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Abstract

The model identifiability is a considerable issue in the unsu-
pervised learning of disentangled representations. The PCA
inductive biases revealed recently for unsupervised disentan-
gling in VAE-based models are shown to improve local align-
ment of latent dimensions with principal components of the
data. In this paper, in additional to the PCA inductive biases,
we propose novel geometric inductive biases from the man-
ifold perspective for unsupervised disentangling, which in-
duce the model to capture the global geometric properties of
the data manifold with guaranteed model identifiability. We
also propose a Geometric Disentangling Regularized AutoEn-
coder (GDRAE) that combines the PCA and the proposed ge-
ometric inductive biases in one unified framework. The exper-
imental results show the usefulness of the geometric inductive
biases in unsupervised disentangling and the effectiveness of
our GDRAE in capturing the geometric inductive biases.

1 Introduction
Learning disentangled representation has attracted consider-
able research interest in the field of representation learning.
Disentangled representation is considered to be interpretable
with each dimension relevant to one generative factor of
the data yet irrelevant to other generative factors (Higgins
et al. 2018; Liu et al. 2021). Disentangled representations are
considered to be more generalizable (Van Steenkiste et al.
2019), semantically meaningful, and thus useful for various
downstream tasks (Bengio, Courville, and Vincent 2013).

The unsupervised learning of disentangled representa-
tions is more preferable than a supervised manner since ac-
quiring ground-truth labels of generative factors is expen-
sive. Given an unlabelled dataset, unsupervised disentan-
gling methods aim to learn a generative model that aligns
latent dimensions with ground-truth generative factors (Hig-
gins et al. 2017). Classical methods such as PCA (Wold,
Esbensen, and Geladi 1987) and ICA (Comon 1994; Theis
2006) are based on algebraic and statistical approaches, and
more recent methods are based on neural network architec-
tures and deep learning approaches (Zietlow, Rolinek, and
Martius 2021), such as Generative Adversarial Nets (Good-
fellow et al. 2014) (GANs) (Chen et al. 2016) and Varia-
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tional Autoencoders (Kingma and Welling 2013; Rezende,
Mohamed, and Wierstra 2014) (VAEs). Compared to other
methods, VAE-based models dominate unsupervised disen-
tangling, and various VAE variants (Higgins et al. 2017; Kim
and Mnih 2018; Chen et al. 2018) are proposed. However,
the identifiability issue of VAE-based models is pointed out
by (Locatello et al. 2019a), namely unsupervised disentan-
gling is fundamentally impossible without inductive biases
both on the models and datasets. To tackle this issue, re-
cent works turn to employing weak supervision (Shu et al.
2020; Bouchacourt, Tomioka, and Nowozin 2018; Gabbay
and Hoshen 2019; Hosoya 2019; Chen and Batmanghe-
lich 2020; Locatello et al. 2019b; Klys, Snell, and Zemel
2018; Paige et al. 2017), altering the variational family and
prior distribution (Kumar and Poole 2020; Mathieu et al.
2019), and introducing auxiliary variables (Kim, Guerrero,
and Pavlovic 2021; Khemakhem et al. 2020; Mita, Filip-
pone, and Michiardi 2021; Hyvarinen, Sasaki, and Turner
2019; Hälvä et al. 2021). Another line of research focuses
on revealing inner mechanisms and inductive biases (Ridge-
way 2016) for VAE-based models, and the PCA inductive
biases are demystified (Rolinek, Zietlow, and Martius 2019;
Zietlow, Rolinek, and Martius 2021; Bao et al. 2020) re-
cently. It has been analyzed that the PCA inductive biases
induce VAEs to improve local alignment of latent dimen-
sions with principal components of the data (Zietlow, Ro-
linek, and Martius 2021; Rakowski and Lippert 2021). In
this paper, we propose novel geometric inductive biases for
unsupervised disentangling that induce the model to capture
the global geometric properties of the data manifold, and the
model identifiability is proven to be rigorously guaranteed.
We also propose an unsupervised disentangling framework
named Geometric Disentangling Regularized AutoEncoder
(GDRAE), which combines the PCA and the proposed geo-
metric inductive biases in one unified framework.

In the remainder of this paper, we introduce our proposed
geometric inductive biases and GDRAE for unsupervised
disentangling in Sec. 2-3, and discuss their relations to exist-
ing works in Sec. 4. We show experimental results in Sec. 5,
and conclude the paper in Sec. 6.

