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Abstract

The Conditional Neural Process (CNP) family of models of-
fer a promising direction to tackle few-shot problems by
achieving better scalability and competitive predictive per-
formance. However, the current CNP models only capture
the overall uncertainty for the prediction made on a target
data point. They lack a systematic fine-grained quantifica-
tion on the distinct sources of uncertainty that are essen-
tial for model training and decision-making under the few-
shot setting. We propose Evidential Conditional Neural Pro-
cesses (ECNP), which replace the standard Gaussian distribu-
tion used by CNP with a much richer hierarchical Bayesian
structure through evidential learning to achieve epistemic-
aleatoric uncertainty decomposition. The evidential hierar-
chical structure also leads to a theoretically justified robust-
ness over noisy training tasks. Theoretical analysis on the pro-
posed ECNP establishes the relationship with CNP while of-
fering deeper insights on the roles of the evidential parame-
ters. Extensive experiments conducted on both synthetic and
real-world data demonstrate the effectiveness of our proposed
model in various few-shot settings.

Introduction
Meta-learning (Finn, Abbeel, and Levine 2017) offers a
powerful vehicle to tackle the challenges of learning from
limited data. It formulates learning into two phases: meta-
training that learns the global (meta) knowledge shared
across tasks and meta-testing that adapts the global knowl-
edge to the limited data from few-shot testing tasks. While
meta-learning achieves improved generalization capability
by leveraging the meta-knowledge obtained from the meta-
training tasks, few-shot tasks arising in the testing phase may
deviate significantly from the training tasks. Furthermore,
data in many real-world applications may be highly noisy,
incomplete, or corrupted. These, when coupled with the
weakly supervised signal from limited training data, make
few-shot learning inherently uncertain and challenging.

Among existing meta-learning models, metric-based ap-
proaches (Vinyals et al. 2016; Snell, Swersky, and Zemel
2017; Chen et al. 2021) have achieved high predictive ac-
curacy for few-shot classification problems. However, most
metric-based models are not designed to output uncertainty,
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limiting their applicability to many real-world problems.
Meanwhile, gradient-based approaches, such as MAML
(Finn, Abbeel, and Levine 2017), have been extended to
achieve uncertainty-aware meta-learning through Bayesian
modeling. MAML formulates meta-learning as a bi-level op-
timization problem that requires expensive Hessian-gradient
products during meta-learning along with other challenges
such as training stability. First order approximations and
alternatives of MAML, such as Reptile (Nichol, Achiam,
and Schulman 2018), require time consuming gradient based
adaptation during inference limiting their applications. Ex-
tending such models for uncertainty quantification (Yoon
et al. 2018) may further increase the computational costs.

Different from deep learning (DL) models, Gaussian Pro-
cesses (GPs) (Williams and Rasmussen 2006) offer a prin-
cipled way to quantify uncertainty. By combining Bayesian
modeling and kernel methods, a GP outputs a distribution
over functions, where the kernel serves as a fixed prior that
determines the smoothness of the functions as a specific
form of meta-knowledge.

However, GPs, in their original form, suffer from a high
computational cost for inference. Their generalization ca-
pability may also be limited due to the restricted priors in-
duced from the fixed kernel functions, lacking the flexibility
to adapt to the training data. This also significantly hinders
GPs from being used as an effective meta-learning model,
which needs to encode the meta-knowledge learned from
other tasks in support of few-shot learning from new tasks.

The recently developed conditional neural processes
(CNPs) (Garnelo et al. 2018a), neural processes (NPs) (Gar-
nelo et al. 2018b), and their extensions provide a suite of
effective meta-learning models, which bring together the
benefits of GP’s uncertainty capabilities and the DL mod-
els’ flexibility of adapting to the data. Besides offering bet-
ter scalability, rapid inference, and competitive predictive
performance (Kim et al. 2019; Gordon et al. 2020), these
models also naturally quantify uncertainty by simulating
a stochastic process like a GP. However, the current NP
models are sensitive to the outliers in the training tasks
and lack competitive performance. Alternatively, CNP fam-
ily of models achieve strong performance but only capture
the overall uncertainty for the prediction made on a target
data point. They lack a systematic fine-grained quantifica-
tion of the different sources of uncertainty. Simply, CNP
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based models approximate the predictive distribution on a
target data point by predicting both the mean and variance
of a Gaussian. However, the variance term itself does not of-
fer deeper insight on the two distinct sources of uncertainty:
(i) lack of knowledge by the model (epistemic) or (ii) noise
inherent in the data (aleatoric). Identifying the source of un-
certainty can offer effective means to improve the model
training (e.g., by collecting more training data or construct-
ing more informative sets) and facilitate critical decision-
making (e.g., whether to include humans in the loop).

