input. The target is to find an optimal
policy π to maximize the accumulated rewards Rπ(o, t) =
E[

∑∞
n=0 γ

nr(ot+n, t, at, ot+n+1)|ot = o]. Existing meth-
ods implicitly learn the joint representation as a simple latent
layer for the given instances (episode-specific observation
and text), which cannot guarantee catching the invariant fac-
tors across different instances. Our method (CRL) explicitly
learned invariant compact concepts for policy to promote the
policy’s generalization performance and training efficiency.

The Conceptual Reinforcement Learning
(CRL) Framework

Unsupervised Learning 
P(c|t, entity)

… the mage … the enemy …

Text t

Policy Reward

Existing methods

Policy Reward

Conceptual
Reinforcement

Learning
(CRL)

concepts:
enemy

…

Mage

…

entities:

World 
observation 

o

Text t

entities

World 
observation 

o

Figure 1: Different modeling of CRL and existing language-
conditioned policy. CRL additionally learns the concept en-
coder P (c|t, entity) compared with existing methods. Tak-
ing a certain episode as an example, the encoder computes
the concept of the entity “Mage” as “enemy” through rea-
soning in the text. The concepts are shared properties of
different entities in various episodes and are fed into the
language-conditioned policy as a joint representation.
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Figure 2: Overview of Conceptual Reinforcement Learning (CRL) framework. Take an example from RTFM. CRL gets inputs
including the world observation o and the text t. The multi-level concept encoder of CRL leverage entities ei to conduct multiple
attention over the text t to get ei’s concepts ci = {ci1, ..., cim}. CRL leverages two mutual information constraints to guarantee
the two advantages of produced concepts, where LCLUB for invariance and LV IB for compactness. All entities’ concepts are
combined to form the new concept-based representation oc for the language-conditioned policy.

In this section, we introduce the Conceptual Reinforce-
ment Learning (CRL) framework, aiming to learn the
concept-like representation with both advantages of invari-
ance and compactness across different scenarios for better
generalization. Invariance enables the concepts can general-
ized to unseen similar environments, and compactness pro-
motes the training efficiency of the policy. To achieve these
two goals, CRL includes the multi-level attention module as
the concept encoder, which simulates the multi-step reason-
ing process to extract concept-related information from tex-
tual description and observation. Meanwhile, CRL leverages
two mutual information constraints to guarantee the invari-
ance and compactness of the learned concepts.

Concept Encoder
Motivation We are inspired that humans can extract sim-
ilarities from numerous instances in the real-world to form
concepts, which are compact and invariant representations.
We propose introducing concepts as the representation for
language-conditioned policy to make the policy be trained
efficiently and generalize to similar scenarios. The analysis
of the modeling for the language-conditioned policy of the
existing methods and our method that introduce concepts as
intermediate representation is as follows.

Existing methods: Figure 1 shows the modeling of ex-
isting methods optimizing policy for higher reward relies on
all entities and text. However, entities and the text change ev-
ery episode and may have distribution shifts on unseen simi-
lar scenarios. For example, the role assignments to the same
entity are not overlapped between training and test games
in RTFM and Messenger. The implicitly learned joint rep-
resentation inevitably catches irrelevant information about
entities and further causes spurious correlations.

Concept Learning: As shown in Figure 1, the CRL
framework introduces an explicitly learned representation,

called concepts, between inputs and the policy. Concepts (c)
are abstractions of entities’ shared properties inferred from
the interactive information of text and entities. For example,
there is a role concept in Messenger. Every entity should be
a sender, receiver, or decoy regardless of its name or move-
ment patterns. We model concepts P (c|t, entity) through an
unsupervised learning encoder and replace the world obser-
vation o as a concept-based world representation consisting
of learned concepts. As a result, the language-conditioned
policy only relies on concepts, which are shared properties
between entities that the agent needs to understand and ex-
ploit for solving tasks. Concepts have two evident advan-
tages, invariance and compactness. Invariance means that
concepts are an invariant representation for entities not only
across episodes but also in train or test scenarios, making
the policy generalize well in similar unseen environments.
Besides, compared with the large entities candidate set and
complex textual description, the concept is a compact repre-
sentation, which makes the data utilization of policy training
much more efficient.