2 Geometric Inductive Biases
We first briefly introduce some fundamentals of Riemannian
geometry. For a thorough reference, refer to (Petersen 2006).
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Given a manifold M and an open set U ⊂ M, if there exists
an open set U ′ of K-dimensional Euclidean space RK and
a homeomorphism φ : U → U ′, the pair (U,φ) is called
a coordinate chart of M. ∀p ∈ U , the local coordinate is
given by φ (p) =

(
z1 (p) , z2 (p) , · · · , zK (p)

)
∈ RK , and

the tangent vector of the coordinate curve ∂
∂zi : Cr → R is

defined as ∂
∂zi (f) ≜

∂f◦φ−1

∂zi , ∀f ∈ Cr, where f : U → R
is a Cr function if it has r order continuous derivatives. The
tangent space TpM is the set of all tangent vectors at p, and
TM ≜ ∪p∈MTpM. The tangent bundle π : TM → M is
a mapping that maps each tangent vector of TpM to p, and
a section s : M → TM is a mapping such that π ◦ s = id.
A set of sections {si}Ki=1 is a frame field if {si (p)}Ki=1 is a
basis of TpM at ∀p ∈ M. A tangent vector field on M is
a mapping X : M → TM such that X (p) ∈ TpM, ∀p ∈
M, and X (M) denotes the set of all tangent vector fields on
M. The connection is a mapping ∇ : X (M) × X (M) →
X (M) and ∇XY gives the covariant derivative of Y along
X . Given γ : I → M as a smooth curve where I is an open
interval, X ∈ X (M) along γ is parallel if ∇γ′(t)X ≡ 0.

Notations We then introduce mathematical notations used
throughout the paper. We consider decoders f : Z → RD,
where the latent space Z ≜ RK ⊂ RK with R ≜ [0, r],
K ⩽ D. Given z ∈ RK , we define z∨j ∈ RK where zj∨j =

zj and zl ̸=j
∨j = 0. Given t ∈ R, we define t∧j ∈ RK where

tj∧j = t and tl ̸=j
∧j = 0. We use [k] ≜ {1, 2, · · · , k}.

Model Identifiability Definition Similar to (Khemakhem
et al. 2020), we firstly provide the Def. 1 of an equivalence
relation between decoders to depict the model identifiability
in Def. 2. Intuitively speaking, given two decoders f, g in
an identifiable set Θ, g can be obtained by rearranging la-
tent dimensions (performed by P ) of f and redefining how
each latent dimension affects the respective generative factor
(performed by φ) based on f . For example, consider f gen-
erates human face images, where two different latent dimen-
sions zi and zj control the azimuth and illumination of faces,
respectively, and the azimuth changes from −45◦ to 45◦ as
zi changes from 0 to r, while the illumination changes from
dark to light as zj changes from 0 to r. For g, it could be
that zi controls the illumination while zj controls the az-
imuth (i.e., the two latent dimensions are exchanged), and
the azimuth changes from 45◦ to −45◦ as zj changes from 0
to r while the illumination changes from light to dark as zi
changes from 0 to r (i.e., the correspondence between val-
ues of latent dimension and factors are also inverted). The
change between f and g does not involve latent space rota-
tions, which is coincident with the axes-preserving property
proposed in (Rolinek, Zietlow, and Martius 2019).
Definition 1. Consider two decoders f, g : Z → RD, the
equivalence relation ∼ between f and g is defined as

f ∼ g ⇐⇒ ∃P,φ, s.t. g = f ◦ φ ◦ P, (1)

where P ∈ RK×K is a permutation matrix, and

φ (z) ≜
(
φ1

(
z1
)
, · · · , φK

(
zK

))
, ∀z ∈ Z (2)

with φj maintaining a bijection from R to R.

Definition 2 (model identifiability). Consider decoders set
Θ ≜

{
f : Z → RD

}
. We say that Θ is identifiable ⇐⇒

∀f, g ∈ Θ, f ∼ g.