In this paper, we propose Evidential Conditional Neural
Processes (ECNPs), which provide novel and nontrivial ex-
tensions to CNP family of models with principled uncer-
tainty quantification and decomposition. Being an CNP, an
ECNP inherits all attractive model behaviors from the CNP
family, including competitive predictive performance and
scalability. By integrating evidential learning, an ECNP re-
places a simple Gaussian distribution of CNP models with
a much richer hierarchical Bayesian structure that leads
to a robust neural process model with accurate epistemic-
aleatoric uncertainty decomposition capabilities without any
additional computational overhead. Such decomposition al-
lows us to separate uncertainty caused by the noise in the
data and the model’s lack of knowledge on the target data
point when making a prediction. Our main contributions are:
• The integration of evidential learning with CNPs results in

a novel family of evidential conditional neural processes
that are robust to outliers in meta-training and provides
fine-grained uncertainty decomposition, both of which are
essential for few-shot learning.

• A thorough theoretical analysis on the proposed EC-
NPs establishes the relationship with CNPs while offering
deeper insights on the roles of the evidential parameters
and why ECNPs are more suitable for few-shot learning.

Related Works
We discuss existing works that are most relevant to the pro-
posed evidential neural processes in this section. Some ad-
ditional related works ((Jøsang 2016; Sensoy, Kaplan, and
Kandemir 2018; Pandey and Yu 2022b; Kandemir et al.
2021; Charpentier et al. 2022; Kingma and Welling 2013))
are covered in the Appendix (Pandey and Yu 2022a).

Uncertainty-aware Meta-Learning. There have been in-
creasing efforts (Yoon et al. 2018; Pandey and Yu 2022b;
Gordon et al. 2018; Grant et al. 2018; Ravi and Beatson
2019) to develop meta-learning models that can quantify un-
certainty. Uncertainty information can be achieved through
an ensemble of a diverse set of meta-learning models as in
Bayesian MAML (Yoon et al. 2018). Uncertainty can also
be estimated by considering a hierarchical model for meta-
learning and carrying out Bayesian inference. To this end,
ABML (Ravi and Beatson 2019) considers a hierarchical
Bayesian model and uses amortized variational inference
across tasks to obtain the uncertainty information. LLAMA
(Grant et al. 2018) shows MAML as inference in a hierarchi-
cal Bayesian model with empirical Bayes and uses Laplace
approximation to obtain Gaussian distribution for the pos-
terior distribution that effectively captures the uncertainty.

PLATIPUS (Finn, Xu, and Levine 2018) extends MAML
using amortized variational inference to learn a distribution
over prior model parameters that captures the uncertainty.
These meta-learning approaches are computationally expen-
sive and may lack rapid inference capabilities.

Neural Process Family. Neural Process (NP)-based mod-
els (Garnelo et al. 2018a,b; Kim et al. 2019; Gordon et al.
2020) offer computationally efficient alternatives to exist-
ing uncertainty-aware meta-learning approaches as infer-
ence in NP is a computationally cheap forward pass through
an encoder-decoder architecture. Generative Query Net-
works (GQN) (Eslami et al. 2018) can be seen as one
of the earliest NP models that use a generation network
and a query network to tackle scene representation and au-
tonomous scene understanding problems. Conditional Neu-
ral Processes (CNP) (Garnelo et al. 2018a) generalize GQN
using an encoder-aggregator-decoder architecture. Neural
processes (Garnelo et al. 2018b) further generalize CNPs by
introducing a latent variable in the encoder-decoder archi-
tecture. Attentive Neural processes (ANP) (Kim et al. 2019)
replace the mean aggregation in CNP with multi-headed at-
tention that learns to attend to the most relevant context
points leading to significantly better target embedding and
improved results at the cost of increased computational cost
from the attention mechanism. Convolutional Conditional
Neural Processes (ConvCNPs) (Gordon et al. 2020) achieve
translation equivariance using a functional space represen-
tation for the context set. CNAPS (Requeima et al. 2019)
and Simple CNAPS (Bateni et al. 2020) extend the NP mod-
els to handle few-shot classification tasks. Various evalua-
tion metrics such as Inclusion@K and Uncertainty Increase
(Grover et al. 2019) were introduced to better analyze the
uncertainty capabilities of neural process models. Le et al.
(Le et al. 2018) and Naderiparizi et al. (Naderiparizi et al.
2020) studied the impact of architecture choices and differ-
ent optimization objective choices for NP and CNP models.
GNP (Bruinsma et al. 2021) and FullConvGN (Markou et al.
2021) extended the CNP models to handle predictive corre-
lations, i.e., the dependencies in output.