Definitions In each game episode, the environment offers
the world observation o ∈ Rh×w×d, which includes n en-
tities e = {e1, . . . , en} ∈ Rn×d, and a textual descrip-
tion t ∈ Rnumsent×lsent×dt . We assume that there are m
kinds of invisible concept variables C = {C1, C2, . . . , Cm}
representing the shared properties of entities. Each entity
ei can be labeled as concatenation of concept values ci =
{ci1 . . . , cim} ∈ Rm×dc , where dc is the embedding dimen-
sion of a single concept. The concept encoder is to model the
distribution of each entity’s concepts p(ci|ei, t) given the en-
tity ei and text t. The concepts generated by the concept en-
coder may not be identical to the ground truth concept since
we learn the encoder in an unsupervised way, but the gener-
ated concepts have the same advantages as actual concepts,
which are invariant and compact.
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Architecture The overall design of the CRL framework
is replacing ei in the world observation o as derived con-
cept values ci to construct the concepts-based observation
for the policy training. As the most important part of the
CRL framework, the multi-level attention concept encoder
fθ(ei, t) takes in the entity embedding ei ∈ Rde and text t
as input and output concepts ci. The dotted box in Figure
2 shows the concept encoder. The concept encoder contains
m Attention modules, and each module outputs a single con-
cept cij ∈ Rdc . These modules produce both basic concepts
inferred by raw text information and complex concepts de-
rived from the multi-step reasoning process for the underly-
ing information in the text and basic concepts.

Specifically, the first Attention module could generate
concepts inferred by direct information in the text. For
example, in Messenger, different entities have different
roles, and the text claims this information explicitly. “the
thing that is not able to move is the
mage who possesses the enemy that is
deadly” points out that the role concept of entity “mage”
is “enemy”. In this Attention module, we compute query
q1 from the entity embedding ei and the key k1 and value
v1 from the text t as follows:

q1 =MLP (ei)

k1 =GRUkey1(t)

v1 =GRUval1(t).

(1)

And then, we get the direct information of the concept ci1
through the standard Attention module as shown in Figure 2.
The following IB module is a Variational Information Bot-
tleneck encoder for the concept ci1, aiming to improve the
compactness of concepts and will be explained in the next
section.

The subsequent Attention modules have an extra Self-
Attention model to simulate the multi-step reasoning
process to generate complex concepts, considering the
acquisition of some complex concepts needs not only raw
text information but also the preceding concepts. For ex-
ample, in RTFM, “Fire monsters are defeated
by fanatical and shimmering weapons.”
demonstrates the relation between “fire” entities and
“fanatical” entities. However, to reason whether the
entity “fanatical sword” is the concept “useful
tool”, we need to know the concept of the “fire” entity
is an “enemy” or not. So we need to build a multi-level
Attention mechanism that concatenates entities with dis-
covered shallow concepts as the query to discover the
deep concepts. As shown in Figure 2, the query tensors
in the following Attention module are obtained through a
Self-Attention mechanism on the concatenation of all entity
embeddings and their preceding concepts:

qj =SelfAttn(Concat(ei, ci1, . . . , ci,j−1))

kj =GRUkeyj
(t)

vj =GRUvalj (t), where 1 < j <= m

(2)

Finally, we concatenate all concepts together to get ci, and
replace all ei, i ∈ {0, . . . , n} in the world observation o with

their concepts to construct a new concept-based world repre-
sentation oc ∈ Rh×w×dc . We use oc rather than the original
world observation o and text t as the representation of the
environment state to train the policy π(a|oc).