2.1 α-Structure
We provide the Def. 3 of α-structure and the Thm. 1 claim-
ing the model identifiability induced by the α-structure in-
ductive biases (see supplementary for proof). As indicated
by (Locatello et al. 2019a), the unsupervised learning of dis-
entangled representation is fundamentally impossible with-
out inductive biases both on the learning approaches and
the datasets (Locatello et al. 2019a), we demonstrate that
α-structure specifies inductive biases both on the data mani-
fold and the model, hence it allows identifiable unsupervised
disentangled representation learning. In terms of inductive
biases on data manifold M, Eq. (3) essentially implies that
there exists a global coordinate chart

(
M, f−1

)
such that

the tangent vector of the coordinate curve zj (i.e., ∂
∂zj |p) at

any p ∈ M is only determined by zj (p), which is equiva-
lent to saying that M is spanned by a set of curves. An in-
tuitive demonstration is present in Fig. 1(a). In terms of the
inductive biases on the decoder, we show that α-structure
implies a model prototype as stated in Prop. 1 (see supple-
mentary for proof), where Eq. (4) indicates that α-structure
decoders should be those generative models that each latent
dimension affects generated samples independently, which
constitutes the inductive biases on the model.
Definition 3 (α-structure). Given a C2 bijective mapping
f : U → RD where U ⊃ Z is an open set, its generative
manifold restricted on Z is denoted as M ≜ f (Z). We say
that f and M satisfy α-structure, or f and M is α-related,
if the frame field

{
∂

∂zj

}K

j=1
satisfies

∂

∂zj

∣∣∣
p
=

∂

∂zj

∣∣∣
f(zj

∧j(p))
, ∀p ∈ M, j ∈ [K] . (3)

Theorem 1 (α-identifiability). Given an α-structure mani-
fold M, we denote ΘM

α ≜ {f |f is α-related to M}. Then
ΘM

α is identifiable.
Proposition 1 (α-structure model prototype). f ∈ ΘM

α ⇐⇒
∃p ∈ M, C2 bijective mappings

{
fj : U → RD

}K

j=1
with

U ⊃ Z being an open set, such that

f (z) = p+
K∑
j=1

fj

(
zj∧j

)
, ∀z ∈ Z. (4)

Though the identifiability of α-structure models is guar-
anteed, one may concern if the α-structure inductive biases
can be applied to unsupervised disentangling in real scenar-
ios, since not only the inductive biases on the data mani-
fold may not be applicable to certain datasets (i.e., it is hard
to satisfy that the data manifold M is spanned by a set of
curves), but also the inductive biases on the decoder (i.e.,
Eq. (4)) can restrict the flexibility of the decoder. Though
the α-structure inductive biases are not universally applica-
ble to real scenarios, we observe some cases where the α-
structure inductive biases can be applied. We consider im-
ages datasets D =

{
x ∈ RH×W×C

}
. For certain generative
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(a) α-structure manifold. (b) Applicability in 3DShapes dataset.

Figure 1: We provide a demonstrative 2D α-structure manifold M as in Fig. 1(a). Let
(
M, f−1

)
be a global coordinate chart of

M, then ∀p ∈ M, j ∈ [2], the tangent vector of the coordinate curve zj (i.e., sj (p) ≜ ∂
∂zj |p) is identical to the corresponding

tangent vector of the coordinate curve zj at the “edge” of the manifold (i.e., sj (pj) = ∂
∂zj |f(zj

∧j(p))
), which means that M is

spanned by two edge curves γ1 (t) and γ2 (t). In Fig. 1(b), we give a case of real data to which the α-structure is applicable by
using the 3DShapes (Burgess and Kim 2019) dataset. For factors object hue and wall hue, they affect disjoint subspaces of an
image, hence images varies only in these factors can be depicted by an α-structure data manifold.

factors of certain datasets, different factors only affect dis-
joint subspaces of RH×W×C , so in such a case Eq. (4) is
permitted when different latent dimensions zj align with dif-
ferent factors. For example, given a human face image from
the CelebA (Liu et al. 2015) dataset, the factors of smile de-
gree and hair color may affect disjoint subspaces of the im-
age, since the spatial areas of mouth and hair are disjoint.
For the 3DShapes (Burgess and Kim 2019) dataset, samples
varying only in floor hue, wall hue and object hue can be
depicted by an α-structure manifold, since spatial areas af-
fected by these factors are also disjoint (see Fig. 1(b)). We
provide experimental results demonstrating the applicability
of the α-structure inductive biases in real scenarios in Sec. 5.