As discussed earlier, CNPs and their variants can only
capture the overall predictive uncertainty on the target
points. NPs recover the posterior distribution of the model
after being exposed to the context points by introducing
a global latent variable. However, NPs require approxima-
tion procedures and usually resort to computationally ex-
pensive sampling schemes for model training/inference. The
proposed ECNPs address these critical gaps by integrating
evidential learning with CNP models through an evidential
hierarchical Bayesian prior with a much richer representa-
tion power to support fine-grained uncertainty decomposi-
tion while achieving robust predictions and being computa-
tionally efficient in few-shot settings.

Evidential Neural Processes
Problem Setup: Consider a meta-dataset M = {Di}Mi=1,
which consists of a collection of datasets/tasks. Each task
D = (C, T ) = {(xn, yn)}Nc+Nt

n=1 consists of a context set
(a.k.a., support set) C = {Xc, Yc} = {(xn, yn)}Nc

n=1, a col-
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Figure 1: CNP and NP Models

lection of Nc input-output pairs, and the target set (a.k.a., the
query set) T = {Xt, Yt} = {(xt, yt)}Nt

t=1 a collection of Nt

input-output pairs. Meta-learning occurs in two phases: 1)
meta-training where both the context set and target set infor-
mation is available to the model, and 2) meta-testing where
the model is provided with context set information and eval-
uated based on the performance over target set inputs.

Uncertainty Analysis via CNP and NP
A CNP, as shown by the top branch of Figure 1 , has a de-
terministic mapping from a context set C and a target in-
put xt to its prediction. Specifically, each context point is
embedded by encoder Θ to representations r1, ..., rNC

, ag-
gregated to a representation r, and passed through the de-
coder to obtain the parameters of the predictive distribu-
tion. The predictive distribution is assumed to be a Gaussian,
where the decoder outputs the mean µt and the variance σ2

t :
Pθ(yt|xt; C) = N (yt|µt, σ

2
t ). The variance term σ2

t captures
the overall uncertainty. A NP model, as shown by the bot-
tom branch of Figure 1, introduces a latent variable z to pro-
duce a distribution over functions given the same context set
C. Specifically, each context point is embedded by encoder
Φ to representations s1, ..., sNC

, aggregated to a representa-
tion s, and passed through a NN to obtain the parameters for
the latent distribution. The latent variable induced distribu-
tion over functions allows NPs to model both epistemic and
aleatoric uncertainty for each target point prediction. As-
sume that the latent variable follows a distribution q(z) and
by sampling from this distribution, we obtain z1,..,L ∼ q(z).
For each sampled zl and a target point xt, the decoder out-
puts a predictive distribution p(yt|xt, zl) = N (µl, σ

2
l ). As

a result, we can obtain the epistemic uncertainty as the vari-
ance of the mean outputs Var[µl] and the aleatoric uncer-
tainty as the expected variance E[σ2

l ].
However, there are two key limitations for NP-based un-

certainty decomposition. First, it requires sampling of the la-
tent variable, which may make the overall inference compu-
tationally expensive, especially when learning from a large
number of tasks. Second, the fine-grained uncertainties are
obtained indirectly (e.g., via MC sampling) and thus it be-
comes challenging to guide the model to correct its inherent
mistakes regarding fine-grained uncertainties during train-
ing. Moreover, both CNP and NP lack robustness to outliers
in the training tasks. The proposed ECNP addresses the key
limitations of both CNP and NPs. We present an evidential
extension of CNP that outputs the aleatoric and epistemic
uncertainty directly from the deterministic path while ensur-
ing a robust prediction given a noisy context set. The intro-

Figure 2: ECNP Model

duced hierarchical structure explicitly captures fine-grained
uncertainty enabling the model to correct its mistakes in the
fine-grained uncertainties.

