
Balanced Column-Wise Block Pruning for Maximizing GPU Parallelism
Cheonjun Park1, Mincheol Park1,2, Hyun Jae Oh3, Minkyu Kim1,

Myung Kuk Yoon4, Suhyun Kim2, and Won Woo Ro1*
1Yonsei University

2Korea Institute of Science and Technology
3Samsung Electronics

4Ewha Womans University
{cheonjun.park, mincheol.park, minkyu.kim, wro}@yonsei.ac.kr, hyunjae.oh@samsung.com,

myungkuk.yoon@ewha.ac.kr, dr.suhyun.kim@gmail.com

Abstract
Pruning has been an effective solution to reduce the number
of computations and the memory requirement in deep learn-
ing. The pruning unit plays an important role in exploiting the
GPU resources efficiently. The filter is proposed as a simple
pruning unit of structured pruning. However, since the filter
is quite large as pruning unit, the accuracy drop is consider-
able with a high pruning ratio. GPU rearranges the weight
and input tensors into tiles (blocks) for efficient computa-
tion. To fully utilize GPU resources, this tile structure should
be considered, which is the goal of block pruning. However,
previous block pruning prunes both row vectors and column
vectors. Pruning of row vectors in a tile corresponds to fil-
ter pruning, and it also interferes with column-wise block
pruning of the following layer. In contrast, column vectors
are much smaller than row vectors and can achieve lower ac-
curacy drop. Additionally, if the pruning ratio for each tile
is different, GPU utilization can be limited by imbalanced
workloads by irregular-sized blocks. The same pruning ra-
tio for the weight tiles processed in parallel enables the actual
inference process to fully utilize the resources without idle
time. This paper proposes balanced column-wise block prun-
ing, named BCBP, to satisfy two conditions: the column-wise
minimal size of the pruning unit and balanced workloads. We
demonstrate that BCBP is superior to previous pruning meth-
ods through comprehensive experiments.

Introduction
To achieve higher accuracy in deep neural networks
(DNNs), recent studies proposed the use of deeper networks
with larger datasets (Simonyan and Zisserman 2015). Better
accuracy in DNNs is achieved at the cost of higher compu-
tational complexity; therefore, more hardware resources are
required (Sze et al. 2017). Recent graphic processing unit
(GPU) architectures have successfully provided a massive
amount of computational parallelism and can be leveraged
in DNNs (NVIDIA 2022). However, the computation load
still needs to be reduced, and pruning can be an effective so-
lution to reduce the amount of computation as well as the
memory capacity requirement (Han et al. 2015).

Various pruning techniques (Han et al. 2015; He, Zhang,
and Sun 2017; Li et al. 2017; Wen et al. 2016) have been

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Tiling method for computing DNN on GPU which
is provided by NVIDIA cuBLAS (Nvidia 2008). W-Tile de-
notes weight tile. I-Tile denotes input tile.

developed to reduce the number of nonzero parameters
and computational overhead. However, unstructured prun-
ing solely focuses on reducing weights (Han et al. 2015),
which incurs memory access irregularity and degrades mem-
ory access efficiency (Kung et al. 2019; Hill et al. 2017; Yu
et al. 2017). In contrast, structured pruning (He, Zhang, and
Sun 2017) reduces weights maintaining memory access reg-
ularity by removing closely located weights together. Their
highly regular patterns can leverage existing general matrix
multiplication (GEMM) kernels so that they can utilize the
GPU’s computational resources effectively. However, due to
the large size of the pruning unit, the accuracy is seriously
reduced as the pruning ratio increases.

The pruning unit size should be selected considering two
main factors: to minimize the loss of representation power,
and to consider the actual feedforward process inside the de-
vice. To satisfy the above conditions, we thoroughly delved
into GPU optimization methods when computing DNNs,
such as lowering (im2col) (Chellapilla, Puri, and Simard
2006; Chetlur et al. 2014) and tiling (Kirk and Wen-Mei
2016). First, while computing convolutions on GPUs, the in-
put and weight tensors are flattened and transformed into a
matrix by lowering (im2col) their values. Second, as shown
in Figure 1, tiling divides the matrices into small equal-sized
matrices (block) and distributes them to streaming multi-
processors (SMs), which are independent processing units

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9398

Figure 2: The illustration of different types of pruning in GEMM-view.

of GPUs. Because the separated matrices easily fit into the
shared memory of SMs, tiling can reduce global memory ac-
cess by maximizing data reuse in shared memory and regis-
ter files (Kirk and Wen-Mei 2016). Two kinds of optimizing
the GEMM kernels present a lesson for the optimal prun-
ing unit size (Guo et al. 2020). Considering tiling, vector-
wise pruning for each block (tile) reduces the pruning unit
size to tile width. This tiling-based pruning method (Guo
et al. 2020) is a kind of block pruning. However, considering
pruning unit size alone cannot maximize GPU utilization,
workload balancing among the SMs is critically required.

Our proposed workload balancing aims to ensure no idle
time over the SMs when deploying the pruned model. For
this purpose, we revisit the tiling-based approach in the
GPU. Vector-wise block pruning (VBP) (Guo et al. 2020)
proposed a hybrid technique known as cross-wise that per-
forms row-wise and column-wise pruning for each block si-
multaneously. VBP carefully considered two GPU optimiza-
tions (im2col and tiling).

However, such a hybrid method (cross-wise) can be chal-
lenging due to the row-wise approach. For instance, prun-
ing a row affects the corresponding tiled-matrix column in
the following layer; thereby, deciding a column to be pruned
can be complicated and lean on the row-wise pruned results.
Moreover, this method does not consider the same spar-
sity over the blocks. This causes a load unbalancing prob-
lem. To address these problems, first, we use only column-
wise pruning for each block, which is a simple but effective
method. With this approach, a vector-wise shape is main-
tained, and it can effectively utilize the computing resource
of GPUs. Second, a new metric called workload imbalance
among tiles (WIT) is proposed to verify the workload im-
balance between tiles. As WIT increases, the workload im-
balance problem becomes more serious. Thus, the pruning
ratio of each tile must be adjusted to reduce the WIT. Addi-
tionally, we propose a pruning ratio recalibration technique
that considers pruning sensitivity for each block to reduce
information loss due to the same pruning ratio per block.

