
Fast Saturating Gate for Learning Long Time Scales with
Recurrent Neural Networks

Kentaro Ohno, Sekitoshi Kanai, Yasutoshi Ida
NTT

{kentaro.ohno.tf, sekitoshi.kanai.fu, yasutoshi.ida.yc}@hco.ntt.co.jp

Abstract

Gate functions in recurrent models, such as an LSTM and
GRU, play a central role in learning various time scales in
modeling time series data by using a bounded activation func-
tion. However, it is difficult to train gates to capture extremely
long time scales due to gradient vanishing of the bounded
function for large inputs, which is known as the saturation
problem. We closely analyze the relation between saturation
of the gate function and efficiency of the training. We prove
that the gradient vanishing of the gate function can be miti-
gated by accelerating the convergence of the saturating func-
tion, i.e., making the output of the function converge to 0
or 1 faster. Based on the analysis results, we propose a gate
function called fast gate that has a doubly exponential con-
vergence rate with respect to inputs by simple function com-
position. We empirically show that our method outperforms
previous methods in accuracy and computational efficiency
on benchmark tasks involving extremely long time scales.

Introduction
Recurrent neural networks (RNNs) are models suited to pro-
cessing sequential data in various applications, e.g., speech
recognition (Ling et al. 2020) and video analysis (Zhu et al.
2020). The most widely used RNNs are a long short-term
memory (LSTM) (Hochreiter and Schmidhuber 1997) and
gated recurrent unit (GRU) (Cho et al. 2014), which has a
gating mechanism. The gating mechanism controls the in-
formation flow in the state of RNNs via multiplication with
a gate function bounded to a range (0, 1). For example, when
the forget gate takes a value close to 1 (or 0 for the up-
date gate in the GRU), the state preserves the previous in-
formation. On the other hand, when it gets close to the other
boundary, the RNN updates the state by the current input.
Thus, in order to represent long temporal dependencies of
data involving hundreds or thousands of time steps, it is
crucial for the forget gate to take values near the bound-
aries (Tallec and Ollivier 2018; Mahto et al. 2021).

However, it is difficult to train RNNs so that they have the
gate values near the boundaries. Previous studies hypothe-
sized that this is due to gradient vanishing for the gate func-
tion called saturation (Chandar et al. 2019; Gu et al. 2020),
i.e., the gradient of the gate function near the boundary is

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

too small to effectively update the parameters. To avoid the
saturation problem, a previous study used unbounded acti-
vation functions (Chandar et al. 2019). However, this makes
training unstable due to the gradient explosion (Pascanu,
Mikolov, and Bengio 2013). Another study introduced resid-
ual connection for a gate function to push the output value
toward boundaries, hence mitigating the saturation prob-
lem (Gu et al. 2020). However, it requires additional com-
putational cost due to increasing the number of parameters
for another gate function. For broader application of gated
RNNs, a more efficient solution is necessary.

To overcome the difficulty of training, we propose a novel
activation function for the forget gate based on the usual sig-
moid function, which we call the fast gate. Modification of
the usual sigmoid gate to the fast gate is simple and easy
to implement since it requires only one additional function
composition. To this end, we analyze the relation between
the saturation and gradient vanishing of the bounded activa-
tion function. Specifically, we focus on the convergence rate
of the activation function to the boundary, which we call
the order of saturation. For example, the sigmoid function
σ(z) = 1/(1 + e−z) has the exponential order of satura-
tion, i.e., 1−σ(z) = O(e−z) (see Fig. 1), and the derivative
also decays to 0 exponentially as z goes to infinity. When a
bounded activation function has a higher order of saturation,
the derivative decays much faster as the input grows. Since
previous studies have assumed that the decaying derivative
on the saturating regime causes the stuck of training (Ioffe
and Szegedy 2015), it seems that a higher order of satu-
ration would lead to poor training. Contrarily to this intu-
ition, we prove that a higher order of saturation alleviates
the gradient vanishing on the saturating regime through ob-
servation on a toy problem for learning long time scales.
This result indicates that functions saturating superexponen-
tially are more suitable for the forget gate to learn long time
scales than the sigmoid function. On the basis of this ob-
servation, we explore a method of realizing such functions
by composing functions which increase faster than the iden-
tity function (e.g., α(z) = z + z3) as σ(α(z)). We find that
the hyperbolic sinusoidal function is suitable for achieving a
higher order of saturation in a simple way, and we obtain the
fast gate. Since the fast gate has a doubly exponential order
of saturation O(e−e

z

), it improves the trainability of gated
RNNs for long time scales of sequential data. We evaluate