Evidential Conditional Neural Process (ECNP)
We extend the CNP model to an evidential neural process.
To this end, as in (Amini et al. 2020), we assume that the
likelihood function is a Gaussian with an unknown mean
and variance. We place an evidential prior over the mean
and variance and train the neural process to output the hy-
perparameters of the evidential distribution using the limited
information of the context set and target input. Moreover, we
train the evidential model to be confident for the correct pre-
diction and output low evidence (i.e., confidence) when the
model’s predictions are incorrect. Our evidential conditional
model introduces insignificant computational overhead and
is deterministic while being expressive in uncertainty quan-
tification. In particular, it can quantify both aleatoric and
epistemic uncertainty with a single forward pass through the
network without any sampling as in the NP.

Uncertainty and evidence quantification by ECNP. In
the ECNP model, we consider a hierarchical Bayesian
structure in which each target observation yt is a sample
from a Gaussian N (yt|µ, σ), whose mean and variance are
governed by a higher-order Normal-Inverse-Gamma prior
(Bishop and Nasrabadi 2006):

NIG(µ, σ2|pt) = N (µ|γt,
σ2

vt
)Γ−1(σ2|αt, βt) (1)

where pt = (γt, vt, αt, βt) and Γ−1 is an inverse-gamma
distribution. Intuitively, the context set C interacts with the
meta knowledge in the meta-learning model to output the
prior NIG parameters pt = (γt, vt, αt, βt). When being
exposed a new target point xt, this prior will interact with
the Gaussian likelihood p(yt|xt) = N (µ, σ2) to produce a
Student-t predictive distribution given by

p(yt|xt,pt) =

∫
µ,σ2

p(yt|xt, µ, σ
2)NIG(µ, σ2|pt)dµdσ2

=
Γ(αt +

1
2 )

Γ(αt)

√
vt

2πβt(1 + vt)

(
1 +

vt(yt − γt)
2

2βt(1 + vt)

)−(αt+
1
2 )

=St
(
yt; γt,

βt(1 + vt)

vtαt
, 2αt

)
(2)
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As a result, the prediction for a target point xt is

ŷt = Ep(yt|xt,pt)[yt] =

∫
ytp(yt|xt,pt)dyt = γt (3)

Given the predicted evidential parameters, the NIG distribu-
tion is fully characterized, which allows us to evaluate Var[µ]
and E[σ2] that can be used to quantify the aleatoric (AL) and
epistemic (EP) uncertainty (Amini et al. 2020), respectively:

AL = E[σ2] =
βt

αt − 1
, EP = Var[µ] =

βt

vt(αt − 1)
(4)

By leveraging the conjugacy between the NIG prior and
the Gaussian likelihood, it can be shown that after inter-
acting with N i.i.d. data samples, the posterior is still a
NIG(µ, σ2|pN ), where pN = (γN , vN , αN , βN ) with

vN = v +N, αN = α+
N

2
(5)

Thus, both v and α can be naturally interpreted as the evi-
dence (in the form of pseudo counts) to quantify the confi-
dence on the prior mean and the prediction of a target data
sample, respectively. Furthermore, β denotes the initial vari-
ance of the model and (4) shows that a large β leads to a
low confidence in the model’s prediction, which implies lack
of evidence. By aggregating all evidence related parameters,
ECNP is able to quantify the overall model confidence as

Et = vt + αt +
1

βt
(6)

A more detailed posterior analysis on the hierarchical model
for evidence quantification is provided in the Appendix.
Training ECNP. In this evidential framework, learning is
formulated as an evidence acquisition process and the model
is trained to maximize the likelihood of model evidence.
Equivalently, we train the model to minimize the negative
log-likelihood of the model given by

LNLL
t = log

Γ(αt)
√

π
vt

Γ(αt +
1
2 )

− αt log(2βt(1 + vt))+(
αt +

1

2

)
log

(
(yt − γt)

2vt + 2βt(1 + vt)
)

(7)

We further introduce an evidence regularization term to
encourage the model to output low evidence/confidence
when the predictions are incorrect:

LR
t = |yt − γt| × Et (8)

The regularization term LR
t penalizes the evidence of highly

confident wrong predictions. In other words, the model is
trained to output a low value of vt and αt and high βt val-
ues when the prediction is wrong leading to high uncertainty
in the predictions. Finally, the model is expected to output
high epistemic uncertainty at regions far from the observed
context points as only the meta-knowledge is available for
predictions at those points. To this end, a novel kernel-based
regularization term is introduced as

LKER
t = vt ×D(xt, C) (9)

where D(xt, C) is a distance function that measures the min-
imum Euclidean distance between the target point input xt

and the context set C. When the target input is far away from
the context set, this kernel loss dominates the overall loss
leading to small vt values and equivalently high epistemic
uncertainty (EP).