Mutual Information Constraints
The model architecture of CRL introduced in the last sec-
tion can obtain an effective concept representation during
concept-based policy training. To guarantee the two impor-
tant features, invariance and compactness, of produced con-
cepts, we add extra constraints on the concept encoder fθ
during policy training. Specifically, we consider the invari-
ance and compactness properties from the view of informa-
tion theory, detailed as follows.

Invariance Constraint As the entities change every
episode and the properties of the same entity inferred
from the text of different episodes may differ, the concepts
should only reflect the shared properties across episodes and
not contain information about the episode-specific entities.
Therefore, although the concepts are inferred from entities
and the text, we need to make the marginal distributions of
produced concepts and entities independent to ensure invari-
ance. As a result, the policy constructed upon the concepts
would focus on abstract properties rather than information
about episode-specific entities, so it can eliminate spurious
correlations. We minimize the mutual information (MI), a
fundamental measure of the dependence between two ran-
dom variables, to force the learned concept independent of
the entity. Mathematically, the MI between two variables X
and Y is:

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
(3)

We adopt CLUB (Cheng et al. 2020) to minimize the upper
bound of mutual information I(e; c) between the entities e
and its concept c as shown in Figure 2. With N samples
{ei, ci}i=1→N , the upper bound of MI estimated by CLUB
is:

ICLUB(e; c) =

1

N2

N∑
i=1

N∑
j=1

[log q(ci|ei)− log q(cj |ei)] ,
(4)

where q(ci|ei) is a multi-layer MLP predictor.We can mini-
mize mutual information between entities and their concepts
through the following extra loss:

LCLUB(θ) =
n∑

i=1

ICLUB(ci; ei)

=

n∑
i=1

ICLUB(fθ(ei, t); ei),

(5)

where n is the number of entities in the world observation o.

Compactness Constraint The RL training process im-
plicitly ensures the effectiveness of concepts since the agent
solves tasks using concept-based observation. We propose
an additional compactness constraint to eliminate noisy or
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irrelevant information during concept encoding, so that only
necessary information for the task is included in the con-
cepts. We adopt an information bottleneck (IB) to compress
the concepts, a technique in the information theory to com-
press the noise information from the input variable X and
retain the representative information for the output variable
Y in the middle variable Z. The mutual information objec-
tive of IB is as follows:

min
p(z|x)

I(X;Z)− βI(Z;Y ) (6)

In our work, as the target of retaining useful information is
implicitly done through the RL objective, we only utilize the
first term in equation 6 to compress irrelevant information
when encoding text t to the concept c. We adopt Deep Vari-
ational Information Bottleneck (Deep VIB) to minimize the
upper bound of I(c; t) as shown in Figure 2. In practice, we
implement the encoder head (IB in Figure 2) of fθ with the
form of N (cij |µdc(t′ij), σ

dc(t′ij)), representing the Gaus-
sian distribution of the j-th concept of ei. And t′ij is the out-
put of the j-th Attention module containing the information
of the concept, µdc and σdc are MLP layers to output distri-
bution parameters with dc dimensions. Then we can sample
a noise ϵ from N (0, 1) to compute the concept cij using the
reparameterization trick. We minimize the Kullback-Leibler
divergence between encoder head pθ(cij |t′ij) and Normal
distribution N (0, 1) to compress the noise and irrelevant in-
formation:

LV IB(θ) =
n∑

i=1

m∑
j=1

Eϵ∼p(ϵ)

[
KL(pθ(cij |t′ij),N (0, 1))

]
.

(7)
In summary, to keep the invariance and compactness of

the concept, we add extra mutual information constraints
LCLUB and LV IB on the concept encoder when training
policy. Concretely, these two constraints can be easily inte-
grated into the standard RL method. The new objective is:

LCRL(θ) = LRL(θ) + α1LCLUB(θ) + α2LV IB(θ), (8)

where LRL(θ) is the original RL objective, and coefficients
α1, α2 are hyperparameters. (Details are in Appendix B).