This paper proposes the balanced column-wise block
pruning, BCBP, satisfying three key factors at the same time:
optimal size of pruning unit, weight shape regularity, and
balanced workloads. Our method performs layer-wise prun-
ing before acceleration based on the API.

This method has three advantages:
• Our BCBP method can preserve more representation

power than structured pruning because the pruning unit
size is smaller than structured pruning.

• The row-wise vector pruning in blocks results in the re-
moval of entire columns in the following layer, which
conflicts with the column-wise pruning of the next layer
and degrades the representation power. Therefore, we
propose using only column-wise pruning in blocks to
minimize accuracy drop.

• BCBP has the same pruning ratio per tile. The same prun-
ing ratio on all tiles prevents SMs in the GPU from being
idle and harmonizes the execution time.

Related Work
Unstructured Pruning (Weight Pruning) Weight prun-
ing (WP) removes superfluous weights to reduce the pa-
rameters and the computations of DNNs (Figure 2-(a)).
WP (Han et al. 2015) uses a threshold to measure the im-
portant connections. However, while achieving a signifi-
cantly high pruning ratio, this cannot avoid retraining the
original model to recover the accuracy drop. In order to
achieve a more favorable model compression, Deep Com-
pression (Han, Mao, and Dally 2016) uses weight quantiza-
tion and Huffman encoding, as well as WP. However, these
techniques require specialized basic linear algebra subpro-
grams (BLAS) such as cuSPARSE (Naumov et al. 2010),
or a dedicated accelerator (Han et al. 2016; Parashar et al.
2017) for swift sparse tensor computation. In the absence of
such support units, data irregularity arising from the sparse
weights is fatal on GPUs utilization. To achieve a high prun-
ing ratio, additional indices are necessary to indicate re-
moved weight individually. These induce indirect access
patterns. WarpPool (Kloosterman et al. 2015) reports that
such patterns experience a memory divergence that requires
more than one memory request to fetch the data from mem-
ory, resulting in a low throughput of the GPU. A high prun-
ing ratio can be expected and counterbalanced when apply-
ing WP over a tile. However, multiple indices cause unnec-
essary complexity owing to the memory divergence. There-
fore, we use relatively larger pruning granularity to reduce
the risk of rapid processing time.

Structured Pruning Structured pruning typically re-
moves rows (filter pruning) or columns (group pruning) in
lowered weight matrices (Figure 2-(b) and (c)). Performing
filter pruning (FP) leaves behind a subset of filters via salient

9399

criteria, for example, l1-norm, over a layer (Li et al. 2017)
or on the whole model (Yu et al. 2018). In addition, ow-
ing to the large size of the pruning unit, layer-wise meth-
ods encounter cumulative reconstruction errors (Kim et al.
2020). A layer collapse cannot be avoided when FP is per-
formed on the whole model (Tanaka et al. 2020). Sparsity
regularization is introduced on features (He, Zhang, and Sun
2017) or BatchNorm variables (Liu et al. 2017) to remove
the corresponding filters during training. OTO (Chen et al.
2021) attempts to generate a structured pruned model with-
out a pre-training step by determining non-critical filters at
the network initialization phase. However, the performance
of the method depends on data adaptation. Group pruning
involves pruning the weights located in the same position
among all the filters of a certain layer. This model can main-
tain its learned representation as it has a smaller pruning unit
than FP. However, it can damage the representation ability of
the model with a high pruning ratio as it breaks the assump-
tion that filters are independent (Li et al. 2017). Our work
focuses on using group pruning; however, we separate such
coupled weights by exploiting tiling. Our method leverages
tiling by constraining the smaller pruning unit from the tile
width to prevent the removal of important weights, thereby
providing an opportunity to achieve a high pruning ratio.

Block Pruning Block pruning consists of two kinds of ap-
proaches: block pruning (BP) and vector-wise block prun-
ing (VBP). One of the BPs (Narang, Undersander, and Di-
amos 2017; Vooturi, Mudigere, and Avancha 2018), Block
Sparse (Narang, Undersander, and Diamos 2017), pro-
poses a technique for removing the entire block, supported
by a dedicated GPU kernel (Gray, Radford, and Kingma
2017) for speedup on real hardware (Figure 2-(d)). Second,
VBP (Cai et al. 2021; Elsen et al. 2020; Guo et al. 2020;
Li et al. 2021; Lin et al. 2022) is a method of removing
a row or column vector of a block (Figure 2-(e)). 1 × N
pruning (Lin et al. 2022) can achieve speedups on CPUs via
a parallelized block-wise vectorized operation. Tile Spar-
sity (Guo et al. 2020) has improved inference throughput on
GPUs. This method utilizes the “tiling” of the GPU kernel
operations when it prunes neural networks. As illustrated in
Figure 2-(e), Tile Sparsity (Guo et al. 2020) presented both
rows and columns pruning (cross-wise pruning) in each tile-
shaped matrix. However, it is difficult to acquire the same
pruning ratio over all the tiles in vector-wise pruning, and
unequal sparsity can cause imbalanced computation work-
loads in GPUs (Gale et al. 2020). Our study considers tiling;
however, it ensures that the same pruning ratio is obtained
in each block (tile). Therefore, our pruning method enables
all workloads to be computationally balanced on GPUs. The
results are demonstrated in the experiments.