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9319

Figure 1: Function values and derivative of various bounded
activation functions. Sigmoid function σ (orange) expo-
nentially converges to 1 as z → ∞, since 1 − σ(z) =

1
1+ez ≈ e−z . Derivative also decays exponentially. Normal-
ized version of softsign function softsign(z) = z

1+|z| (blue)
converges to 1 more slowly. Fast gate (red) is proposed
gate function. Although gradient decays faster than sigmoid
function, it provably helps learning values near boundaries.

the computational efficiency and accuracy of a model with
the fast gate on benchmark tasks, including synthetic tasks,
pixel-by-pixel image classification, and language modeling,
which involve a wide range of time scales. The model with
the fast gate empirically outperforms a baseline LSTM and
other variants recently proposed for tackling the saturation
problem (Chandar et al. 2019; Gu et al. 2020) in terms of
accuracy and the convergence speed of training while main-
taining stability of training. Further visualization analysis of
learning time scales shows that our theory fits the learning
dynamics of actual models and that the fast gate can learn
extremely long time scales of thousands of time steps.

Our major contributions are as follows:

• We prove that gate functions which saturate faster actu-
ally accelerates learning values near boundaries. The re-
sult indicates that fast saturation improves learnability of
gated RNNs on data with long time scales.

• We propose the fast gate that saturates faster than the
sigmoid function. In spite of its simplicity, the fast gate
achieves a doubly exponential order of saturation, and
thus effectively improves learning of long time scales.

• We evaluate the effectiveness of the fast gate against re-
cently proposed methods such as an NRU (Chandar et al.
2019) and a refine gate (Gu et al. 2020). The results ver-
ify that the fast gate robustly improves the learnability for
long-term dependencies in both synthetic and real data.

For appendices referred hereafter, we refer to the arXiv
version of this paper (Ohno, Kanai, and Ida 2022).

Preliminaries
Time Scales in Gated RNNs
We review gated RNNs and their time scale interpre-
tation (Tallec and Ollivier 2018). We begin with an
LSTM (Hochreiter and Schmidhuber 1997), which is one
of the most popular RNNs. An LSTM has a memory cell
ct ∈ Rn and hidden state ht ∈ Rn inside, which are updated

depending on the sequential input data xt at each time step
t = 1, 2, · · · by

ct = ft � ct−1 + it � c̃t (1)
ht = ot � tanh (ct) (2)
ft = σ(Wfxt + Ufht−1 + bf) (3)
it = σ(Wixt + Uiht−1 + bi) (4)
c̃t = tanh(Wcxt + Ucht−1 + bc) (5)
ot = σ(Woxt + Uoht−1 + bo) (6)

where W∗, U∗ and b∗ are weight and bias parameters for
each ∗ ∈ {f, i, c, o}. The sigmoid function σ is defined as

σ(x) =
1

1 + e−x
. (7)

ft, it, ot ∈ (0, 1)n are called forget, input, and output gates,
respectively. They were initially motivated as a binary mech-
anism, i.e., switching on and off, allowing information to
pass through (Gers, Schmidhuber, and Cummins 2000). The
forget gate has been reinterpreted as the representation for
time scales of memory cells (Tallec and Ollivier 2018). Fol-
lowing that study, we simplify Eq. (1) by assuming c̃t = 0
for an interval t ∈ [t0, t1]. Then, we obtain

ct1 = ft1 � ct1−1 (8)

= f̄ t1−t0 � ct1−t0 , (9)

where f̄ = (
∏t1
s=t0+1 fs)

1
t1−t0 is the (entry-wise) geometric

mean of the values of the forget gate. Through Eq. (8), the
memory cell ct loses its information on data up to time t0
exponentially, and the entry of f̄ represents its (averaged)
decay rate. This indicates that, in order to capture long-term
dependencies of the sequential data, the forget gate is desired
to take values near 1 on average. We refer the associated time
constant1 T = −1/ log f̄ as the time scale of units, which
has been empirically shown to illustrate well the temporal
behavior of LSTMs (Mahto et al. 2021).

