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Abstract

Training deep neural networks on large-scale datasets requires
significant hardware resources whose costs (even on cloud plat-
forms) put them out of reach of smaller organizations, groups,
and individuals. Backpropagation (backprop), the workhorse
for training these networks, is an inherently sequential pro-
cess that is difficult to parallelize. Furthermore, researchers
must continually develop various specialized techniques, such
as particular weight initializations and enhanced activation
functions, to ensure stable parameter optimization. Our goal
is to seek an effective, neuro-biologically plausible alterna-
tive to backprop that can be used to train deep networks. In
this paper, we propose a backprop-free procedure, recursive
local representation alignment, for training large-scale archi-
tectures. Experiments with residual networks on CIFAR-10
and the large benchmark, ImageNet, show that our algorithm
generalizes as well as backprop while converging sooner due to
weight updates that are parallelizable and computationally less
demanding. This is empirical evidence that a backprop-free
algorithm can scale up to larger datasets.

Introduction
At the heart of training artificial neural networks (ANNs)
is the calculation of adjustments that need to be made to
parameters given some data. This calculation is used in tan-
dem with an optimization procedure, such as a stochastic
hill-climbing procedure, to then alter the ANN’s actual param-
eters in order to ensure it makes better future predictions. This
adjustment process entails using an algorithm that conducts
credit assignment, i.e., the task of determining the contribu-
tion that individual neuronal units (within an ANN) make
to the system’s overall error. To conduct credit assignment
and compute weight updates in state-of-the-art networks to-
day, backprop (Rumelhart, Hinton, and Williams 1986) is
the popular algorithm of choice but has been long criticized
as neuro-biologically implausible (Crick 1989). While back-
prop provides a theoretical basis for training networks, i.e.
gradient descent, it also presents practical challenges, e.g.,
exploding/vanishing gradients (Glorot and Bengio 2010).

In order to deal with the problems posed by backprop, re-
searchers must resort to techniques and heuristics to stabilize
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learning, e.g., careful initialization of weights, often follow-
ing from a network-specific analysis of backprop’s learning
dynamics (Glorot and Bengio 2010; He et al. 2015; Sussillo
2014; Mishkin and Matas 2015) or modifying network struc-
ture, for example by using ReLU or mish instead of sigmoid
activations. Challenges such as these hampers the understand-
ing of new or naive users that want to exploit the benefits
of deep learning in novel applications. Furthermore, back-
prop is sequential; layers are updated in a predefined order,
reducing opportunities for model parallelization. This limits
models from exploiting the true processing power offered by
multi-CPU/GPU setups.

This paper seeks to address the above-mentioned short-
comings and demonstrate that a biologically-motivated al-
gorithm can scale up to large-scale architectures and large
datasets. Specifically, we present a procedure better suited to
parallelization, adjusting synaptic weights with local rules
(in particular, layers can be updated out of order). The contri-
butions of this work are as follows: (1) the algorithm, recur-
sive local representation alignment (rec-LRA), is proposed
for training large-scale ANNs. Results show that it handles
non-differentiable activations, converges faster than backprop,
and offers faster training for large-scale benchmarks (Ima-
geNet), and (2), strong generalization across several datasets,
including ImageNet, is demonstrated for models trained using
rec-LRA. Furthermore, we extend rec-LRA to work with per-
turbative neural networks (PINNs), offering a fast alternative
to convolution with fewer parameters.

Related Work
Connectionist researchers have long dreamed of designing
biologically plausible learning algorithms that offer stable per-
formance with improved generalization (Hinton 2002; Cha-
lasani and Principe 2013; Scellier and Bengio 2017; Alias
Parth Goyal et al. 2017; Sacramento et al. 2018; Nøkland and
Eidnes 2019; Krotov and Hopfield 2019). One key motivation
behind the development of alternative algorithms is the re-
moval of the required weight symmetry between forward and
backward synapses, which is an essential mechanism for back-
prop. This has also been referred to as the weight-transport
problem (Grossberg 1987; Liao, Leibo, and Poggio 2016), a
strong neuro-biological criticism of backprop and one source
of its practical issues. Algorithms such as random feedback
alignment (FA) (Lillicrap et al. 2016) and direct feedback
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alignment (DFA) (Nøkland 2016) have shown that learning
without this requirement is possible. Surprisingly, even if the
feedback pathway is partially decoupled and random, fixed
weights are used to transmit derivative signals backward. FA
replaces the transpose of the feedforward weights in back-
prop with a similarly-shaped random matrix while DFA di-
rectly wires the output layer’s pre-activation derivative to
each layer’s post-activation – both algorithms use these ran-
dom matrices to generate proxies for the partial derivatives
normally given by backprop. Under a proposed framework
known as discrepancy reduction (Ororbia II et al. 2017), it
was shown that these feedback loops are better suited for gen-
erating target representations, entirely removing backprop’s
global feedback pathway – a key idea that our algorithm builds
on. Algorithms such as target propagation (Lee et al. 2015;
Bartunov et al. 2018; Ahmad, van Gerven, and Ambrogioni
2020), which are also subsumed by the discrepancy reduction
framework, generate targets through auto-encoding inversion.