2.2 β-Structure
We provide the Def. 4 of β-structure and the Thm. 2 guar-
anteeing identifiability (see supplementary for proof). Like
α-structure, the β-structure also specifies inductive biases
both on the data manifold and the decoder. In terms of the
inductive biases on the data manifold M, Eq. (6) essentially
implies that there exists a global coordinate chart

(
M, f−1

)
such that starting from any p ∈ M, the tangent vector of the
coordinate curve zj (i.e., ∂

∂zj ) along any smooth curve γ is
parallel, where

γ : I → M, s.t. zj ◦ γ (t) = zj (p) , ∀t ∈ I ⊂ R (5)

is a curve on the manifold such that zj is equal for all curve
points. We refer to this inductive biases on M as the paral-
lel transport property of M. We provide an intuitive demon-
stration in Fig. 2(a). To capture the parallel transport prop-
erty of M, the decoders should be those generative models
satisfying Eq. (6), which is the inductive biases on decoders.
Definition 4 (β-structure). Given a smooth bijective map-
ping f : U → RD where U ⊃ Z is an open set, we denote
M ≜ f (Z) as its generative manifold restricted on Z . Let
∇ be the Levi-Civita connection of M. We say that f and

M satisfy β-structure, or f and M is β-related, if

∇ ∂

∂zi

∂

∂zj
≡ 0, ∀i, j ∈ [K] ∧ i ̸= j. (6)

Theorem 2 (β-identifiability). Given an β-structure mani-
fold M, we denote ΘM

β ≜ {f |f is β-related to M}. Then
ΘM

β is identifiable.

Starting from p ∈ M and along γ (Eq. (5)), the tangent
vector ∂

∂zj is required to be identical for the α-structure,
while parallel transport is allowed for the β-structure. Hence
the β-structure inductive biases offer more flexibility both
on the data manifold shape and the decoder, and is more ap-
plicable in real scenarios. As shown by (Shao, Kumar, and
Thomas Fletcher 2018), for images a, b and c from real data
manifold such as CelebA (Liu et al. 2015) and SVHN (Net-
zer et al. 2011), parallel transport finds an image d that is
related to c in the same semantic manner as a is related to
b (Shao, Kumar, and Thomas Fletcher 2018), and such an
analogy usually changes the same interpretable factors of
the image. For example, let a, b and c be human face im-
ages with the factors (blond hair, mouth closed), (blond hair,
mouth open) and (black hair, mouth closed), respectively,
then d could be an image with factors (black hair, mouth
open) (Shao, Kumar, and Thomas Fletcher 2018). Hence the
parallel transport property (Eq. (6)) of the data manifold is
reasonable and applicable in real scenarios, and a decoder
capturing this property tends to align latent dimensions zj

with generative factors and thus disentangling. See Fig. 2(b)
and experiments in Sec. 5 for applicability demonstration of
the β-structure inductive biases.

3 The Model
In this section, we introduce our Geometric Disentangling
Regularized AutoEncoder (GDRAE) that combines the PCA
and the proposed geometric inductive biases in one unified
framework. Based on the above introduction in Sec. 2, the
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(a) β-structure manifold. (b) Applicability in 3DFaces dataset.

Figure 2: We provide a demonstrative 2D β-structure manifold M as in Fig. 2(a). Let
(
M, f−1

)
be a global coordinate chart

of M, then ∀p ∈ M, the tangent vector of the coordinate curve z1 (i.e., s1 (p)) are parallel along the coordinate curve z2 (i.e.,
γ2 (t)), hence s1 (p) and s1 (p1) are parallel. Similarly, the tangent vector of the coordinate curve z2 (i.e., s2 (p)) are parallel
along the coordinate curve z1 (i.e., γ1 (t)), hence s2 (p) and s2 (p2) are parallel as well. Fig. 2(b) demonstrates how parallel
transport is applied in the 3DFaces (Paysan et al. 2009) dataset. Given images a and b such that b is obtained by changing
elevation from a, parallelly transporting such a change to c gives an image d that is obtained by similarly changing elevation
from c. The changing of azimuth can be parallelly transported as well.