The above argument applies not only to an LSTM, but
also to general gated RNNs including a GRU (Cho et al.
2014) with state update of the form

ht = ft � ht−1 + it � h̃t, (10)

where ht, ft, it denotes the state, forget gate, and input gate,
respectively, and h̃t is the activation to represent new infor-
mation at time t. Here again, the forget gate ft takes a role
to control the time scale of each unit of the state.

Saturation in Gating Activation Functions
The sigmoid function σ(z) in the gating mechanism requires
large z to take a value near 1 as the output. On the other
hand, the derivative σ′(z) takes exponentially small values
for z � 0 (Fig. 1). Thus, when a gated model needs to learn
large gate values such as 0.99 with gradient methods, pa-
rameters in the gate cannot be effectively updated due to
gradient vanishing. This is called saturation of bounded ac-
tivation functions (Gulcehre et al. 2016). The behavior of

1An exponential function F (t) = e−αt of time t decreases by
a factor of 1/e in time T = 1/α, which is called the time constant.

9320

gate functions on the saturating regime is important for gated
RNNs because forget gate values need to be large to rep-
resent long time scales as explained above. That is, gated
RNNs must face saturation of the forget gate to learn long
time scales. Thus, it is hypothesized that saturation causes
difficulty in training gated RNNs for data with extremely
long time scales (Chandar et al. 2019; Gu et al. 2020).

Related Work
We outline the most related studies here and provide discus-
sion of other studies in Appendix A due to space limitation.

Several studies investigate the time scale representation
of the forget gate function to improve learning on data in-
volving long-term dependencies (Tallec and Ollivier 2018;
Mahto et al. 2021). For example, performance of LSTM lan-
guage models can be improved by fixing the bias parameter
of the forget gate in accordance with a power law of time
scale distribution, which underlies natural language (Mahto
et al. 2021). Such techniques require us to know the appro-
priate time scales of data a priori, which is often difficult.
Note that this approach can be combined with our method
since it is complementary with our work.

Several modifications of the gate function have been pro-
posed to tackle the saturation problem. The noisy gradient
for a piece-wise linear gate function was proposed to prevent
the gradient to take zero values (Gulcehre et al. 2016). This
training protocol includes hyperparameters controlling noise
level, which requires manual tuning. Furthermore, such a
stochastic approach can result in unstable training due to
gradient estimation bias (Bengio, Léonard, and Courville
2013). The refine gate (Gu et al. 2020) was proposed as an-
other modification introducing a residual connection to push
the gate value to the boundaries. It is rather heuristic and
does not provide theoretical justification. It also requires ad-
ditional parameters for the auxiliary gate, which increases
the computational cost for both inference and training. In
contrast, our method theoretically improves learnability and
does not introduce any additional parameters. Another study
suggests that omitting gates other than the forget gate makes
training of models for long time scales easier (Van Der West-
huizen and Lasenby 2018). However, such simplification
may lose the expressive power of the model and limit its ap-
plication fields. Chandar et al. (2019) proposed an RNN with
a non-saturating activation function to directly avoid the gra-
dient vanishing due to saturation. Since its state and mem-
ory vector evolves in unbounded regions, the behavior of the
gradient can be unstable depending on tasks. Our method
mitigates the gradient vanishing by controlling the order of
saturation, while maintaining the bounded state transition.

Analysis on Saturation and Learnability
We discuss the learning behavior of the forget gate for long
time scales. First, we formulate a problem of learning long
time scales in a simplified setting. Next, we relate the effi-
ciency of learning on the problem to the saturation of the
gate functions. We conclude that the faster saturation makes
learning more efficient. All proofs for mathematical results
below are given in Appendix C.

Problem Setting
Recall Eq. (8), which describes the time scales of the mem-
ory cell ct of an LSTM via exponential decay. Let the mem-
ory cell at time t1 be ct1 = λct0 with λ ∈ (0, 1). Requiring
long time scales corresponds to getting λ close to 1. There-
fore, we can consider a long-time-scale learning problem as
minimizing a loss function L that measures discrepancy of
ct1 and λ∗ct0 where λ∗ ∈ (0, 1) is a desired value close to 1.
We take L as the absolute loss for example. Then, we obtain

L = |ct1 − λ∗ct0 | (11)

= |f̄ t1−t0ct0 − λ∗ct0 | (12)

= ct0 |f̄ t1−t0 − λ∗|, (13)

using Eq. (8). Let zt = Wfxt + Ufht−1 + bf , so that ft =
σ(zt). Since we are interested in the averaged value of ft,
we consider zt to be time-independent, that is, zt = z in the
same way as Tallec and Ollivier (2018). The problem is then
reduced to a problem to obtain z that minimizes

L(z) = ct0 |σ(z)t1−t0 − λ∗|. (14)

We consider this as the minimal problem to analyze the
learnability of the forget gate for long time scales. Note
that since the product ct1 = f̄ t1−t0ct0 is taken element-
wise, we can consider this as a one-dimensional problem.
Furthermore, the global solution can be explicitly written as
z = σ−1(λ

1/(t1−t0)
∗) where σ−1 is an inverse of σ.