The idea of local learning, which has origins in the classical
frameworks of Hebbian (Hebb 1949), anti-Hebbian (Földiak
1990), and competitive learning (Rumelhart and Zipser 1985),
has slowly begun to gain increased attention in the training
of ANNs. Recent proposals have included decoupled neural
interfaces (Jaderberg et al. 2016), greedy relaxations of back-
prop (Belilovsky, Eickenberg, and Oyallon 2019), and others
(Balduzzi, Vanchinathan, and Buhmann 2015; Taylor et al.
2016). Furthermore, (Xie and Seung 2003) demonstrated that
neural models using local updates could efficiently conduct
supervised learning. Earlier approaches that employed local
learning included the layer-wise training procedures that were
once used to pre-train networks (Vincent et al. 2008; Bengio
et al. 2007; Lee et al. 2014; Ororbia II et al. 2015). The prob-
lem with these older approaches is that they were greedy–a
model was built from the bottom-up, freezing lower-level pa-
rameters as higher-level feature detectors were learned. How-
ever, modern generalizations have been proposed (Belilovsky,
Eickenberg, and Oyallon 2018) to solve these issues partially.

Recursive Local Representation Alignment
The Problem & Notation
While our algorithm could be applied to any neural archi-
tecture (including recurrent ones), in this paper, we focus
on ones that learn a nonlinear mapping 𝑓Θ from inputs 𝐱 to
outputs 𝐲. As usual, each input example can be modeled as
a matrix 𝐱 ∈ 𝐼×𝐶 (e.g., for images with 𝐼 pixels and 𝐶
channels) or vector 𝐱 ∈ 𝐼 (e.g., for grey-scale images with
𝐼 pixels or text document vectors with 𝐼 distinct tokens),1 or
even as tensors. On the other hand, the target 𝐲 ∈ 𝑌 can be
modeled as a one-hot encoding, where 𝑌 is the number of
distinct categories in a dataset.

The nonlinear mapping 𝑓Θ(𝐱) contains a set of learnable
parameters housed in the construct Θ, which are what al-
gorithms such as backprop are trying to modify to improve
predictive performance. In feedforward networks, a stack of
nonlinear transformations, or {𝑓𝓁(𝐳𝓁−1; 𝜃𝓁)}𝐿𝓁=1, is applied
to the input 𝐱. As an example, if the network is a multilayer

1Vectors and matrices are assumed to be in column orientation.

perceptron (MLP), each transformation 𝐳𝓁 = 𝑓𝓁(𝐳𝓁−1) pro-
duces an output 𝐳𝓁 from the value 𝐳𝓁−1 of the previous layer
with the help of a weight matrix 𝜃𝓁 = {𝑊(𝓁−1)→𝓁}. 𝑓𝓁 is
decomposed into two operations (biases omitted for clarity):

𝐳𝓁 = 𝜙𝓁(𝐡𝓁), 𝐡𝓁 = 𝑊(𝓁−1)→𝓁 ⋅ 𝐳𝓁−1 (1)
where 𝜙𝓁 is an activation function, 𝐳𝓁 ∈ 𝐻 is the post-
activation of layer 𝓁, and 𝐡𝓁 ∈ 𝐻 is the pre-activation vec-
tor of layer 𝓁. Note that matrix multiplication is denoted by
(◦ ⋅ ◦), a Hadamard multiplication is denoted by (◦⊗ ◦), and
(◦)𝑇 denotes the transpose operator (◦ is an argument). For
convenience, we set 𝐳0 = 𝐱 (referring to the input vector) and
𝐳𝐿 is the final output/prediction made by the stacked model
𝑓Θ(𝐱). We have also introduced special notation for our synap-
tic matrices, where 𝑊𝑖→𝑗 indicates that this parameter matrix
connects neurons in layer 𝑖 to 𝑗.

For classification, the output activation is the softmax, i.e.,
𝐲 = 𝜙𝐿(𝐯) = exp(𝐯)∕(

∑

𝑗 exp(𝐯[𝑗])), where 𝑗 indexes scalar
elements of a vector. Any element in the output vector, i.e.,
𝐲[𝑗] ≡ 𝜙𝐿(𝐯)[𝑗] = 𝑝(𝑗|𝐯), is the scalar probability of class 𝑗.
Generally, the goal of training is to adjust Θ to minimize the
output loss known as the negative Categorical log-likelihood,
or 𝐿(𝐲, 𝐯) = −

∑

𝑖
(

𝐲⊗ log 𝑝(𝐲|𝐯)
)