Balanced Pruning Balanced pruning (BLP) (Kung, Mc-
Danel, and Zhang 2019; Mishra et al. 2021; Yao et al. 2019;
Zhou et al. 2021) splits the row of a lowered weight matrix
into multiple equal-sized blocks and removes the same num-
ber of weight elements for each block (Figure 2-(f)). There-
fore, whole blocks can have balanced computations because
each block is pruned with the same pruning ratio. Since
the GPU executes an instruction with a warp (32-threads),

if some pruned blocks are assigned in a warp, computa-
tion workloads among such blocks can be sufficiently syn-
chronous. However, it is still required to process the massive
indices on pruned matrices because the size of the pruned
unit is typically small, as shown in Figure 2-(f). Prior works
have co-designed customized API and a specialized accel-
erator in GPUs, such as the Sparse Tensor Core, to support
the computation efficiently (Mishra et al. 2021). However,
the A100 (Mishra et al. 2021) has a limit that can only ac-
celerate on a 50% pruning ratio (2:4 sparsity pattern). As
illustrated in Figure 2-(g), the proposed method splits equal-
sized tiles of a lowered weight matrix. Our approach al-
lows the computation of large granular blocks to be balanced
and gains more freedom to find unnecessary weights. In this
case, we remove the less critical grouped weights by apply-
ing group pruning with a tile-sized pruning unit. Therefore,
our method requires smaller indices than balanced pruning
and achieves the same pruning ratio among the tiles.

Balanced Column-Wise Block Pruning
We formally introduce how BCBP is performed on GPUs,
following the order in Figure 3.

Prerequisites Given n filters of lth convolution layer as
F (l) ∈ Rn×c×kh×kw , where n, c, kh, and kw are the num-
ber of filters, the number of channels, height, and width of
the filters, respectively. The lowered matrix of F (l) can be
denoted as W(l) ∈ Rn×m, where n and m are the number
of filters and a whole dimension of a filter. Moreover, n can
be a pruning unit of column-wise manner. m is the product
of kw, kh, and c whose order is a lowering order of a filter.

Vector-Wise Tile Pre-Pruning
For simplicity, we introduce the vector-wise tile pre-pruning
steps on lth layer. Considering tiling of a lowered matrix,
W(l) is divided into multiple equal-sized tiles. It is denoted
as W(l) =

{
W̃

(l)
i ∈ Rτ×m, i ∈ [1, T]

}
, where τ is tile

width and T is the number of tiles. If n cannot be abso-
lutely divided into T , this step of BCBP is disregarded and
our pruning is converted as the group pruning.

In a certain ith tile, W̃(l)
i for a partial set of grouped

weights are denoted as W̃
(l)
i =

{
w

(l)
i,k ∈ Rτ , k ∈ [1,m]

}
.

Note that each grouped weight, w(l)
i,k, is a column vector of

a W̃
(l)
i . Our pruning criteria, denoted as C(l)(·), is used to

get the importance scores of the grouped weights in W̃
(l)
i .

Then, we have scores over a tile as follows:

score
(l)
i = C(l)(W̃

(l)
i). (1)

where score
(l)
i ∈ Rm is the score vector of all grouped

weights in lth layer and ith tile. Getting scores of total
grouped weights in W(l) can be formulated as:

C(l)(W(l)) =

{
C(l)(W̃

(l)
i) =

∥∥∥w(l)
i,k

∥∥∥
g
, ∀(i, k)

}
,

i ∈ [1, T], k ∈ [1,m]. (2)

9400

Figure 3: Overview of BCBP. BCBP proceeds in 3 steps: vector-wise tile pre-pruning, pruning ratio recalibration, and vector-
wise balanced pruning. The GEMM operation with the unpruned weight parameters of BCBP and input values is accelerated
using customized API.

where ∥·∥g is the group norm (Wen et al. 2016). The

∥·∥g what we inherit can be formulated as
∥∥∥w(l)

i,k

∥∥∥
g

=√∑|w(l)
i,k|

x=1

(
(w

(l)
i,k)x

)2

, where |w(l)
i,k| is the number of

weights in w(l)
i,k, which is the same as τ in our work.

The vector-wise tile pre-pruning is conducted based on
C(l)(W(l)):

rid(l) = Topk(C(l)(W(l)), N (l)). (3)

where N (l) is the number of the grouped weights to be re-
moved and Topk(·) returns the indexes of the k most unim-
portant grouped weights, using the scores. The indexes are
stored in rid(l).

Pruning Ratio Recalibration
Pruning W(l) based on rid(l) can occur imbalanced compu-
tation workloads in GPU as shown in Figure 3- 1⃝. To solve
the problem, we consider one hyper-parameter, workload
balanced block (WBB) width, to reset the pruning ratio in-
side a WBB. While adopting WBB width, a lowered matrix
can be considered as W(l) =

{
W̃

(l)
j ∈ Rn×δ, j ∈ [1, B]

}
,

where δ is a WBB width, and B is the number of WBBs.
In a certain jth WBB, W̃(l)

j for a partial set of weights are

denoted as W̃(l)
j =

{
w

(l)
j,k ∈ Rτ , k ∈ [1, δT]

}
. To get an ad-

justing pruning ratio, we divide rid(l) into multiple subsets,
rid

(l)
j , j ∈ [1, B], corresponding to each WBB. By holding

rid(l), this analysis can maintain the precomputed unimpor-
tant grouped weights of the layer. Then, the new pruning
ratio for the set of WBB can be formulated as:

ρ
(l)
j =

Count(rid
(l)
j)

Count(W̃
(l)
j)

, j ∈ [1, B]. (4)

In this paper, we use δ based on a spatial dimension of
the convolution filter such as multiple of khkw. We explain
in detail performing processes of recalibration that minimize
the accuracy loss while keeping the same pruning ratio be-
tween tiles in the Discussion Section.