Next, we consider the learning dynamics of the model
on the aforementioned problem Eq. (14). RNNs are usu-
ally trained with gradient methods. Learning dynamics with
gradient methods can be analyzed considering learning rate
→ 0 limit known as gradient flow (Harold and George
2003). Therefore, we consider the following gradient flow

dz

dτ
= −∂L

∂z
, (15)

using the loss function introduced above. Here, τ denotes
a time variable for learning dynamics, which should not be
confused with t representing the state transition. Our aim
is to investigate the convergence rate of a solution of the
differential equation Eq. (15) when σ in the forget gate is
replaced with another function φ.

Order of Saturation
To investigate the effect of choice of gate functions on the
convergence rate, we first define the candidate set F of
bounded functions for the gate function.

Definition 0.1. Let F be a set of differentiable and strictly
increasing surjective functions φ : R → (0, 1) such that the
derivative φ′ is monotone on z > z0 for some z0 ≥ 0.

F is a natural class of gating activation functions includ-
ing σ. To clarify the issue of gradient vanishing due to sat-
uration when learning long time scales, we first show that
saturation is inevitable regardless of the choice of φ ∈ F .

Proposition 0.2. limz→∞ φ′(z) = 0 holds for any φ ∈ F .

9321

Nevertheless, choices of φ significantly affect the effi-
ciency of the training. When the target λ∗ takes an extreme
value near boundaries, the efficiency of training should de-
pend on the asymptotic behavior of φ(z) for z � 0, that is,
the rate at which φ(z) converges as z →∞. We call the con-
vergence rate of φ(z) as z → ∞ as the order of saturation.
More precisely, we define the notion as follows2:
Definition 0.3. Let g : R → R be a decreasing func-
tion. φ ∈ F has the order of saturation of O(g(z)) if
limz→∞

g(az)
1−φ(z) = 0 for some a > 0. For φ, φ̃ ∈ F , φ has

a higher order of saturation than φ̃ if limz→∞
1−φ(z)
1−φ̃(az) = 0

holds for any a > 0 and φ̃−1(φ(z)) is convex for z � 0.
Intuitively, the order of saturation of O(g(z)) means that

the convergence rate of φ to 1 is bounded by the decay rate
of g up to constant multiplication of z. For example, the sig-
moid function σ satisfies e−az/(1 − σ(z)) → 0 as z → ∞
for any a > 1, thus has the exponential order of saturation
O(e−z). The convexity condition for a higher order of satu-
ration is rather technical, but automatically satisfied for typ-
ical functions, see Appendix C.2. If φ has a higher order
of saturation (or saturates faster) than another function φ̃,
then φ(z) converges faster than φ̃(z) as z → ∞, and φ′(z)

becomes smaller than φ̃′(z). In this sense, training with φ̃
seems more efficient than φ in the above problem. However,
this is not the case as we discuss in the next section.

Efficient Learning via Fast Saturation
To precisely analyze learning behavior, we trace the learning
dynamics of the output value f = φ(z) since our purpose is
to obtain the desired output value rather than the input z. We
transform the learning dynamics (Eq. (15)) into that of f by

df

dτ
=
dz

dτ

df

dz
= −φ′(z)

∂L

∂z
= −φ′(z)2

∂L

∂f
. (16)

To treat Eq. (16) as purely of f , we define a function gφ(f)
of f by gφ(f) := φ′(φ−1(f)), so that Eq. (16) becomes

df

dτ
= −gφ(f)2

∂L

∂f
. (17)

Our interest is in the dynamics of f near the boundary, i.e.,
the limit of f → 1. We have the following result:

Theorem 0.4. Let φ, φ̃ ∈ F . If φ has a higher order of
saturation than φ̃, then gφ(f)/gφ̃(f)→∞ as f → 1.