The overall loss in the evidential model is the regular-
ized sum of the model evidence loss, evidence regularization
loss, and the kernel regularization loss:

L =

Nt∑
t=1

LNLL
t + λ1LR

t + λ2L
KER
t (10)

where λ1 and λ2 are regularization terms.

Theoretical Analysis
In this section, we present our theoretical results that show
the superiority of the ECNP and reveal the deeper connec-
tion between the proposed ECNPs and the NP models. These
theoretical results help to justify why ECNPs provide a more
principled way to conduct meta-learning over few-shot tasks
than the CNP family of models.

Theorem 1. The ECNP model with a hierarchical Bayesian
structure in the decoder is guaranteed to be more robust to
outliers in the training tasks as compared to the CNP models
that use a Gaussian structure.

The detailed proof is provided in the Appendix. Intu-
itively, when the model evidence is finite (i.e., αt < ∞),
the outliers will be assigned a lower weight than normal
data samples when evaluating the gradient for model up-
date. When αt → ∞, the model will behave similarly to
the CNP model and be less robust to outliers. In our model,
the hierarchical bayesian structure leads to the heavy tailed
t predictive distribution enabling outlier robustness. Similar
outlier robustness can, in theory, be introduced in the CNP
models by modifying the CNP decoder to directly parame-
terize the heavy distributions (e.g. Student t distribution) and
training to minimize the log likelihood under the new dis-
tribution. Empirical studies of such robust distributions for
CNP models can be an interesting future work. However,
such modeling would lack efficient and fine-grained uncer-
tainty quantification capabilities, a major focus of our work.

Theorem 2. The conditional neural process is one instance
of an evidential neural process when two of the evidential
hyperparameters meet the following conditions: (i) αt →
∞; (ii) αtvt = const.

A detailed proof is provided in the Appendix.

Interpretation of evidential parameters. The theoretical
results given above not only establish the important relation-
ship between ECNPs and CNPs but also unveil some key
insights on why ECNPs along with an evidential Bayesian
hierarchical prior is fundamentally more suitable for meta-
learning based few-shot learning. As discussed in Section
above, both evidential parameters vt and αt can be inter-
preted as evidence of the model (in the form of pseudo
counts). Meanwhile, the hierarchical structure of the NIG
prior as defined in (1) indicates that vt and αt capture the
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(a) Change of α (b) Change of v

Figure 3: Evidence change on a complex task

evidence at different levels, where vt corresponds to the ev-
idence collected for the global knowledge in the form of the
prior mean (i.e., γ) whereas αt provides evidence on the lo-
cal knowledge in the form of the variance (i.e., σ) on the
per data sample level. Theorem 2 shows that CNP primar-
ily focus on improving the local knowledge by allowing αt

to grow while keeping vt very small (due to αtvt = const).
While this has the effect of using an uninformative prior (by
assigning minimal evidence vt to the prior mean), it misses
the opportunity to incorporate useful global knowledge that
can be obtained through meta-learning from other relevant
tasks. While using an uninformative prior is encouraged in
a regular learning setting with sufficient training data, it is
inherently inadequate for the few-shot setting, where there
is not enough labeled data to support model training.

By leveraging a more expressive Bayesian hierarchical
structure, ECNPs effectively address the key limitations of
the CNPs as outlined above. In particular, they allow the ev-
idence vt to grow with the global knowledge, which is par-
ticularly important for more complex few-shot tasks where
the meta-knowledge could play a more critical role. Figure 3
shows the change in local (i.e., α) and global (i.e., v) evi-
dence for different number of context points in a complex
few-shot task (i.e., image completion and details are pro-
vided in the experiment section). It is interesting to see that
α grows fast and then shows a much slower increasing trend,
which implies that the local knowledge may already reach
the limit. On the other hand, v continues to grow, which in-
dicates that adding new context points can help retrieve more
relevant global knowledge acquired through meta-learning.
Meanwhile, the prediction error also continues to decrease
(see Figure 20 in the Appendix), which demonstrates effec-
tive knowledge transfer achieved by the ECNP model.