[𝑖].
The Learning Algorithm
The central idea behind our algorithm, recursive local repre-
sentation alignment (rec-LRA), is that every layer, not just
the output layer, has a target and each layer’s parameters are
adjusted so that its output moves closer to its target. While
this idea is also an aspect of prior work such as target-prop
(Carreira-Perpiñán and Wang 2012; Bengio 2014; Lee et al.
2015), one key difference between rec-LRA and these prior
efforts is that rec-LRA chooses targets that are in the “possi-
ble representation” of the associated layers. Hence, a layer’s
parameters are updated more effectively, i.e., a layer is not
forced to match a target that is impossible to achieve.2 Fur-
thermore, rec-LRA stands in contrast to recently-explored
feedback alignment algorithms (Lillicrap et al. 2016; Akrout
et al. 2019), i.e., instead of trying to approximate backprop’s
way of creating teaching signals, rec-LRA introduces a special
processing unit that creates perturbation signals locally. Thus,
rec-LRA can be viewed as an alternative to such approaches
and potentially as a complementary technique for most neu-
ral design choices, such as residual blocks and other layers
that might be helpful for problem-specific representations
that a deep network would need to acquire. Our algorithm,
which builds on ideas in (Ororbia and Mali 2019) (yet is far
more general, e.g., rec-LRA resolves the update-locking prob-
lem (Jaderberg et al. 2016) and is architecture-agnostic, even
providing an update scheme for convolution; see Appendix3
for a discussion of key differences), aims to break the credit
assignment problem into smaller, easier sub-problems that
are solvable in parallel with each other. It follows that this

2For example, target-prop uses noise injection (in an encoding-
decoding cycle), which could generate targets that “jump” far from
a layer’s current activity, yielding a jolting, high-magnitude pertur-
bation resulting in unstable optimization (Ororbia and Mali 2019).

3https://www.cs.rit.edu/~ago/reclra_aaai2023_appendix.pdf
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Figure 1: Rec-LRA error transmission circuitry. (a) Possible error transmission pathways (ordered left to right by recursive depth).
(b) Zoom-in of a target creation circuit for the area in the red box of the model to the left.

divide-and-conquer behavior facilitates distributed training if
high-performance computing resources are available.

To specify rec-LRA, we start by defining the function it
is meant to optimize, i.e., total discrepancy (Ororbia II et al.
2017), which is a “pseudo-energy function” that measures
the amount of overall system disorder, and can be seen as ap-
proximately optimizing variational free energy (Friston 2009)
(allowing for connections to made between our algorithm’s
objective and those of normative Bayesian brain models).
Specifically, this function computes the degree of mismatch
between the current activity of a neural model’s layers and the
activity of a set target activities (that rec-LRA determines).
These targets represent values that the network’s neuronal
processing elements should have taken to better predict as-
pects of its environment. Under the framework of discrepancy
reduction, a neural system is minimizing the weighted sum
of local representational mismatch functions:

(Θ) =
𝐿
∑

𝓁=1
𝜅𝓁

(

||𝐳𝓁 − 𝐲𝓁||𝑝
)𝑞 (2)

where {𝐲1,⋯ , 𝐲𝓁 ,⋯ , 𝐲𝐿} are the layer-wise targets and 𝐲𝐿is the output (i.e. it is 𝐲). The value 𝑝 sets the type of dis-
tance function or norm used to compute the mismatch be-
tween a state’s prediction and the actual target, i.e., 𝑝 = 2 is
the L2 (Euclidean) norm, and 𝑝 = 1 is the L1 (Manhattan)
norm (typically 𝑞 = 𝑝). For this study, we set 𝑝 = 𝑞 = 2,
choosing the Euclidean distance function as our representa-
tional mismatch function (though we remark that 𝑞 = 1 could
be useful to encourage neural activities to weakly embody/-
model homeostatic constraints in the brain, as its activity
patterns are typically quite sparse). The scalar 𝜅𝓁 is a local
coefficient that, while typically set to one for all layers, i.e.,
𝜅1 = ⋯ = 𝜅𝓁 = ⋯ = 𝜅𝐿 = 1, if set to values less than
one, one could simulate different time-scales of parameter
evolution within various levels of the model.

By taking derivatives of Equation 2 with respect to each
layer of neurons, one can derive vectors of special neurons
called “error neurons”, or 𝐞𝓁 (see Appendix for derivation).
These neurons measure the difference between the post-

activity values of one set of neurons 𝐳𝓁 with a corresponding
set of target activity values 𝐲𝓁 , which are motivated by neuro-
mechanistic predictive coding theory (Rao and Ballard 1999;
Clark 2013) (such as those that were identified as signaling
the detection of errors in the human medial frontal cortex
(Fu et al. 2019)). These error units form the backbone of a
two-phase learning process, using only forward operations: 1)
a target generation phase aided by the use of synaptic weights
that transmit mismatch signals across the system, and 2) a
local weight update that does not require knowledge of the
point-wise derivatives of the layer-wise activities.

One particularly powerful yet unexplored aspect of the dis-
crepancy framework is that the target generation process is not
constrained to be symmetrical to the feed-forward phase that
computes 𝑓Θ(𝐱). This means that, when conducting credit
assignment, error information is not constrained to trace back-
wards the same pathway taken by the signals that moved
forward through the network during inference. This contrasts
with backprop, which requires derivative information to move
back along a global feedback pathway that starts from the out-
put layer and back along the same weights used to carry infor-
mation forward, i.e., a specific error circuitry that follows from
applying the chain rule of calculus to the output cost function.
This feedback pathway is not only neuro-biologically implau-
sible, but it is the central cause of the well-known vanishing/-
exploding gradient problem (Glorot and Bengio 2010) since a
single error signal traversing back along the central informa-
tion propagation pathway of 𝑓Θ(𝐱) is constantly multiplied by
the local derivatives of each layer that it passes through. In our
learning framework, error signals are instead transmitted to
the regions of the subgraphs that require them through the use
of what we call skip-error connections, or special, learnable
synapses that carry error messages to neural activities that
require “correction” (greatly reducing the credit assignment
transmission length). Skip-error synapses facilitate the trans-
mission of mismatch signals computed by neurons at layer
𝑖 directly to any layer 𝑗, serving as a short-circuit pathway
to generate corrective perturbations to the activities directly
(this, as a result, resolves backprop’s update-locking problem
(Jaderberg et al. 2016)). One could also interpret these circuit
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pathways as “error highways”, similar to the forward skip
synapses used to improve stability in backprop-based ANNs
(Srivastava, Greff, and Schmidhuber 2015).