α-structure inductive biases can be seen as a special case of
the β-structure inductive biases, hence we consider the β-
structure inductive biases when formalizing the training ob-
jectives of our GDRAE. To satisfy the β-structure (Eq. (6))
for the decoder, we provide the following Prop. 2 (see sup-
plementary for the proof). To combine the PCA inductive
biases, based on the analysis in (Zietlow, Rolinek, and Mar-
tius 2021) for VAE-based models, we found that given an
orthogonal Jacobian J with K distinct nonzero singular val-
ues {σj}Kj=1 as well as a bounded latent space Z , minimiz-

ing
∑K

j=1 σ
2
j captures the PCA inductive biases. See supple-

mentary for a thorough analysis on how our GDRAE cap-
tures both the geometric and the PCA inductive biases.
Proposition 2. Let J (z) ∈ RD×K be the Jacobian of the
decoder g at z ∈ Z , and {σj (z)}Kj=1 be K singular values
of J (z). Eq. (6) is satisfied, if ∀z ∈ Z , J (z) is orthogonal
and ∂σj

∂zi = 0, ∀i, j ∈ [K] ∧ i ̸= j.
We now introduce the proposed GDRAE and formalize

the training objective. Our model involves an encoder h :
M → Z , a decoder g : Z → M, and an auxiliary module
named singular value predictor s : Z → RK . The encoder
and decoder constitute an autoencoder, while the singular
value predictor is a proxy module used for manipulating the
singular values of the decoder Jacobian in an explicit manner
to capture the PCA and the geometric inductive biases.

Autoencoding with bounded Z Given unlabelled dataset
X =

{
x(i)

}
sampled from an unknown data manifold M,

we constrain g to maintain a correspondence between Z and
M by an autoencoding process with the following objective

min
g,h

Ex∈X

∥x− g ◦ h (x)∥22 + ∥h (x)∥ · 1h(x)̸∈Z︸ ︷︷ ︸
Lbound(x)

 ,

(7)
where we use Lbound (x) to constrain h (x) to be within Z ,
and 1h(x) ̸∈Z is equal to 1 when h (x) ̸∈ Z , and 0 otherwise.
It is notable that optimizing Eq. (7) does not guarantee that

h : M → Z is a surjection, namely there could exist z ∈ Z
such that g (z) ̸∈ M, which does not satisfy the prerequisite
that g is a bijection between Z and M (see Fig. 3(a)). How-
ever, combined with the Ls norm regularization introduced
below, minimizing Eq. (7) leads to a bijection g between Z
and M (also see Fig. 3(a) for an intuitive understanding).

Regularizing Jacobian Our model involves the following
Jacobian regularizations as aforementioned: 1) constraining
J (z) to be an orthogonal matrix with K distinct nonzero
singular values {σj}Kj=1, 2) constraining ∂σj

∂zi = 0, ∀i, j ∈
[K]∧i ̸= j (see Fig. 3(b) for an intuitive understanding), and
3) minimizing

∑K
j=1 σ

2
j . Our strategy is to employ an addi-

tional singular value predictor s : Z → RK as a proxy mod-
ule where s (z) regresses to the ground-truth singular values
{σj (z)}Kj=1. In such a case, ∂σj

∂zi
= 0 can be intrinsically

satisfied by choosing proper architecture of s, and minimiz-
ing

∑K
j=1 σ

2
j is also straightforward. Regarding constrain-

ing {σj}Kj=1 to be distinct, we empirically found that in the
case of autoencoding with bounded latent space Z , mini-
mizing

∑K
j=1 σ

2
j commonly leads to {σj}Kj=1 being distinct.

Finally, we incorporate constraining J (z) to be orthogonal
and the regression of s (z) into one objective as constraining

J̃ (z) ≜ J (z) diag

(
1

s1 (z)
, · · · , 1

sK (z)

)
(8)

to be orthogonal (i.e., J̃⊤ (z) J̃ (z) = I , where I is an iden-
tity matrix) due to the following Prop. 3 (see supplementary
for proof). In terms of constraining the Jacobian to be or-
thogonal, several approaches have been proposed by recent
works (Qi et al. 2018; Karras et al. 2020). Given z ∈ Z ,
we use Lortho (z) to denote the regularization to constrain
J̃ (z) to be orthogonal. Due to space limitation, we provide
the implementation details of Lortho (z) in supplementary.

Proposition 3. Given z ∈ Z , J̃⊤ (z) J̃ (z) = I ⇒ J (z) is
orthogonal and sj (z) = σj , j ∈ [K].
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(a) Intuitively understanding Lbound and Ls norm. (b) Intuitively understanding ∂σj

∂zi
= 0, ∀i ̸= j.