Experiments
Datasets. For function regression experiments, we con-
sider two synthetic datasets i) sinusoidal function regression
(Gondal et al. 2021), and ii) regression on sample functions
from a Gaussian process (Garnelo et al. 2018a). The sinu-
soidal regression function is of the form y = A sin(x +
ϕ), A ∈ [0.1, 5.0], ϕ ∈ [0, π] and x ∈ [−5, 5] and the GP
is defined by a squared-exponential kernel with length scale
of 0.6, variance of 1.0 and x ∈ [−2, 2]. Each function re-
gression task is defined by a K-shot context set with K + u
data points in the target set where u ∼ U(3,K), and U(a, b)
represents a uniform distribution in range (a, b). Moreover,

the function regression models are trained for 30,000 meta-
iterations using a batch of 8 tasks and evaluated on 2,000 test
tasks. For Image completion experiments, we consider three
benchmark datasets: MNIST (Deng 2012) CelebA (Liu et al.
2015), and Cifar10 (Krizhevsky, Hinton et al. 2009). The de-
tails of the benchmark datasets are summarized in Appendix
Table 4. Image completion task is created by randomly se-
lecting a subset of the set points (input-output pairs) from
an image. Specifically, each position in the image grid is the
input and the pixel value (e.g., the RGB value) is the out-
put. We randomly select 50 points to make the context set,
use the remaining points in the image to make the target set,
and train models for 50 epochs using a batch of 8 tasks, and
evaluate the model on the test set.

Baselines. We consider three baseline models: Neural Pro-
cesses (NP) (Garnelo et al. 2018b), Conditional Neural Pro-
cesses (CNP) (Garnelo et al. 2018a), and the Attentive Neu-
ral Process (ANP) (Kim et al. 2019) For a fair comparison
to the baselines, we consider the evidential equivalent of
the baselines with the same encoder and decoder architec-
tures. Specifically, for our evidential models, we consider
two variants: i) ECNP: evidential model with deterministic
path similar to CNP, and ii) ECNP-A: the evidential model
with multi-head attention mechanism in encoder similar to
ANP. Additional details of the model architecture and train-
ing are presented in the Appendix.

Performance Evaluation
In this set of experiments, we report the generalization per-
formance in terms of Mean Squared Error (MSE) along with
three uncertainty based evaluation metrics: Log Likelihood
(LL), Inclusion @K, and Uncertainty-Increase (Grover et al.
2019) for all the models on function regression and image
completion tasks. We consider Inclusion@K with K = 1
in Table 1 and Table 2. Inclusion and Uncertainty-Increase
have been developed to analyze and compare the uncertainty
estimates of NP based models. Additional details along with
comparisons are presented in the Appendix. We also em-
pirically verify their robustness to outliers for function re-
gression and image completion tasks. Limited by space, we
present ablation studies in the Appendix.

Function regression. In the function regression problem,
the model has to learn the underlying function based on
the limited information of the context set and the meta-
knowledge. Table 1 shows the results for 5-shot regression
experiments. Our model improves the generalization perfor-
mance compared to the the corresponding baseline model
across almost all the datasets. Moreover, when considering
the uncertainty metrics, as shown in Table 1 and Figure 4,
our model considerably improves over the baselines.

2D image completion. We consider image completion ex-
periments similar to (Eslami et al. 2018), where the model
needs to infer the underlying function f : [0, 1]2 → [0, 1]ch

(ch− number of channels) to make prediction for each im-
age pixel position in the target set given the context set.
Table 2 compares our model with the baselines for 50-shot
experiments. As can be seen, our model leads to compara-
ble to improved performance than corresponding baselines
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Dataset: Sinusoidal Regression GP Regression
Model MSE(↓) Inclusion@K(↑) Unc. Increase(↑) MSE(↓) Inclusion@K(↑) Unc. Increase(↑)
NP 0.1050±0.0200 0.192 ± 0.040 0.563 ± 0.005 0.348±0.0116 0.205 ± 0.019 0.686 ± 0.007
CNP 0.0458±0.0074 0.144 ± 0.025 0.590 ± 0.006 0.3158±0.0038 0.362 ± 0.027 0.783 ± 0.002
ANP 0.3561±0.1084 0.351 ± 0.046 0.785 ± 0.048 0.3219±0.0124 0.318 ± 0.014 0.875 ± 0.026
ECNP 0.0391±0.0078 0.205 ± 0.018 0.608 ± 0.013 0.3084±0.0014 0.435 ± 0.02 0.798 ± 0.003
ECNP-A 0.2932±0.0956 0.437 ± 0.044 0.814 ± 0.030 0.3258±0.0162 0.505 ± 0.038 0.875 ± 0.042

Table 1: Comparison on 5-Shot Regression Problem

(a) Sinusoidal Regression (b) GP Regression

Figure 4: Impact of K to Inclusion@K

in terms of MSE and log likelihood. We compare the un-
certainty behavior (using Inclusion@K (K = 1) and un-
certainty increase) of the representative CNP and the corre-
sponding ECNP models in Table 3. Additional results are
presented in the Appendix.