Vector-Wise Balanced Pruning

To equalize the pruning ratio of tiles inside workload bal-
anced blocks (WBB), we split WBB into equal-sized sub-
blocks with tile width, defined as workload balanced sub-
blocks (WBS). The lowered matrix with WBS can be de-
noted as W(l) =

{
W̃

(l)
i,j ∈ Rτ×δ, i ∈ [1, T], j ∈ [1, B]

}
,

where τ is the tile width, δ is the WBB width, T is the num-
ber of tiles and B is the number of WBBs. A certain (i, j)

th

WBS, W̃(l)
i,j , for a partial set of grouped weights are de-

noted as W̃(l)
i,j =

{
w

(l)
i,j,k ∈ Rτ , k ∈ [1, δ]

}
. Note that each

grouped weight, w(l)
i,j,k, is a column vector of a W̃

(l)
i,j .

For all WBSs in the same WBB, corresponding ρ
(l)
j is

identically applied; thereby, vector-wise balanced pruning is
conducted as follows:

9401

Figure 4: Measurement of inference time for a whole tiled matrix of VGG-16 on ImageNet with a 1.5% accuracy drop. BCBP
uses τ of 32, which is the same as the VBP (Guo et al. 2020) and δ of 18. In addition, all layers have the same pruning ratio
(PR) of 60% except for the first convolutional (conv) layer. The gray-scale bars are inference times of VBP tiles. The blue bars
are the maximum inference time of VBP tile at each layer. The red bars are the inference time of BCBP tiles. All BCBP tiles
have the same inference time at each layer.

rid
(l)
i,j = Topk(score(l)i,j , N

(l)
i,j),

K(l)
i,j = Prune(W̃(l)

i,j , rid
(l)
i,j),

i ∈ [1, T], j ∈ [1, B]. (5)

where N (l)
i,j = δ×ρj is the number of the grouped weights

to be removed on the WBS and score
(l)
i,j is newly acquired

by computing score
(l)
i,j = C(l)(W̃

(l)
i,j).

With rid
(l)
i,j , Prune(·) removes unimportant grouped vec-

tors in a WBS, and remains the other ones. After this prun-
ing method, K(l)

i,j represents the remained grouped weights
on the WBS.

Acceleration After all BCBP steps, two kinds of un-
pruned weights in ith tile are obtained, such as the remained
weights, K(l)

i,: , and the indexes of the removed weights,

rid
(l)
i,: . In order to accelerate the GEMM of an input and

the unpruned weight values, we exploit the customized GPU
kernel based on the API (Guo et al. 2020), which supports
the skipping function in GPU; thereby, GPU can recognize
the pruned location and skip the load operation of the same
positioned input values in advance.

Experiments
Datasets and Models We evaluate the performance of
BCBP using IWSLT English-Vietnamese (Luong and Man-
ning 2016), SQuAD (Rajpurkar, Jia, and Liang 2018), and
ImageNet dataset (Deng et al. 2009). ImageNet contains
1.28M training images and 50K test images. For the vali-
dation of image classification, we assess our method with
extensive convolutional deep neural network model: VGG-
16 (Simonyan and Zisserman 2015), ResNet-18 (He et al.
2016), and ResNet-50. The additional verification of the fol-
lowing DNN models are shown in Appendix 1: SqueezeNet
(Iandola et al. 2016), GoogleNet (Szegedy et al. 2015),
WRN-50 (Zagoruyko and Komodakis 2016), NMT (Lu-
ong, Brevdo, and Zhao 2017), and BERT-base (Devlin et al.
2018).

1https://github.com/cheonjun-park/appendix1.

Baseline Settings We evaluate BCBP using NVIDIA RTX
2080 TI GPUs. In our experiments, we use the pre-trained
CNN models from PyTorch framework (Paszke et al. 2019).
We perform fine-tuning with only 60 epochs after con-
ducting pruning methods on ImageNet. For settings of the
fine-tuning, we use SGD optimizer with the weight decay,
1 × 10−4 and the momentum as 0.9. We set a batch size of
256 and a learning rate of 0.0001.

Analysis of Workload Balancing
To analyze the computational imbalance problem, we pro-
pose a metric, WIT. In this section, various experiments are
conducted to understand the correlation between our pro-
posed WIT and the imbalance in actual workload. As the
high WIT value indicates in workload imbalance between
tiles, well-balanced pruning based on tiling can be the fa-
vored approach to improving the GPU computational effi-
ciency.

Workload Imbalance among Tiles (WIT) To measure
the workload imbalanced among tiles, we propose WIT. As
shown in Figure 4, we empirically show that this metric can
explain that unequal pruning ratios over the tiled weights
cause unsynchronized SMs due to the variation of the ex-
ecution time of each tile. Other tiles of VBP wait for the
tile with the minimum pruning ratio to be completed. While,
in BCBP, all tiles in a layer have the same inference time.
Following the experimental results, the average of the im-
balanced ratio is inductively represented by

WIT =
1

|X |
∑
x∈X

|PR(x)− PR(x∗)|,

x∗ = argmin
x∈X

PR(x). (6)

where X represents the set of the tiled weights’ index.
PR(·) performs calculating the pruning ratio by loading the
weight at the corresponding input.