Under rec-LRA (some error pathways are depicted in Fig-
ure 1), targets can be likened to latent representations that
would be more desirable when predicting 𝐲 from 𝐱. For a
layer 𝑖 of neurons, a target is computed by taking the mis-
match computed by error neurons 𝐞𝑗 at layer 𝑗 in the network
and transmitted across a set of error synapses 𝐸𝑗→𝑖, yielding
a (vector) displacement signal (perturbation) that commu-
nicates to layer 𝑖’s error units 𝐞𝑖 just how much the layer’s
activity needs to be adjusted to better please the mapping
from 𝐱 to 𝐲. Formally, layer 𝑖’s target (𝐲𝑖) is computed as:

𝐲𝑖 = 𝜙𝑖(𝐡𝑖 − 𝛽𝐝𝑖) // Note: 𝐝𝑖 = 𝐸𝑗→𝑖 ⋅ 𝐞𝑗 (3)
𝐞𝑗 = 𝐳𝑗 − 𝐲𝑗 // Assuming 𝑝 = 𝑞 = 2 (4)

noting that all that is required for computing a target at 𝑖 is
its original pre-activation vector and the reuse of its post-
synaptic activation function 𝜙𝑖(◦). 𝛽 is the modulation factor
that controls the influence of the transmitted displacement
message from node 𝑗 to 𝑖. Again, notice that we explicitly
indicate the direction of transmission from region 𝑗 to 𝑖 with
the subscript notation 𝑗 → 𝑖 for error synapses 𝐸𝑗→𝑖. In an
MLP, 𝐡𝑖 would be the pre-activation of a layer 𝑖 (Equation 1)
with the post-activity of that layer 𝐳𝑖 computed by applying a
non-linearity, such as the linear rectifier, 𝜙𝑖(𝑣) = 𝑚𝑎𝑥(0, 𝑣),
or a non-differentiable one such as signum, 𝜙𝑖(𝑣) = 𝑠𝑖𝑔𝑛(𝑣).
However, 𝐡𝑖 could be the output of a complex function, i.e.,
a stack of convolution and max-pooling operators, as in the
case of a residual network. The error neurons 𝐞𝑖 at layer 𝑖 then
compare the target 𝐲𝑖 to the original activity 𝐳𝑖.Once a target for any layer has been computed, such as
the one for layer 𝑖 described above, the update for a synapse
follows a Hebbian-like form (the rule can also be derived
from the objective, as shown in the Appendix). For example,
if layer 𝑖 was connected to an earlier layer/processing stage
𝑘 by a dense weight matrix 𝑊𝑘→𝑖, then the update using the
target representation computed above would be:

Δ𝑊𝑘→𝑖 = (𝐳𝑖 − 𝐲𝑖) ⋅ (𝐳𝑘)𝑇 = 𝐞𝑖 ⋅ (𝐳𝑘)𝑇 . (5)
If the layers 𝑖 and 𝑘 were related by something other than
a dense matrix, such as a set of filters or noise maps, the
update rule could be readily adjusted to deal with the operation
under question (for example, the rule would follow the form
in the next sub-section). The error synapses 𝐸𝑗→𝑖 that relay
information from layer 𝑗 to 𝑖 are updated using a local rule:

Δ𝐸𝑗→𝑖 = 𝛾(−𝐝𝑖 ⋅ (𝐞𝑗)𝑇 ) (6)
where 𝛾 is a factor for controlling the strength of the error
synaptic adjustment (a value less than 1 is used to change the
error synapses more slowly than the forward ones).

So armed with the perspective above, rec-LRA, as a gen-
eral procedure, would first run the forward pass procedure
of 𝑓Θ(𝐱) and then compute the targets and mismatch signals
(Equations 3 & 4 ) which can immediately be used for weight
update calculations (Equations 5 & 6). The inherent paral-
lelism in the target and mismatch computations stems from
the fact that the error pathway need not be symmetrical to the

forward transmission one. If a point 𝑗 had error synapses con-
necting to points 𝑚 and 𝑛, the error transmission to each point
could happen in parallel since the displacement calculation at
𝑛 does not depend on that at 𝑚. This means that transmission
of mismatch signals to each of 𝑗’s neighbors can be done on
separate processors, if available. In Figure 1, this type of error
transmission circuitry is graphically depicted (Figure 1b).