Figure 3: We provide an intuitive understanding on the training objectives by considering 2D manifolds residing in 2D Euclidean
space, namely K = D = 2. In Fig. 3(a), g1 (resp., g2) maintains a bijection between Z ′

1 and M1 (resp., Z ′
2 and M2), and the

two latent directions z1 and z2 and their induced directions on the manifold are plotted using red arrow lines and blue arrow
lines, respectively. By using Lbound, we can constrain Z ′

1 and Z ′
2 to be subsets of Z . We observe that for both g1 and g2, Eq. (7)

is optimized (assume that h = g−1). However, the latent dimensions of g1 are not aligned with the directions of the generative
factors of M1 (i.e., the vertical and the horizontal direction). By further minimizing Ls norm, the magnitude of σj =

∥∥∥∂g1
∂zj

∥∥∥
2

decreases, which makes Z ′
1 expand. In the case of Z ′

1 = Z , the rotation asymmetry of Z guarantees the alignment between
latent dimensions and the generative factors of the manifold given that the Jacobian is orthogonal, as shown by g2. In Fig. 3(b),
the coordinate curves of z1 and z2 are plotted by using red lines and blue lines, respectively, and the blue coordinate curves and
γ̃1 (t) are in the vertical and horizontal direction, respectively. Assume that ∂σ2

∂z1 > 0, we have
∥∥∥−−→p1p

′
1

∥∥∥
2
<

∥∥∥−−→p2p
′
2

∥∥∥
2
<

∥∥∥−−→p3p
′
3

∥∥∥
2
,

which results in a coordinate curve γ1 (t) that does not align with the generative factor (i.e., the horizontal direction).

The Overall Training Objective Summarizing the above
gives the overall training objective of our GDRAE

min
g,h

Ex∈X

∥x− g ◦ h (x)∥22︸ ︷︷ ︸
Lrecon(x)

+ ∥h (x)∥ · 1h(x)̸∈Z︸ ︷︷ ︸
Lbound(x)

+

min
g,h,s

Ez∈Z

∥s (z)∥22︸ ︷︷ ︸
Ls norm(z)

+Lortho (z)

 .

(9)
The model can be trained in an end-to-end manner by using
the above overall training objective.

4 Related Work
We discuss how the geometric inductive biases proposed in
Sec. 2 and the GDRAE for unsupervised disentangling pro-
posed in Sec. 3 relate to existing works.

Connection to PCA Inductive Biases Recently, the PCA
inductive biases for VAE-based architectures were demysti-
fied by (Zietlow, Rolinek, and Martius 2021; Rolinek, Ziet-
low, and Martius 2019). Specifically, driven by local noises,
VAE-based models recover the local principal components
of the data that are well aligned with the ground-truth gen-
erative factors for some classical datasets (Zietlow, Rolinek,
and Martius 2021). Such an alignment is done according to
the local structure of the data. Differing from this mecha-
nism, our proposed geometric inductive biases is shown to

focus on the global structure of the data, which is facilitated
by the following two aspects: 1) the latent space Z is a Carte-
sian products of K closed intervals R, which is proven to
play a vital role in resisting latent rotations (see supplemen-
tary), and 2) the two geometric structures proposed in Sec. 2
designate global properties of the data manifold, namely
how tangent vectors of coordinate curves at different points
relate to each other. As indicated by (Zietlow, Rolinek, and
Martius 2021), local structures can be perturbed by noise
and a small change of the local data distribution can poten-
tially lead to a disruptive change in the alignment of latent
dimensions with generative factors, while global variances
of data can still remain unchanged in such a case, see Fig. 4.
Therefore, global structures could be more reliable than lo-
cal structures in unsupervised disentangling.

Connection to RAEs Our proposed model is essentially
a deterministic autoencoder (Ghosh et al. 2020). The Regu-
larized Autoencoders (Ghosh et al. 2020) (RAEs) provide a
deterministic autoencoding framework, which alters the en-
coding process x → z from a reparameterizing (Kingma and
Welling 2013) trick (i.e., z ∼ N