Experimental Setup
Environments
To verify the performance of CRL, we evaluate the frame-
work on two challenging benchmarks, RTFM and Messen-
ger. RTFM (Zhong et al. 2020) is a game that the agent
needs to Read Text to obtain the correct tool in the grid
world and then Fight the correct Monster. The key challenge
of RTFM is that the agent needs multi-step reasoning to in-
terpret the text. RTFM has a train set of environment dy-
namics (including entities and role assignments) and an in-
dependently identically distribution (i.i.d.) held-out test set.
The environment also has four kinds of complexity settings,
including base 6×6 grids setting (6×6), describing entities
in the form of many-to-one group assignments to make dis-
ambiguation more difficult (group), allowing moving mon-
sters that hunt down the player (dyna) and using natural

language descriptions (nl). Because of the high complexity,
the environment also offers four curriculum stages. Messen-
ger (Hanjie et al. 2021) is also a grid environment (10×10).
The agent must extract the role information of the entities
from the text manual to acquire a message from the sender
and deliver it to the receiver. Unlike RTFM, Messenger’s key
challenge is the out-of-distribution (OOD) problem. The en-
tities and role assignments are no-repeat and have distribu-
tion shifts between train and test scenarios, which may lead
to spurious correlations. The Messenger offers three diffi-
culty stages, including only message acquiring or delivering
(S1), both acquiring and delivering (S2), and adding decoy
entities and irrelevant descriptions (S3).

The details of the environment and the CRL implementa-
tion are shown in Appendix A and B.

Baselines
We compare CRL with two state-of-art methods, txt2π on
RTFM and EMMA on Messenger, respectively.

txt2π (Zhong et al. 2020) exploits the prior knowledge
of the observation structure in RTFM, which builds the rep-
resentation by capturing the three-way interactions between
the goal description, the environment dynamic description,
and the world observation. txt2π outperforms the language-
conditioned CNNs and the Feature-wise linear modulation
(FiLM) on RTFM. EMMA (Entity Mapper with Multi-
modal Attention) (Hanjie et al. 2021) uses the entity-
conditioned attention module to select relevant information
in the text to generate the representation. It achieves the best
performance on Messenger compared with other baselines.

Results
We first compare the performance of CRL and the state-of-
the-art in RTFM and Messenger to show its effectiveness.
Then, we conduct ablation studies to show the influential im-
pact of the mutual information constraints and pre-defined
concepts number during concept generation. At last, we vi-
sualize the concept embeddings in both environments to in-
tuitively show what CRL learns.

Transfer in RTFM
We compare the transfer performance of CRL and txt2π in
the RTFM environment, as shown in Table 1. CRL outper-
forms txt2π in terms of both the transfer performance and
training efficiency. 1). Transfer performance: CRL outper-
forms txt2π on the base 6 × 6 environment and all variant
environments when transferred from the base 6× 6. The re-
sults show that after training on the 6×6 environment, CRL
can successfully transfer the learned policy to all variant en-
vironments and get up to 46% promotion on win rate. In
comparison, txt2π needs four curriculum stages to achieve
a similar win rate (details in Appendix A). This is because
CRL learned invariant concepts in the base environment that
can be reused in other environments quickly. 2). Training
efficiency: Besides, CRL also gets large training efficiency
promotions. CRL saves 70% training steps (100 million to
30 million) on 6×6 and 40% on other transfer environments
(50 million to 30 million). The learning curves in Figure 3
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Transfer
from Method Transfer to Training

Steps

6× 6
6× 6
dyna

6× 6
groups

6× 6
nl

6× 6
dyna

groups

6× 6
groups
nl

6× 6
dyna
nl

6× 6
dyna
groups
nl

random txt2π 84± 20 26± 7 25± 3 45± 6 23± 2 25± 3 23± 2 23± 2 100M
CRL 93± 3 36± 10 33± 10 38± 4 17± 2 20± 2 17± 3 16± 3 30M(↓ 70%)

6× 6
txt2π 85± 9 82± 19 78± 24 64± 12 52± 13 53± 18 40± 8 50M
CRL 89± 9 96± 3 97± 2 85± 1 87± 2 85± 4 86± 3 30M(↓ 40%)

Table 1: RTFM results in different settings. All results get from 5 random seeds.