For a feedforward architecture, rec-LRA would start op-
erating at the output layer 𝐿, then compute the targets for
the inner regions that the error neurons at 𝐿 connect to, and
then recursively call itself on each of those target regions,
subsequently computing the appropriate error neuron vec-
tors and further computing targets for regions that connect to
those regions, and so on and so forth. The base case for the
recursion’s termination would be when it encounters regions
that do not immediately connect to anywhere else. This is
formally depicted in rec-LRA’s architecture-agnostic algo-
rithmic form, the full details of which are provided in the
Appendix. It is important to note that the weight matrices
(both 𝑊𝑘→𝑖 & 𝐸𝑗→𝑖) that connect to a region 𝑖 can be readily
updated as soon as the local error neuron signals are available.
To exploit the potential speed offered by rec-LRA’s parallel
nature, one could allocate each recursive call to a cluster/set
of CPUs/GPUs dedicated to generating targets/updates for
various parts of the operator graph.

While rec-LRA is architecture-agnostic, one may note that
the design/wiring of its error pathways is flexible.To ease the
design process, a modeler could automate this design choice
by employing an outer search method, e.g., neural architec-
ture search (Elsken, Metzen, and Hutter 2018), or could craft
pathways that take into account the dimensionality of the
network’s layers and the number of processors available (see
Appendix for details on/analysis of wiring patterns). For ex-
ample, one might choose the middle wiring pattern (the depth
2 models) in Figure 1 if layers 2, 5, and 8 are bottleneck layers
(they contain low numbers of neurons) and 5 GPUs are avail-
able – rec-LRA would first use 3 GPUs to parallel compute
targets/mismatches for layers 8, 5, and 2 and then 5 GPUs
to parallel compute the targets/mismatches for the remaining
layers (1, 3, 4, 6, 7). Alternatively, if one is using an architec-
ture with repeating design “blocks”, e.g., a transformer for
language processing (Devlin et al. 2018) or a residual net-
work (He et al. 2016a) for image processing (studied in the
next section), one could use the model’s natural grouping of
processing layers to create an error transmission pathway.
Residual Neural Networks and rec-LRA
Residual neural networks (ResNets) (He et al. 2016a,b), re-
cently reaching state-of-the-art performance on popular vi-
sion benchmarks, are architectures that are composed of many
hidden layers wired together with a special forward connec-
tivity pattern. Specifically, residual networks utilize short-
cut connections that allow the propagation of information to
jump over some hidden layers, specifically, those that might
not prove useful in mapping 𝐱 to 𝐲. Formally, the layers in
the network that permit a residual mapping are defined as:
𝐳𝓁 = 𝑓𝓁(𝐳𝓁−1; 𝜃𝓁) + 𝐳𝓁−𝑔 where 𝑔 controls the length of the
gap/skip, typically of size 2 or 3. The idea behind this for-
mulation is that, in the event that fitting the transformation
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Algorithm 1: Rec-LRA (depth 2) for 𝑓Θ(𝐱) w/ residual gap 𝑔.
1: Inputs: 𝐱, 𝐲, Θ = {𝑊1,⋯ ,𝑊𝐿}, 𝛽, 𝛾 , 𝑔
2: Θ𝐸 = {𝐸𝐿→(𝐿−1),⋯ , 𝐸𝑖→𝑗 ,⋯ , 𝐸𝐿→1}3: ∕∕ Inference procedure for network 𝑓Θ(𝐱)4: function RUNMODEL(𝐱, Θ)
5: for 𝓁 = 1 to 𝐿 do
6: if 𝓁 mod 𝑔 ≡ 0 then
7: 𝐡𝓁 = 𝑊𝓁 ⋅ 𝐡𝓁−1 + 𝐳𝓁−𝑔8: else
9: 𝐡𝓁 = 𝑊𝓁 ⋅ 𝐡𝓁−1

10: 𝐳𝓁 = 𝜙𝓁(𝐡𝓁)
11: return  = {𝐳0, 𝐳1,⋯ , 𝐳𝐿}
12: ∕∕ Compute error neurons given activities
13: function CALCERRUNITS(𝐲, Θ, Θ𝐸 , )
14: 𝐲𝐿 = 𝐲, 𝐞𝐿 = 𝐳𝐿 − 𝐲𝐿15: for 𝓁 = (𝐿 − 1) to 1 do
16: if 𝓁 mod 𝑔 ≡ 0 then
17: 𝐝𝓁 = 𝐸𝐿→𝓁 ⋅ 𝐞𝐿18: else
19: 𝐝𝓁 = 𝐸𝓁+1→𝓁 ⋅ 𝐞𝓁+1
20: 𝐲𝓁 = 𝜙𝓁(𝐡𝓁 − 𝛽𝐝𝓁), 𝐞𝓁 = 𝐳𝓁 − 𝐲𝓁
21: return  = {𝐞1,⋯ , 𝐞𝐿}22: Υ = {𝐝1,⋯ ,𝐝𝐿}
23: ∕∕ Compute updates given error neurons
24: function COMPUTEUPDATES( , , Υ)
25: for 𝓁 = 1 to 𝐿 do
26: Δ𝑊𝓁 = 𝐞𝓁 ⋅ (𝐳𝓁−1)𝑇27: if 𝓁 > 1 then
28: if 𝓁 mod 𝑔 ≡ 0 then
29: Δ𝐸𝐿→𝓁 = −𝛾(𝐝𝓁−1 ⋅ (𝐞𝐿)𝑇 )
30: else
31: Δ𝐸𝓁+1→𝓁 = −𝛾(𝐝𝓁−1 ⋅ (𝐞𝓁)𝑇 )
32: Δ = {Δ𝑊1,Δ𝑊2,Δ𝐸2,⋯ ,Δ𝑊𝐿,Δ𝐸𝐿}33: return Δ