As can be seen in function regression and 2D image com-
pletion experiments, our model has better uncertainty char-
acteristics than the baselines which is mainly due to the
fine-grained and accurate uncertainty guidance capabilities
in our hierarchical model. Our model explicitly captures the
aleatoric and epistemic uncertainties through the evidence
parameters (β, α, v). Furthermore, the model is guided dur-
ing training to have accurate overall uncertainty via the ev-
idence regularization in (8), and accurate epistemic uncer-
tainty from the kernel regularization in (9). Such uncertainty
guidance leads to more accurate uncertainty performance in
our model. These results empirically validate our model’s
generalization performance and superiority over other com-
parison baselines.

Outlier robustness. Due to the hierarchical Bayesian
structure leading to a heavy tailed predictive distribution, our
model is theoretically guaranteed to be robust to outliers in
the training tasks. Here, we empirically validate the claim
by experimenting with 5-shot sinusoidal regression and 50-
shot MNIST image completion (results on other datasets and
settings are presented in the Appendix).

To make the noisy training task, we randomly select one
target point in all the training tasks and apply an additive
transformation yt = yt+o to make it an outlier (here o deter-
mines the outlier severity). We train the models on the noisy
tasks (i.e., tasks with outlier), and after training, we evaluate
on clean test set tasks. Figure 5 (a)-(b) shows the comparison
results of the ECNP and ECNP-A models with their corre-
sponding baselines of CNP and ANP models. Across both
experiments, ECNP models remain robust to the outlier as
their test set performance remains relatively unaffected even

0 5 10 15 20
Outlier Severity (o)

0.00

2.00

4.00

6.00

Te
st

 L
os

s

5-Shot
CNP Model
ANP Model
ECNP Model
ECNP-A Model

(a) Sinusoid

0 5 10 15 20
Outlier Severity (o)

0.04

0.05

0.05

0.06

0.06

0.07

Te
st

 L
os

s

50-Shot

CNP Model
ANP Model
ECNP Model
ECNP-A Model

(b) MNIST

Figure 5: Outlier robustness performance

for severe outliers. Such outlier robustness in our model can
be attributed to the heavy tailed predictive distribution that is
inherently introduced by the hierarchical structure. In com-
parison, the baseline models lack the required robustness
characteristics and their performance degrades severely as
the outlier becomes extreme. Such baseline models may re-
quire additional mechanisms to handle the outliers, some-
thing our model can automatically do. These results empir-
ically validate the robustness superiority for the proposed
ECNP model.

Effectiveness of Uncertainty Decomposition
In this set of experiments, we show that the proposed ECNP
models can capture fine-grained uncertainty to best support
few-shot learning through epistemic-aleatoric (EP-AL) un-
certainty decomposition that can enable active context set
construction and effective meta-knowledge transfer.
EP-AL decomposition. Our proposed model can perform
Epistemic-Aleatoric uncertainty decomposition for any test
task. Here, we compare the predicted uncertainty for the pro-
posed ECNP model with the respective CNP baseline in si-
nusoidal regression task. Both models are trained for 20,000
iterations using training tasks with data in range [−5, 5]. As
shown in Figure 6 (c)-(d), outside the training range (i.e.,
xt ∈ [5, 10]), prediction from both CNP and ECNP is in-
accurate as expected. The CNP model continues to remain
confident in regions far from the data whereas our ECNP
model correctly outputs high epistemic uncertainty in the re-
gions far away from the observed data.

Next, we experiment with noisy test tasks to analyze the
aleatoric uncertainty of our proposed model. We consider a
model trained on clean 5-shot regression tasks and evalu-
ate on 5-shot noisy test tasks. Specifically, we add random
Gaussian noise to the context set of the test tasks (yc =
yc + ζϵ, ϵ ∼ N (0, 1)) and vary the level of noise (i.e., ζ)
to study the model behavior. Figure 6 visualizes the impact
of the noise on the predicted performance (MSE) and the
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Dataset MNIST Cifar10 CelebA
Model MSE(↓) LL(↑) MSE(↓) LL(↑) MSE(↓) LL(↑)
NP 0.048±0.001 0.538±0.010 0.027±0.000 0.434±0.003 0.025±0.000 0.433±0.006
CNP 0.044±0.001 0.710±0.009 0.023±0.000 0.576±0.005 0.021±0.001 0.660±0.004
ANP 0.045±0.001 0.702±0.007 0.017±0.000 0.765±0.004 0.014±0.000 0.850±0.002
ECNP 0.041±0.002 0.734±0.014 0.022±0.001 0.601±0.004 0.020±0.000 0.694±0.004
ECNP-A 0.043±0.001 0.713±0.013 0.016±0.001 0.764±0.004 0.014±0.000 0.852±0.002