(
µ, σ2

)
where µ, σ2 are

Gaussian parameters produced by the encoder h) to directly
outputting z = h (x). Accordingly, the KL divergence in the
ELBO (Hoffman and Johnson 2016) of VAE is replaced by
minimizing ∥h (x)∥22. However, two major problems could
be encountered. First, the mechanism of noise injection is a
key factor in regularizing the decoder (Ghosh et al. 2020),
and for a deterministic decoder, a small variation in latent
space could result in dramatic change of the reconstruction.
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Figure 4: Intuitive illustration for the PCA inductive biases.
For the data on the left (resp., right), the global and local
directions of generative factors are indicated by z (resp., z̃)
and w (resp., w̃), respectively. The PCA inductive biases in-
duce the model to align latent dimensions with local gener-
ative factors. Therefore, given that the local structure of the
data are well aligned with the ground-truth generative fac-
tors (i.e., the local and global directions of generative factors
are well aligned) for most real datasets (Zietlow, Rolinek,
and Martius 2021), the PCA inductive biases successfully
disentangles on these datasets. However, as shown on the
right, the PCA inductive biases fail to disentangle when the
ground-truth generative factors (i.e., z̃) does not align with
local directions of generative factors (i.e., w̃).

Second, due to the removal of the prior distribution, how
to perform efficient sampling becomes implicit. To tackle
the first problem, RAEs propose to smooth the latent space
by imposing regularizations on the decoder, such as spectral
normalization (Miyato et al. 2018), gradient penalty (Gulra-
jani et al. 2017), and weight decay (Krogh and Hertz 1992).
In our model (Eq. (9)), we also regularize the decoder by
minimizing its singular values, which is done by minimiz-
ing the Ls norm regularization. To tackle the second prob-
lem, RAEs perform density estimation on latent space ex-
post to regain efficient sampling ability (Ghosh et al. 2020).
In our model, we explicitly assign a bounded latent space
Z and constrain h (x) in Z instead of minimizing ∥h (x)∥22,
therefore such an ex-post estimation process is unnecessary.
Though it is not guaranteed that ∀z ∈ Z , g (z) ∈ M, where
g and M are the decoder and real dataset respectively, we
found that injecting Gaussian noise into z with fixed vari-
ance helps to alleviate this problem. Moreover, our bounded
latent space structure plays a vital role in our identifiability
analysis. In addition to the above, the Gaussian RAE (Kumar
and Poole 2020) (GRAE) provides a deterministic approxi-
mations of β-VAE, which also involves encouraging orthog-
onal Jacobian as our model does. They approximate such a
constrain by minimizing each Jacobian column norm (Ku-
mar and Poole 2020). In our approach, we incorporate con-
straining the decoder Jacobian to be orthogonal and the re-

Figure 5: The 2D sector manifold.

gression of the predicted singular values of the decoder Jaco-
bian to the ground-truth into one objective, which enables us
to conveniently manipulate singular values of decoder Jaco-
bian to capture the PCA and the geometric inductive biases.

5 Experiments
We provide experimental results showing that the proposed
geometric inductive biases can be exploited for unsupervised
disentangling, and that our GDRAE can capture the geomet-
ric inductive biases. Due to space limitation, we only provide
demonstrative results in this section, while more experimen-
tal results can be found in supplementary.

We firstly conduce experiments on a synthetic manifold,
showing that our proposed model is able to capture the geo-
metric inductive biases of the manifold while β-VAE cannot.
We use a 2D sector manifold M as in Fig. 5, where

M ≜
{
(x, y) |1 ⩽

√
x2 + y2 ⩽ 2

}
. (10)

The global coordinate chart (M, φ) is induced by the polar
coordinate transformation, namely

x =
(
φ−1

)1 (
v1, v2

)
= v1 cos v2, (11)

y =
(
φ−1

)2 (
v1, v2

)
= v1 sin v2, (12)

where
(
v1, v2

)
∈ [1, 2]×

[
0, π

2

]
. For M, the primary and the

secondary directions are along the angular direction (i.e., v2)
and the radial direction (i.e., v1) respectively, hence v1 and
v2 are two generative factors. In terms of inductive biases of
M, though global variances along v1 and v2 are distinct, the
microscopic structure around ∀p ∈ M does not induce local
PCA inductive biases. Hence for models successfully disen-
tangling v1 and v2, inductive biases other than local PCA
should be exploited. We also see that under (M, φ), M is a
β-structure manifold under mild distortion (see supplemen-
tary), hence a model is unable to capture the geometric in-
ductive biases of M if it fails to disentangle v1 and v2.