function 𝑓𝓁(𝐳𝓁−1; 𝜃𝓁) is too challenging, the residual mapping
(as indicated by the equation’s second term) will be easier to
optimize. This gives the network the choice of retaining the
input if it finds that a particular layer(s) is unnecessary. The
transformation 𝑓𝓁(𝐳𝓁−1; 𝜃𝓁) could range from a linear trans-
formation to a stack of fully-connected layers (as in Equation
1). In computer vision, it is often formulated as a residual
“block”, i.e., a stack of operations such as convolutions, relu
activations (𝐯 = 𝑚𝑎𝑥(0, 𝐯)), pooling, normalization layers,
etc. (see Appendix for the block we used).

Training a residual network with rec-LRA exploits the
block-based structure of the network to craft the error mes-
sage transmission pathways. Since a residual block is a stack
of nonlinear transformations, we can choose to embed a vec-
tor of error neurons at the output of each residual block and
wire them to the output error neurons at layer 𝐿. In the case of
the two residual blocks (see Appendix, for a visual depiction)
for the first level of recursion, we would wire the output layer
𝐿 directly (via 𝐸𝐿→𝑖) to any residual block output vector 𝐳𝑖.Wiring skip-error connections in this way means that rec-LRA

treats each residual block as a computational subgraph (map-
ping representation 𝐳𝑖−𝑔 to 𝐳𝑖). Once skip-error connections
wired to each block generate their desired target, rec-LRA will
recursively enter the block (with its own unique error path-
way) to compute its internal error neurons and weight updates,
independently of the blocks above and below, decoupling its
update calculation from the rest of the blocks. In treating the
residual blocks as decoupled computation sub-graphs, one
could view the output of each as a “meta-representation” (in
Figure 1a, for the middle model, these would be layers 2, 5,
and 9), or a post-activation layer that serves as the first focus
of LRA’s target generation process. The other layers within it
serve as computational “support” layers (layers 1, 3, 4, 6, 7 in
Figure 1a). Algorithm 1 depicts how rec-LRA operates on a
(fully-connected) residual network with skip 𝑔.

While rec-LRA in the form we have proposed works
strictly with strictly neuro-cognitively plausible learning rules
(Equations 5, 6 as used in Algorithm 1), one could opt to
mix other learning algorithms within the rec-LRA frame-
work. For instance, one could use rec-LRA to generate meta-
representation targets for a residual block output 𝐳𝑖 and em-
ploy a procedure like backprop (treating the block’s output
error neuron vector as a proxy for 𝜕

𝜕𝐳𝑖
) or Hebbian rules (Hebb

1949) to compute local updates (reducing the number of error
synaptic matrices needed, further saving on memory).
Replacing Convolution with Fixed Perturbation: To fur-
ther save on computation, we investigated replacing convo-
lution with a fixed noise “pseudo-convolution”, a mecha-
nism proposed in (Juefei-Xu, Naresh Boddeti, and Savvides
2018) (referred to as a “perturbative layer”). As was shown in
(Juefei-Xu, Naresh Boddeti, and Savvides 2018), the pseudo-
convolution is drastically faster than the actual convolutional,
while the generalization performance of the underlying model
using it is comparable to one with convolution. A pseudo-
convolution, in our framework, is computed as:

𝐳𝑐𝓁 =
𝑀
∑

𝑚=1
𝑤𝑚

𝓁𝜙𝑟(𝐳𝑚𝓁−1 + 𝐧𝑚𝓁−1),where, 𝜙𝑟(𝑣) = max(0, 𝑣)

where𝑤𝓁
𝑚 is a scalar weight that is applied to its corresponding

noise map. In the above formula, we see that 𝑀 noise maps
𝐧𝑚𝓁 must be cycled through in order to compute the final
desired output channel (map) 𝐳𝓁𝑐 . The idea is that, for the
price of the memory required to store the pre-generated 𝑀
noise maps (the elements of each are each sampled from a
centered Gaussian distribution, ∼  (0, 𝜎2)), we side-step
the need for learn-able kernel parameters for the convolution
operation (cutting out another convolution per filter update).
The only parameters in a pseudo-convolution that require
updating are the linear combination weights (one update per
scalar weight applied to each noise map). Under rec-LRA,
which would embed error units next to 𝐳𝑐𝓁 , the local update
for the 𝑚th noise map weight 𝑤𝓁

𝑚 would be:
Δ𝑤𝑚

𝓁 =
∑

𝑖

∑

𝑗

(

𝐞𝓁 ∗
(

𝜙𝑟(𝐳𝑚𝓁−1 + 𝐧𝑚𝓁−1)
)𝑇

)

[𝑖, 𝑗]

where the update is collapsed by summing over all dimensions
to get a final scalar update for the weight 𝑤𝑚

𝓁 .
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Figure 2: Error for networks on MNIST (left), FMNIST (middle), and ImageNet (using residual networks) (right).