Tile-Width (τ) We verify BCBP on two tile widths (τ)
because GPU has a fixed tile width. We use two magic num-
bers, 16 and 32, since NVIDIA GPU typically uses a multi-
ple of 32 to set τ (Guo et al. 2020) and Mobile GPU, such

9402

(a) VBP (PR: 60.6%, τ : 16) and BCBP (PR: 60.2%, τ : 16)

(b) VBP (PR: 60.2%, τ : 32) and BCBP (PR: 60.2%, τ : 32)

(c) VBP (PR: 80.0%, τ : 32) and BCBP (PR: 80.1%, τ : 32)

Figure 5: Measurement of VBP WIT and speedup of BCBP
compared to VBP of VGG-16 on ImageNet within a 3% ac-
curacy drop. δ of BCBP is 9. n is the number of filters. The
WIT value of BCBP is 0 in all the layers because BCBP bal-
ances the workload between tiles. PR denotes pruning ratio.

as ARM Mali, sets τ as 16 (Harris 2014). Figure 5-(a) and
(b) give a comparison in inference time and WIT with two
τ settings: 16 and 32. Changing τ from 32 to 16 doubles
the number of tiles (T) in almost every layer. When T is
higher, the variance of pruning ratio is large; thus, WIT of
VBP also increases. It presents that VBP makes imbalanced
workloads relying on τ . As shown in Figure 5-(a) and (b),
when τ is varied from 32 to 16, WIT of VBP rises from
10.4 to 13.9. However, BCBP shows balanced resource uti-
lization and performs better than VBP in the same τ , δ, and
PR.

Layer (l) In DNN architecture, channels typically increase
as a layer, l, increases. As shown in Figure 5, VGG-16
has four-layer groups varying channel size, 64, 128, 256,
and 512. Each group introduces different WIT, 4.83± 1.79,
6.61 ± 2.53, 10.05 ± 2.32 and 17.93 ± 4.26, respectively,
which represents mean and standard deviation. Moreover, T
is large as the number of channels increases. As a result, we
can identify that WIT with the variance is generally larger as

Model
(Type)

Pruning
unit size

PR
(%)

Top-1
↓(%)

time
(ms)

speed
up

VGG-16 - - - 6.8 1.00×
STC (BLP) R 50.0 -0.88 3.5 1.94×
BLS (BLP) R 91.9 -1.31 5.2 1.31×
BS (BP) R32×32 71.6 -2.54 5.9 1.16×
TS (VBP) R32×1,1×m 80.0 -2.32 3.0 2.28×
BCBP R32×1 49.8 -0.97 4.5 1.52×
BCBP R32×1 80.1 -1.96 2.5 2.77×

Table 1: Comparison of inference time (ms) with BLP, BP
and VBP of VGG-16 on ImageNet. m is the product of kw,
kh, and c whose order is a lowering order of a filter. PR
denotes pruning ratio. Top-1↓ means the top-1 accuracy drop
rate compared to dense model. The time denotes inference
time.

T increases. Thus, a layer with large channels is possible to
make imbalanced workloads.

Pruning Ratio (PR) When PR increases, the lowered
weight matrix on whole layers becomes too sparse. There-
fore, when PR varies from 60% to 80%, the magnitude of
WIT becomes small in general. Figure 5-(b) and (c) show
that the WIT of VBP (Guo et al. 2020) decreases from 10.4
to 6.8 in the varying. Increasing PR can be another ap-
proach to make balanced workloads by reducing WIT. How-
ever, the result can sacrifice accuracy.

Validation of Perception Task
Comparison with BLP The pruning unit size of BCBP is
a R32×1. However, the pruning unit size of BLP is R. There-
fore, as shown in Table 1, Balanced Sparsity (BLS) (Yao
et al. 2019) has the highest pruning ratio with negligible ac-
curacy drop, which is about 11.8% higher pruning ratio than
BCBP. Table 1 shows that BCBP (PR: 80.1%) is 2.11×
faster than BLS (PR: 91.9%) using customized GPU kernel
in VGG-16. In the case of BLP, due to a much longer index
calculation time, the advantage of zero skip is insignificant.
When the 50% pruning ratio of NVIDIA A100 Sparse Ten-
sor Core (STC) (Mishra et al. 2021) and BCBP is similar in
VGG-16, STC with hardware support is about 1.27× faster
than BCBP. However, the STC has a limit that can only ac-
celerate on a 50% pruning ratio (Mishra et al. 2021).

Comparison with BP and VBP The pruning unit size
of Block Sparse (BS) (Narang, Undersander, and Diamos
2017) is a R32×32. The pruning unit size of Tile Sparsity
(TS) (Guo et al. 2020), which is both row and column prun-
ing, is a R32×1 and R1×m. However, pruning unit size of
BCBP, which is column pruning, is only R32×1. Due to
the 32× smaller pruning unit size than BS, Table 1 shows
that BCBP can accommodate the higher pruning ratio than
BS. In addition, BCBP is 21.1% faster than TS in VGG-16.
Even with a similar pruning ratio of 80%, TS is slower than
BCBP due to delay time in some weight tiles from imbal-
anced workloads. Furthermore, BCBP has even 0.36% less
accuracy drop than TS.

9403

(a) BLP (balanced range: 18) (b) VBP (τ : 32) (c) BCBP (τ : 32, δ: 18)

Figure 6: The pruning mask visualization for the third convolutional layer of VGG-16 on ImageNet. The mask is represented
by the output of 1W(3)(x) where x is a weight value of W(3). The pruned region is blue. The dotted red line denotes a tile.
Rigid orange line denotes a WBB.

Model
PR
(%)

Top-1
↓(%)

time
(ms)

Index
ratio

speed
up

ResNet-18 - - 7.3 - 1.00×
TAS 33.3 -1.50 4.9 - 1.48×
LCCL 34.6 -3.65 4.8 - 1.52×
BCBP 41.3 -0.46 4.6 4% 1.59×
FPGM 41.7 -1.87 4.3 - 1.68×
BCBP 84.7 -2.09 1.5 9% 4.79×
ResNet-50 - - 12.5 - 1.00×
GAL-0.5 16.8 -4.20 10.6 - 1.18×
BCBP 29.8 -0.72 9.4 3% 1.33×
HRank 36.7 -1.17 8.3 - 1.51×
SFP 41.8 -1.54 7.8 - 1.61×
GAL-1 42.5 -6.27 7.7 - 1.63×
BCBP 45.9 -1.26 7.5 4% 1.66×
HRank 46.0 -4.17 7.2 - 1.74×
GAL-1-joint 59.9 -6.84 5.5 - 2.26×
ThiNet-50 66.0 -7.73 4.8 - 2.58×
HRank 67.5 -7.05 4.7 - 2.63×
BCBP 79.4 -2.47 3.5 6% 3.59×

Table 2: Comparison of inference time (ms) with filter prun-
ing (FP) of ResNet-18 and ResNet-50 on ImageNet. PR de-
notes pruning ratio. Top-1↓ means the top-1 accuracy drop
rate compared to dense model. The time denotes inference
time. Index ratio denotes ratio of index computation ker-
nel time in inference time.