Table 2: Comparison on 50-Shot Image Completion Problems

Metric: Inclusion@K (↑)
Dataset CNP model ECNP model
MNIST 0.622 ± 0.001 0.828 ± 0.000
Cifar10 0.129 ± 0.005 0.144 ± 0.003
CelebA 0.133 ± 0.004 0.156 ± 0.003
Metric: Uncertainty Increase (↑)
Dataset CNP model ECNP model
MNIST 0.306 ± 0.000 0.524 ± 0.000
Cifar10 0.505 ± 0.005 0.531 ± 0.004
CelebA 0.519 ± 0.003 0.541 ± 0.003

Table 3: Comparison of CNP and ECNP models

(a) CNP (b) ECNP

(c) Sinusoidal Regression (d) GP Regression

Figure 6: (a)-(b) ECNP vs. CNP on a sinusoidal task; (c)-(d)
ECNP performance for noisy test tasks

model’s predicted aleatoric uncertainty for two datasets av-
eraged across 2000 test tasks. As expected, the model’s pre-
dictive accuracy decreases as tasks become more noisy. Our
proposed model accurately identifies the noisy tasks and out-
puts more aleatoric uncertainty as tasks become more noisy
showing the effectiveness of our model’s predicted aleatoric
uncertainty in identifying noisy tasks.
Active context set construction. The proposed ECNP
model can capture both aleatoric and epistemic uncertainty
in a single forward pass. We investigate the effectiveness
of the captured epistemic uncertainty in a context point se-
lection experiment. We randomly select a test image and
both models start with random 10 context points indicated
by the context (Figure 7), which represents the pixel posi-
tions that are included in the context set. CNP model and

Performance Comparison

Context Prediction EpistemicImage

Aleatoric

Figure 7: Active context set construction

ECNP model randomly select the next 100 context points.
ECNP-Active model iteratively queries the epistemic uncer-
tainty for different target positions and includes the queried
data with the greatest epistemic uncertainty in the context
set for the next iteration. By including the most informative
points in the context set using the epistemic uncertainty in-
formation, ECNP-Active performs significantly better than
the other models (Figure 7 (b)) illustrating the effectiveness
of our proposed model’s uncertainty.

Ablations Study and Additional Experiments
We carry out a detailed ablation study to investigate some
key model parameters. The results along with some addi-
tional illustrative examples are presented in the Appendix.

Conclusion
We propose evidential conditional neural processes, that can
conduct epistemic-aleatoric uncertainty decomposition in
few-shot learning. ECNPs introduce a hierarchical Bayesian
structure to replace the standard Gaussian distribution. The
hierarchical bayesian structure enables the model to quan-
tify fine-grained uncertainty in an efficient way. Moreover,
our theoretical results reveal a deep connection with the
CNP models and further justify why a richer hierarchical
structure provides a more principled way to capture the
meta-knowledge through higher-order priors, making it fun-
damentally more suitable for meta-learning over few-shot
tasks. Experiments over various 1D regression and 2D im-
age completion tasks demonstrate the superiority of our pro-
posed model and its uncertainty capabilities.

9395



Acknowledgements
This research was supported in part by an NSF IIS award
IIS-1814450 and an ONR award N00014-18-1-2875. The
views and conclusions contained in this paper are those of
the authors and should not be interpreted as representing any
funding agency.

References
Amini, A.; Schwarting, W.; Soleimany, A.; and Rus, D.
2020. Deep evidential regression. Advances in Neural In-
formation Processing Systems, 33: 14927–14937.
Bateni, P.; Goyal, R.; Masrani, V.; Wood, F.; and Sigal, L.
2020. Improved few-shot visual classification. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 14493–14502.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recogni-
tion and machine learning, volume 4. Springer.
Bruinsma, W. P.; Requeima, J.; Foong, A. Y.; Gordon, J.;
and Turner, R. E. 2021. The Gaussian neural process. arXiv
preprint arXiv:2101.03606.
Charpentier, B.; Borchert, O.; Zügner, D.; Geisler, S.; and
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