Experiments
We experiment with the proposed rec-LRA and compare it
to results reported for other backprop-alternatives. Specifi-
cally, we adapted rec-LRA to fully-connected MLPs, convo-
lutional networks (CNNs), and residual networks (ResNet).
(See Appendix for experimental, computing infrastructure,
hyper-parameter, and code details as well as for metric stan-
dard deviation measurements.)
MNIST & Fashion MNIST: This dataset contains 28 × 28
images with gray-scale pixel values, i.e., range is [0, 255].
The only preprocessing applied was to normalize pixel values
to the range of [0, 1] by dividing them by 255. On the other
hand, Fashion MNIST (FMNIST) (Xiao, Rasul, and Vollgraf
2017) serves as a challenging drop-in replacement for MNIST.
Fashion MNIST (pre-processed the same as MNIST) contains
images depicting one of 10 clothing items. For both, training
had 60000 samples, testing had 10000, and 2000 validation
samples were drawn from the training set.

In Table 1, we report our classification error (note: all
scores for all results in this section are means over 10 trials,
see Appendix for standard deviations) on both training and
test sets for rec-LRA. Prior results have been reported for
backprop (BP) as well as relevant biologically-motivated al-
gorithms such as feedback alignment (FA), direct feedback
alignment (DFA), error-driven local representation alignment
(LRA-E), equilibrium propagation (E-Prop), and target prop-
agation (TP) ((Bartunov et al. 2018) and (Ororbia and Mali
2019)). For the rec-LRA results, we report 4 variations (all
had 5 layers, 256 units each), each using a different activation
function. To be comparable to prior work, the first variant of
rec-LRA uses hyperbolic tangent units (rLRA, tanh). The next
two variants used were linear rectifier units (rLRA, relu) and
exponential linear units (rLRA, elu) to demonstrate compati-
bility with popular activations. Finally, signum units (rLRA,
sign) were tested in order to investigate rec-LRA’s ability to
train non-differentiable networks. We observe that rec-LRA
outperforms all algorithms on FMNIST, including backprop.
On MNIST, rec-LRA outperforms all other gradient-free al-
ternatives but does not beat out backprop. While signum
networks do not reach the performance of the best networks,
they are not the worst performing, offering evidence that non-
differentiable networks can make viable classifiers.

MNIST FMNIST
Algorithm Train Test Train Test
BP 𝟎.𝟎𝟎 𝟏.𝟒𝟖 𝟏𝟐.𝟏𝟎 𝟏𝟐.𝟗𝟖
TP 0.00 1.86 21.078 19.66
E-Prop 7.59 9.21 16.56 20.97
LRA-E 0.16 1.97 𝟗.𝟖𝟒 𝟏𝟐.𝟑𝟏
FA 𝟎.𝟎𝟎 𝟏.𝟖𝟓 12.09 12.89
DFA 0.85 2.75 12.58 13.09
WM 0.08 1.99 𝟕.𝟎𝟎 𝟏𝟐.𝟒𝟗
rLRA, tanh 𝟎.𝟎𝟎 𝟏.𝟖𝟐 𝟔.𝟓𝟕 𝟏𝟏.𝟖𝟕
rLRA, relu 0.22 2.26 8.95 14.13
rLRA, elu 0.09 1.93 9.39 13.17
rLRA, sign (non-diff) 0.85 2.33 12.42 14.88

Table 1: MNIST & FMNIST error (lower is better). Note:
Non-diff refers to non-differentiable activation (rRLA only).

We further analyzed the training dynamics of more com-
plex, nonlinear networks, i.e., 8 layers of 256 logistic sigmoid
or tanh neurons, trained via backprop and rec-LRA over 100
epochs. Deep sigmoidal models are known to be difficult
to train due to the vanishing gradient problem (Glorot and
Bengio 2010), especially if Gaussian initialization is used.
In Figure 2, for MNIST and FMNIST, we observe that rec-
LRA successfully trains networks of both kinds of units with
the same initialization and converges sooner. The fact that
this result holds for the tanh units, which are friendlier to
backprop-centric optimization, offers some evidence of rec-
LRA’s potential robustness and stability.
CIFAR-10: The CIFAR-10 dataset has 50, 000 training and
10, 000 test images, across 10 categories. Images are of size
32 × 32 pixels. 5, 000 training samples were set aside to mea-
sure validation metrics. Global contrast normalization and
ZCA whitening were used to pre-process the images. While
CIFAR-10 is more challenging than MNIST/FMNIST, we
observe in Table 2 (a) that rec-LRA outperforms networks
trained with other gradient-free methods, i.e, target prop,
weight mirroring (WM) (Akrout et al. 2019), and feedback
alignment. Furthermore, rec-LRA comes close to the perfor-
mance of the backprop-trained model, evidencing its ability
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a) CIFAR-10 Train Test
TP 28.69 39.47
FA 27.46 37.44
DFA 28.74 44.41
CNN-BP 7.89 30.17
CNN-WM 11.79 36.57
CNN-rLRA 10.20 33.50
ResNet-BP 𝟓.𝟎𝟎 𝟓.𝟗𝟒
ResNet-WM 𝟓.𝟗𝟕 𝟕.𝟎𝟒
ResNet-rLRA 𝟓.𝟓𝟎 𝟔.𝟒𝟐

b) CIFAR-10 Valid Err # Ep
cResNet-BP 6.22 125
pResNet-BP 5.94 105
cResNet-WM 7.04 138
pResNet-WM 6.99 111
cResNet-rLRA 7.00 120
pResNet-rLRA 6.42 104

Table 2: CIFAR-10 (a) error & (b) conv (c) vs. pconv (p)
performance comparison (Ep = epoch).