Comparison with FP Predicting output in the pruning
model of FPs (TAS (Dong and Yang 2019), LCCL (Dong
et al. 2017), FPGM (He et al. 2019), GAL (Lin et al. 2019),
HRank (Lin et al. 2020), SFP (He et al. 2018), Thinet (Luo,
Wu, and Lin 2017)) requires only GEMM operation. How-
ever, BCBP requires additional index computation to per-
form GEMM operations. As shown in Table 2, the execu-
tion time of GEMM is similar when BCBP and FPGM have
a similar pruning ratio of 41% in ResNet-18. However, since

BCBP requires an addition 4% of index computation time,
BCBP is about 6% slower than FPGM overall. As shown in
Table 2, for the same reason as ResNet-18, when the 46%
pruning ratio of HRank and BCBP is similar in ResNet-50,
BCBP is about 5% slower than HRank. When the pruning
ratio increases from 41.3% to 84.7%, the inference time de-
creases by 67.0% on ResNet-18. Due to the higher prun-
ing ratio, the GEMM and indexing computation time are re-
duced by 68.7% and 25.7%, respectively. Despite the addi-
tional indexing time, BCBP overwhelms the overall perfor-
mance because of the benefits of zero skipping compared to
FP. This high pruning rate reduces accuracy to 2.09% how-
ever is similar to FP.

Pruning Mask Visualization
We illustrate how our balanced column-wise block prun-
ing (BCBP) has regular data patterns and balanced work-
loads among tiles. In Figure 6, we visualize balanced prun-
ing (BLP) (Yao et al. 2019), vector-wise block pruning
(VBP) (Guo et al. 2020), and BCBP. We now define an in-
dicator function to represent which weights are pruned in
binary numbers as follows:

1W(l)(x) =

{
1, if x ∈ K(l)

0, otherwise,
(7)

where W(l) is a 2D weight matrix, which is a converted 4D
filter weight of the convolutional layer by the lowering, K(l)

denotes the unpruned parameter set of W(l), and l is the
layer number. For the visualization, we use the pruning ra-
tio of 50%. We exhibit each mask of BLP, VBP, and BCBP
based on the aforementioned indicator function of W(l). We
use the third convolutional layer of VGG-16. Thus, W(3) is
used for mask visualization. Balanced pruning shows bal-
ance data patterns in a balanced range as shown in Figure 6-
(a). In Figure 6-(b), the vector-wise block pruning shows
regular data patterns but workload imbalance among tiles.
BCBP has the same pruning ratio per tile as shown in Fig-
ure 6-(c).

9404

Figure 7: Comparison with BCBP (without pruning ratio re-
calibration) and BCBP (with pruning ratio recalibration) of
VGG-16 on ImageNet. Recal. denotes pruning ratio recali-
bration. PR denotes pruning ratio.

Discussion
Effect of Pruning Ratio Recalibration
Our proposed BCBP without pruning ratio recalibration (Re-
cal.) has the same ρ among all WBSs, which maximizes
GPU parallelism by balancing workloads among SMs. How-
ever, simply applying the same ρ in all WBSs can cause in-
formation loss due to removing important weights and is a
coarse-grained method. As shown in Figure 7-(a), all WBSs
have the same 50% ρ. In this case, to determine pruned
weights, only weights in each WBS are considered. There-
fore, more important weights, which are more sensitive to
the accuracy, can be pruned even if the weights are more im-
portant than the unpruned weights, which are not sensitive
to the accuracy, in the other WBS. To prevent this problem,
we propose pruning ratio recalibration in the Pruning Ratio
Recalibration Subsection. BCBP can balance workloads be-
tween SMs if one condition is satisfied: all the weight tiles
have the same PR. The Recal. also maintains the same ρ in
WBSs of WBB as shown in Figure 7-(b). With Recal., the
pruned model can be different ρ between WBBs. Figure 7-
(c) shows that BCBP with Recal. has lower information loss
than BCBP without Recal..

Effect of WBB Width (δ)
As shown in Balanced Column-wise Block Pruning Section,
the final pruning ratio, PR, is decided by two steps; the
first is vector-wise tile pre-pruning, and the second is prun-

Figure 8: Ratio of WBB with 100% sparsity by δ variation
of BCBP (VGG-16 on ImageNet within a 3% accuracy drop,
τ : 32). The inference time of dense model is about 6.8ms.
PR denotes pruning ratio.

ing ratio recalibration. Once PR is very high, the lowered
weight matrix can be sufficiently sparse; therefore, we have
an opportunity to find out fully zeroized WBB in advance.
Moreover, we can also consider that when WBB width, δ,
is small, resulting in small-sized WBB, discovering WBBs
to be thoroughly pruned is possible enough. In this subsec-
tion, we denote WBB, which owns only WBSs to be pruned,
as zero-WBB, and study how frequently making the zero-
WBB, varying on PR and δ. We use two δ: 9 and 18. As
shown in Figure 8, when δ is 9, BCBP produces zero-WBBs
more increasingly as PR is more significant, especially in
low-level convolutional layers such as conv2, conv3, and
conv4. As δ varies from 9 to 18, such trend is still valid,
but the ratio of zero-WBBs becomes low. In this regard, the
elapsed time of VGG-16 becomes faster by increasing PR
on both δ with an acceptable variation of accuracy drop. Fur-
thermore, as δ changes from 18 to 9, BCBP shows 3.79%,
5.29%, and 4.07% elapsed time improvement, respectively,
when PR is 60, 70, and 80; This gain is an extra benefit that
comes from the index skipping operation in utilizing the ac-
celeration API (Guo et al. 2020). In short, BCBP presents
an opportunity to take time profit and similar accuracy if
we exploit zero-WBBs even though making the same sized
compressed model, i.e., from 138M parameters to 27.6M pa-
rameters (PR is 80) on VGG-16.