Method Train Test (OOD) Training
Steps

S1 EMMA 98± 2.1 85± 1.4 30M
CRL 98± 1 88± 2.5 30M

S2 EMMA 96± 2 45± 12 30M
CRL 98± 2 76± 5 30M

S3 EMMA 19± 2.9 10± 0.8 30M
CRL 43± 5 32± 1.9 30M

Table 2: Messenger results in different stages. All results get
from 5 random seeds.

show the efficiency comparison intuitively. The reason for
efficiency promotion is the compactness of the concept. In
conclusion, benefiting from the invariance and compactness
of the concept, the policy learned through CRL can transfer
to similar new environments efficiently.

Zero-Shot Generalization in Messenger
Different from the i.i.d setting of RTFM, there are out-of-
distribution (OOD) problems between the training and test
environments in Messenger. We compare the training per-
formance and zero-shot generalization performance on un-
seen test games. 1). Zero-short generalization performance:
Table 2 shows that CRL outperforms EMMA on the more
challenging stages (S2 and S3), including the higher train-
ing win rate (up to 20% in S3) and lower generalization gap
(up to 30% in S2). The results show that the invariant con-
cepts can mitigate spurious correlations in OOD generaliza-
tion scenarios. 2). Training efficiency: CRL also promotes
the training efficiency on Messenger (see Figure 4), but the
lift is less than that in RTFM.

Ablation Study
Mutual information (MI) constraints: To show the sig-
nificant effect of the MI constraints when learning concepts,
we verified the performance of the ablated variant CRL w/o
MI. CRL w/o MI shares the same architecture with CRL, but
without the MI constraints. Figures 3 and 4 show the com-
parison of learning curves. The results show that the perfor-
mance of CRL with MI constraints outperforms the previous
method apparently, especially in generalization ability. In
contrast, the ablation variant degenerates to other baselines
that implicitly learn the latent joint representation. The ab-
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Figure 3: Ablation results in RTFM
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Figure 4: Ablation results in Messenger. The solid and dot-
ted curves represent training and test results.

lation experiments proved the importance of MI constraints
when learning compact and invariant concepts (The ablation
study of separate MI constraints refers to Appendix C).

Pre-defined concept number: We also investigate the in-
fluence of the pre-defined concept number m on CRL. Con-
sidering the environment RTFM, whose ground truth m is 2,
we test m = 1 to m = 4, and compare the performance in
RTFM-base and transfer performance on the hardest RTFM-
final respectively. Figure 5 shows that when the pre-defined
m is larger than the ground truth value, the efficiency is
slightly influenced, while the asymptotic performance is sta-
ble. The reason is that the encoder model has more parame-
ters and becomes harder to train, but the MI constraints can
guarantee the learned concepts are compact and invariant.
When the pre-defined m is smaller than the ground truth,
which makes the encoder cannot exact concept-related in-
formation, the performance is affected obviously. The above
results inspired the user to set a larger concept number m.
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Figure 5: Ablation study of pre-defined concept number (m)
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Figure 6: Visual results of concept vectors in RTFM

Visual Results of the Concept
To intuitively show concepts learned by CRL, we represent
the TSNE (t-Distributed Stochastic Neighbor Embedding)
results of learned concept vectors in Figures 6.Specifically,
we randomly initialize the environments and save the con-
cept vectors of the entities generated by CRL, then compute
the TSNE results of 1000 concept vectors. RTFM has two
concepts from the human view, and each has two values:
goal/decoy monster and useful/useless tools. Figure 6 shows
the TSNE results colored by concept labels (unavailable for
the policy) and entity IDs, respectively. Results show that the
learned concept vectors separate into 4 clusters correspond-
ing to four concept values. Furthermore, the same concept
of different entities aggregates to the same cluster. The phe-
nomenon implies that using entity straightforwardly as the
observation for policy training may introduce irrelevant in-
formation and cause spurious correlations, while produced
concepts by CRL can keep invariant across different entities
of various scenarios to address this issue.