ImageNet Top-1 Top-5
CNN, TP 98.34 94.56
CNN, FA 93.08 82.54
ResNet, FA+BP 73.01 51.24
ResNet, SS (Xiao et al. 2018) 37.91 16.18
ResNet, SS+BP (Xiao et al. 2018) 37.01 15.44
ResNet, FA+WM (Akrout et al. 2019) 𝟑𝟎.𝟐𝟎 N/A
ResNet, KP (Akrout et al. 2019) 𝟐𝟗.𝟐 N/A
CNN, BP 62.58 39.89
CNN, rLRA 73.69 49.78
ResNet, BP 𝟐𝟖.𝟏𝟓 𝟗.𝟖𝟏
ResNet, rLRA 𝟑𝟎.𝟕𝟖 𝟏𝟐.𝟎𝟒

Table 3: ImageNet generalization (Top-1 & Top-5) error.

to work on natural images. In the Appendix, we dissect the
networks’ predictions and visualize latent representations.

To test how performance would change when using either
convolution (conv) or pseudo-convolution (pconv), further
experiments were conducted on CIFAR-10. We use ResNet-
18 with 64 perturbation masks for using pconv (pResNet) and
64 filters for vanilla Resnet (cResNet) (models used skip 𝑔 =
2). The initial learning rate was set to 10−2 and a polynomial
decay scheme was used to decay the learning rate up to 1𝑒−5
(with a warm-up schedule set to 40). We trained models with
varying batch sizes and report the validation error in Table
2 (b), recording the number of epochs required for each to
achieve optimal results (“# Ep”). As seen in Table 2 (b), we
found that the performance difference in using pconv over
conv was negligible across batch sizes (but gained a speed-
up of roughly 0.73 seconds per mini-batch – note that tuned
implementations of 1𝑥1 conv would change the speed-up).
ImageNet: The large-scale benchmark ImageNet (Rus-
sakovsky et al. 2015), specifically the ILSVRC-2010 subset,
contains over 1.2 million images, of size 224 × 224, where
each classifies as one out of 1000 different categories. Given

that the number of classes is large, it is a convention to report
two types of error rates: top-1 and top-5. The top-5 error rate
is the fraction of test images for which the correct label is not
among the 5 classes considered most probable by the evalu-
ated model. In Table 3, we observe that rec-LRA-trained mod-
els outperformed ones trained via other gradient-free methods
and come quite close to the performance of the backprop-
trained architecture (for both top-1/top-5 test errors). We also
report the performance of the (best-performing) sign symme-
try (SS) method of (Xiao et al. 2018), which we outperform
although the margin of improvement is narrower (note that SS
also uses partial backprop), weight mirrors (WM), (Akrout
et al. 2019), and the classical Kolen-Pollack (KP) algorithm.
In Figure 2 (right), we see that rec-LRA does reach a lower
validation error sooner than backprop (though this result is
not as obvious as it was for MNIST/FMNIST). Furthermore,
rec-LRA converges more smoothly than a backprop-trained
ResNet. Finally, we measured wall-clock training time for
both networks to determine if rec-LRA training offered a
speed-up even though we implemented it in simulation with-
out distributed computing hardware (rec-LRA would run dra-
matically faster with parallelization). Notably, in terms of
total training run-time over 90 epochs using a small set of 8
V100 GPUs, the backprop ResNet took 3 hours and 45 min-
utes (min) to train (speed was about 2.5-2.7 min/epoch) while
rec-LRA took 2.127 min/epoch, training over the course of 3
hours and 12 min. Exploiting the inherent parallelism of rec-
LRA in implementation would significantly speed up training
(see Appendix for limitations).

We note that the state-of-the-art performance of deep net-
works on ImageNet is still better (Xie et al. 2019) than that
obtained by backprop/gradient-free algorithms such as our
own and in (Bartunov et al. 2018). However, our aim was to
show that a backprop-free algorithm can generalize on dif-
ficult, large-scale datasets, although integrating the modern-
day heuristics that have been used to carefully tune ImageNet
models would boost our networks’ performance further.

Conclusions
This paper proposed the neurobiologically-inspired learn-
ing algorithm, recursive local representation alignment (rec-
LRA), for training deep neural architectures. rec-LRA gener-
alizes as well as backpropagation (backprop) and outperforms
other current gradient/backprop-free procedures across sev-
eral datasets, notably on the massive-scale ImageNet. Further-
more, it offers improved convergence due to faster, paralleliz-
able weight updates, as shown in our experiments. As a result,
this work offers empirical evidence that a backprop-free learn-
ing procedure for artificial neural networks can indeed scale
up to larger datasets.
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