Conclusion
In this paper, we propose BCBP for fast DNN on GPUs.
It brings a low pruning unit size in a balanced workload
while leveraging lowering (im2col) and tiling. Instead of
cross-wise tile pruning, BCBP adopts vector-wise tile pre-
pruning to reach a high pruning ratio. It solves the work-
load imbalance among tiles by analyzing and balancing the
workload between tiles. BCBP is compatible with existing
NVIDIA GPU libraries that are highly hardware optimized.
Through our experiments and analysis, BCBP outperforms
in GPU inference time compared to prior works. Our pro-
posed BCBP can be advantageous for computer vision tasks
to leverage standard convolution operations such as object
detection and semantic segmentation. We plan to apply our
BCBP to the applications in the future.

9405

Acknowledgements
This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2021-0-02068, Artificial Intelligence Innovation Hub)
and the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-
2021R1A2B5B01002932).

References
Cai, Y.; Li, H.; Yuan, G.; Niu, W.; Li, Y.; Tang, X.; Ren, B.;
and Wang, Y. 2021. Yolobile: Real-time object detection on
mobile devices via compression-compilation co-design. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, 955–963.

Chellapilla, K.; Puri, S.; and Simard, P. 2006. High perfor-
mance convolutional neural networks for document processing.
In Tenth international workshop on frontiers in handwriting
recognition. Suvisoft.

Chen, T.; Ji, B.; Ding, T.; Fang, B.; Wang, G.; Zhu, Z.; Liang,
L.; Shi, Y.; Yi, S.; and Tu, X. 2021. Only Train Once: A
One-Shot Neural Network Training And Pruning Framework.
In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and
Vaughan, J. W., eds., Advances in Neural Information Process-
ing Systems, volume 34, 19637–19651. Curran Associates, Inc.

Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.;
Catanzaro, B.; and Shelhamer, E. 2014. cudnn: Efficient primi-
tives for deep learning. arXiv preprint arXiv:1410.0759.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
2009 IEEE conference on computer vision and pattern recogni-
tion, 248–255. Ieee.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Dong, X.; Huang, J.; Yang, Y.; and Yan, S. 2017. More is less:
A more complicated network with less inference complexity. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5840–5848.

Dong, X.; and Yang, Y. 2019. Network pruning via trans-
formable architecture search. Advances in Neural Information
Processing Systems, 32.

Elsen, E.; Dukhan, M.; Gale, T.; and Simonyan, K. 2020. Fast
sparse convnets. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 14629–14638.

Gale, T.; Zaharia, M.; Young, C.; and Elsen, E. 2020. Sparse
gpu kernels for deep learning. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, 1–14. IEEE.

Gray, S.; Radford, A.; and Kingma, D. P. 2017. Gpu kernels for
block-sparse weights. arXiv preprint arXiv:1711.09224, 3: 2.

Guo, C.; Hsueh, B. Y.; Leng, J.; Qiu, Y.; Guan, Y.; Wang, Z.;
Jia, X.; Li, X.; Guo, M.; and Zhu, Y. 2020. Accelerating sparse
DNN models without hardware-support via tile-wise sparsity.
In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 1–15.

Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M. A.;
and Dally, W. J. 2016. EIE: efficient inference engine on com-
pressed deep neural network. ACM SIGARCH Computer Ar-
chitecture News, 44(3): 243–254.
Han, S.; Mao, H.; and Dally, W. J. 2016. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. International Conference
on Learning Representations (ICLR).
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both
weights and connections for efficient neural network. In Ad-
vances in neural information processing systems, 1135–1143.
Harris, P. 2014. The Mali GPU: An Abstract Machine, Part
2-Tile-based Rendering. https://community.arm.com/arm-
community-blogs/b/graphics-gaming-and-vr-blog/posts/the-
mali-gpu-an-abstract-machine-part-2---tile-based-rendering.
Accessed: 2022-12-02.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018. Soft Fil-
ter Pruning for Accelerating Deep Convolutional Neural Net-
works. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, IJCAI’18, 2234–2240. AAAI
Press. ISBN 9780999241127.
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019. Filter prun-
ing via geometric median for deep convolutional neural net-
works acceleration. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 4340–4349.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for accel-
erating very deep neural networks. In Proceedings of the IEEE
International Conference on Computer Vision, 1389–1397.
Hill, P.; Jain, A.; Hill, M.; Zamirai, B.; Hsu, C.-H.; Lauren-
zano, M. A.; Mahlke, S.; Tang, L.; and Mars, J. 2017. Deftnn:
Addressing bottlenecks for dnn execution on gpus via synapse
vector elimination and near-compute data fission. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 786–799. ACM.
Iandola, F. N.; Han, S.; Moskewicz, M. W.; Ashraf, K.; Dally,
W. J.; and Keutzer, K. 2016. SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360.
Kim, W.; Kim, S.; Park, M.; and Jeon, G. 2020. Neuron merg-
ing: Compensating for pruned neurons. Advances in Neural
Information Processing Systems, 33: 585–595.
Kirk, D. B.; and Wen-Mei, W. H. 2016. Programming massively
parallel processors: a hands-on approach. Morgan kaufmann.
Kloosterman, J.; Beaumont, J.; Wollman, M.; Sethia, A.; Dres-
linski, R.; Mudge, T.; and Mahlke, S. 2015. WarpPool: Sharing
requests with inter-warp coalescing for throughput processors.
In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 433–444. IEEE.
Kung, H.; McDanel, B.; and Zhang, S. Q. 2019. Packing sparse
convolutional neural networks for efficient systolic array im-
plementations: Column combining under joint optimization. In
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, 821–834.