We present results on M obtained by using our GDRAE
and a β-VAE (Higgins et al. 2017) model in Fig. 6. For both
models, we set K = 2. For our model, we use a closed
latent space Z ≜ [−1, 1]

2, while for β-VAE, the standard
settings are chosen. In terms of disentangling, we visual-
ize that while our model aligns latent dimensions z1 and z2

with the radial direction (i.e., v1) and the angular direction
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(a) Recovered manifold using our proposed model. (b) Recovered manifold using β-VAE.

Figure 6: Results on the 2D sector manifold obtained by our proposed model and β-VAE. In Fig. 6(a), we visualize the global
coordinate chart

(
M̃, f−1

)
of the manifold M̃ recovered by our proposed model f . For better visualizing the correspondence

between coordinates of M̃ and latent space Z , the color of the coordinate curve of M̃ along latent dimension z2 changes from
blue to green as z1 changes from −1 to 1, and the color of the coordinate curve of M̃ along z1 changes from blue to red as
z2 changes from −1 to 1. In Fig. 6(b), the same visualizing method is used for manifold recovered by β-VAE restricted on the
latent region [−0.5, 0.5]

2. Additionally, we visualize latent codes of samples from M produced by the encoder. For β-VAE, the
Gaussian means of posterior latent distribution are plotted.

Figure 7: Visualization of latent traversal of an α-structure
model trained on a subset of the 3DShapes datset with three
generative factors: object hue, wall hue and floor hue. The
latent traversal is done by first randomly sample a latent code
z ∈ Z , then varying each latent dimension zi from −1 to 1
while keeping other latent dimension zj ̸=i fixed, and plot the
corresponding reconstruction.

(i.e., v2) respectively, β-VAE fails to do so. From Fig. 6(b),
we learn that the manifold recovered by β-VAE is irregu-
lar, and no alignment between latent dimensions and gener-
ative factors is observed, though we have intensively tuned
hyper-parameters for training β-VAE. Hence we learn that
β-VAE is incapable of capturing the geometric inductive bi-
ases of M, since it fails to disentangle. Meanwhile, further
analysis in supplementary shows that our model exploits the
geometric inductive biases to disentangle. We also observe
that β-VAE is not able to perform efficient sampling on M.
Specifically, the decoded sample from a random latent code
sampled from the prior distribution can not be guaranteed
to locate on M, because from Fig. 6(b) we observe that la-
tent codes encoded from real samples distribute irregularly
in latent space, which is partially related to the posterior col-
lapse (Lucas et al. 2019a,b) problem of VAE. Meanwhile,
our model tackles such a problem by explicitly specifying a
bounded latent space Z = [−1, 1]

2, therefore, it can always
perform efficient sampling (see Fig. 6(a)).

We provide experimental results showing that the appli-
cability of α-structure in real datasets, and that α-structure
models can disentangle on α-structure manifold by exploit-
ing the α-structure inductive biases. We provide results of
an α-structure model (see Eq. (4)) trained on a subset of the
3DShapes (Burgess and Kim 2019) with generative factors:
object hue, wall hue and floor hue, see Fig. 7. The model
is constituted as in Eq. (4) (see supplementary for the de-
tailed process of model construction). From Fig. 7, we see
that the model aligns latent dimensions z1, z2 and z3 with
factors floor hue, wall hue and object hue respectively. Fur-
ther analysis in supplementary shows that the independence
of subdecoders (i.e., fj in Eq. (4)) is a key factor in encour-
aging alignment, which coincides the α-structure geometric
property as in Eq. (3). The above results show that the given
dataset can be depicted by an α-structure model, which ver-
ifies the applicability of α-structure in real data. It is also
shown that the α-structure inductive biases can be exploited
by an α-structure model for unsupervised disentangling.

6 Conclusion
In this paper, we propose two geometric inductive biases for
unsupervised disentangling with guaranteed model identifia-
bility from the manifold perspective. Our proposed geomet-
ric inductive biases induce the model to capture the global
geometric properties of the manifold, namely how tangent
vectors of coordinate curves are transported, which is differ-
ent from the PCA inductive biases that improve local align-
ment of latent dimensions with nonlinear principal compo-
nents based on the local structure of the data. We also pro-
pose the GDRAE model that combines the PCA and geo-
metric inductive biases in one unified framework. Empirical
results show the existence of the geometric inductive biases
in real data and verify the effectiveness of our model in cap-
turing the geometric inductive biases.
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