Related Works
Language-conditioned Reinforcement Learning: Re-
cently, there have been many works combining rein-
forcement learning with language and learning language-
conditioned policy. The most related field is reading to
act, for example, RTFM (Zhong et al. 2020) and Messen-
ger (Hanjie et al. 2021). The agent is additionally provided
information of the environment dynamics through text. Pre-
vious methods often implicitly learn the joint representation
of observation and text when optimizing the policy (Hanjie
et al. 2021; Narasimhan et al. 2018; Zhong et al. 2020, 2021;
Branavan et al. 2011). The implicit joint representation will

inevitably include noisy or irrelevant information and cause
spurious correlations. Our method explicitly learns the in-
variant compact representation to address this issue.

Besides reading to act, there are two kinds of scenarios,
instruction following and text game. Instruction following
means that agents need to solve different tasks specified by
high-level instructions in the environment (Hermann et al.
2017; Chaplot et al. 2018; Bahdanau et al. 2019). Different
instruction indicates different reward functions in the same
environment dynamic, which limits the generalization abil-
ity of the agent across different dynamics. Traditional meth-
ods require prior knowledge to model the relation between
instructions and observations (Andreas et al. 2015). More
recently, some works directly embed both the observation
and instruction as the joint input of the policy and train the
policy under the reinforcement learning paradigm (Mei et al.
2016; Misra et al. 2017; Goyal et al. 2019). Text game (Os-
borne et al. 2021) environments are transformed from Inter-
active Fiction Games where the agent must interact with the
environment through textual observation and action, such
as TextWorld (Côté et al. 2018) and Jericho (Hausknecht
et al. 2020). The language-conditioned RL methods in the
text game focus on exploration (Madotto et al. 2020; Am-
manabrolu et al. 2020), action space reduction (Guo et al.
2020; Jain et al. 2020; Yao et al. 2020), and reward shaping
(Murugesan et al. 2021; Adolphs et al. 2020).

Invariant Representation Learning Learning invariant
representation that can generalize across environments is
critical to the application of RL algorithms (Arjovsky et al.
2019; Zhang et al. 2020). Some works leverage inductive bi-
ases, for example, object-oriented architecture (Kansky et al.
2017; Yi et al. 2022) and disentangled representation (Hig-
gins et al. 2017; Peng et al. 2022). Some methods want to
eliminate misleading information like temporal information
(Raileanu et al. 2021; Guo et al. 2021) or background (Wang
et al. 2021). Other methods define the metric of invariance
for optimizing the representation, like Bisimulation metrics
(Zhang et al. 2021) and policy similarity (Agarwal et al.
2021). The above invariant representation Learning meth-
ods cannot work for language-condition policy. Our method
combines the attention-based reasoning module and mutual
information constraints to learn an invariant and compact
representation for language-conditioned policy.

Conclusion

The language-conditioned policy is proposed to facilitate
policy transfer through learning the joint representation of
observation and text that catches the compact and invari-
ant information across various environments. We propose
a conceptual reinforcement learning (CRL) framework to
learn the joint representation with both advantages of invari-
ance and compactness for language-conditioned policy. Ver-
ified in two challenging environments, RTFM and Messen-
ger, CRL significantly improves the training efficiency and
generalization ability to the new environment dynamics. As
concept-like representation is valuable for general policy, we
hope to broaden the application scope of CRL in the future.
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