9406

Kung, J.; Park, J.; Park, S.; and Kim, J.-J. 2019. Peregrine: A
flexible hardware accelerator for LSTM with limited synaptic
connection patterns. In Proceedings of the 56th Annual Design
Automation Conference 2019, 209. ACM.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P.
2017. Pruning Filters for Efficient ConvNets. In International
Conference on Learning Representations.
Li, Z.; Yuan, G.; Niu, W.; Zhao, P.; Li, Y.; Cai, Y.; Shen, X.;
Zhan, Z.; Kong, Z.; Jin, Q.; et al. 2021. NPAS: A Compiler-
aware Framework of Unified Network Pruning and Architecture
Search for Beyond Real-Time Mobile Acceleration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 14255–14266.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; and
Shao, L. 2020. Hrank: Filter pruning using high-rank feature
map. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 1529–1538.
Lin, M.; Zhang, Y.; Li, Y.; Chen, B.; Chao, F.; Wang, M.; Li, S.;
Tian, Y.; and Ji, R. 2022. 1xn pattern for pruning convolutional
neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence.
Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.;
and Doermann, D. 2019. Towards optimal structured cnn prun-
ing via generative adversarial learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2790–2799.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang, C. 2017.
Learning Efficient Convolutional Networks Through Network
Slimming. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV).
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level prun-
ing method for deep neural network compression. In Proceed-
ings of the IEEE international conference on computer vision,
5058–5066.
Luong, M.; Brevdo, E.; and Zhao, R. 2017. Neural Machine
Translation (seq2seq) Tutorial. https://github.com/tensorflow/
nmt. Accessed: 2023-03-24.
Luong, M.-T.; and Manning, C. D. 2016. Achieving open vo-
cabulary neural machine translation with hybrid word-character
models. arXiv preprint arXiv:1604.00788.
Mishra, A.; Latorre, J. A.; Pool, J.; Stosic, D.; Stosic, D.;
Venkatesh, G.; Yu, C.; and Micikevicius, P. 2021. Accelerating
sparse deep neural networks. arXiv preprint arXiv:2104.08378.
Narang, S.; Undersander, E.; and Diamos, G. 2017.
Block-sparse recurrent neural networks. arXiv preprint
arXiv:1711.02782.
Naumov, M.; Chien, L.; Vandermersch, P.; and Kapasi, U. 2010.
Cusparse library. In GPU Technology Conference.
NVIDIA. 2022. Nvidia Hopper architecture in-depth.
https://developer.nvidia.com/blog/nvidia-hopper-architecture-
in-depth/. Accessed: 2023-03-24.
Nvidia, C. 2008. Cublas library. NVIDIA Corporation, Santa
Clara, California, 15(27): 31.
Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan,
R.; Khailany, B.; Emer, J.; Keckler, S. W.; and Dally, W. J. 2017.
Scnn: An accelerator for compressed-sparse convolutional neu-
ral networks. ACM SIGARCH Computer Architecture News,
45(2): 27–40.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems 32, 8024–8035. Curran Associates, Inc.
Rajpurkar, P.; Jia, R.; and Liang, P. 2018. Know what you don’t
know: Unanswerable questions for SQuAD. arXiv preprint
arXiv:1806.03822.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In Ben-
gio, Y.; and LeCun, Y., eds., 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.
Sze, V.; Chen, Y.-H.; Yang, T.-J.; and Emer, J. S. 2017. Efficient
processing of deep neural networks: A tutorial and survey. Pro-
ceedings of the IEEE, 105(12): 2295–2329.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov,
D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A. 2015. Going
deeper with convolutions. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 1–9.
Tanaka, H.; Kunin, D.; Yamins, D. L.; and Ganguli, S. 2020.
Pruning neural networks without any data by iteratively con-
serving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33: 6377–6389.
Vooturi, D. T.; Mudigere, D.; and Avancha, S. 2018. Hi-
erarchical block sparse neural networks. arXiv preprint
arXiv:1808.03420.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016. Learning
structured sparsity in deep neural networks. In Advances in
neural information processing systems, 2074–2082.
Yao, Z.; Cao, S.; Xiao, W.; Zhang, C.; and Nie, L. 2019. Bal-
anced sparsity for efficient dnn inference on gpu. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 5676–5683.
Yu, J.; Lukefahr, A.; Palframan, D.; Dasika, G.; Das, R.; and
Mahlke, S. 2017. Scalpel: Customizing DNN pruning to the un-
derlying hardware parallelism. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA),
548–560. IEEE.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han, X.;
Gao, M.; Lin, C.-Y.; and Davis, L. S. 2018. Nisp: Pruning net-
works using neuron importance score propagation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 9194–9203.
Zagoruyko, S.; and Komodakis, N. 2016. Wide Residual Net-
works. In Richard C. Wilson, E. R. H.; and Smith, W. A. P., eds.,
Proceedings of the British Machine Vision Conference (BMVC),
87.1–87.12. BMVA Press. ISBN 1-901725-59-6.
Zhou, A.; Ma, Y.; Zhu, J.; Liu, J.; Zhang, Z.; Yuan, K.; Sun, W.;
and Li, H. 2021. Learning N:M Fine-grained Structured Sparse
Neural Networks From Scratch. In International Conference
on Learning Representations.

9407