Theorem 0.4 indicates that a higher order of saturation ac-
celerates the move of the output f near boundaries in accor-
dance with Eq. (17) since gφ(f) takes larger values. Thus,
contrarily to the intuition in the previous section, a higher
order of saturation leads to more efficient training for tar-
get values near boundaries. We demonstrate this effect using
two activation functions, the sigmoid function σ(z) and nor-
malized softsign function σns(z) = (softsign(z/2) + 1)/2

2Our definition for asymptotic order is slightly different from
the usual one which adopts lim supz→∞

g(z)
1−φ(z) < ∞, since it is

more suitable for analyzing training efficiency.

Figure 2: Learning curves for simplified long-time-scale
learning problem with gradient descent (markers) and with
gradient flow (solid lines). Gradient descent is done with
learning rate 1. Time difference t1 − t0 is set to 10. Dashed
lines are lower bounds given in Tab. 1 fitted to each learn-
ing curve with suitable translation. These lower bounds well
approximate asymptotic convergence of gradient flow.

where softsign(z) = z/(1+|z|). σns is the softsign function
modified so that 0 ≤ σns(z) ≤ 1 and σ′ns(0) = σ′(0). σ has
a higher order of saturation than σns since σ has the order of
saturation of O(e−z) and σns has O(z−1) (see Fig. 1). We
plot the learning dynamics of gradient flow for the problem
in Fig. 2. Since σ has a higher order of saturation than σns,
the gate value f of σns converges slower to the boundary.
Fig. 2 also shows the dynamics of gradient descent with the
learning rate 1. While gradient descent is a discrete approx-
imation of gradient flow, it behaves similar to gradient flow.

Explicit convergence rates. Beyond Theorem 0.4, we
can explicitly calculate effective bounds of the convergence
rate for the problem when the activation function is the sig-
moid function σ(z) or normalized softsign function σns(z).

Proposition 0.5. Consider the problem in Section with the
absolute loss L = |f t1−t0 − λ∗| with λ∗ = 1. For the sig-
moid function f = σ(z), the convergence rate for the prob-
lem is bounded as 1 − f = O(τ−1). Similarly, for the nor-
malized softsign function f = σns(z), the convergence rate
is bounded as 1− f = O(τ−1/3).

Proposition 0.5 shows the quantitative effect of difference
in the order of saturation on the convergence rates. We fit
the bounds to the learning curves with the gradient flow in
Fig. 2. The convergence rates of the learning are well ap-
proximated by the bounds. These asymptotic analysis high-
lights that choices of the function φ significantly affects ef-
ficiency of training for long time scales.

Proposed Method
On the basis of the analysis in Section , we construct the fast
gate, which is suitable for learning long time scales.

Desirable Properties for Gate Functions
We consider modification of the usual sigmoid function to
another function φ ∈ F for the forget gate in a gated RNN.
Function φ should satisfy the following conditions.

(i) φ has a higher order of saturation than σ,

9322

(ii) φ(z) ≈ σ(z) for z ≈ 0,
(iii) φ is symmetric in a sense that φ(−z) = 1− φ(z).

Condition (i) comes from the argument in the previous sec-
tion that fast saturating functions learn values near bound-
aries efficiently. Conditions (ii) and (iii) indicate that the
function φ(z) behaves similarly to σ(z) around z = 0. In
order to avoid possible harmful effects due to the modifica-
tion, we do not want to change the behavior of the function
away from the saturating regime. Hence, we require these
conditions. The requirements are analogous to those by Gu
et al. (2020, Section 3.4) for the gate adjustment. The first
condition can be viewed as a theoretical refinement of their
heuristic modification.

Fast Gate
We explore gate functions satisfying the above conditions.
Recall that the sigmoid function σ(z) has the exponential or-
der of saturation. From condition (i) in the previous section,
we explore functions saturating superexponentially. Since
any superexponential order can be written asO(e−α(z)) with
a function satisfying α(z) > z for large z, it is enough to
consider a function of the form φ(z) = σ(α(z)) for such
α. The desirable properties in Section are rephrased as fol-
lows in terms of α: (i) α(z) � z for z � 0, (ii) α′(0) = 1,
and (iii) α(−z) = −α(z) for z ∈ R. Such functions can be
found as examples in the form α(z) = z + p(z) where p
is a polynomial consisting of only odd higher degree terms,
such as α(z) = z + z3. Since a higher degree term has a
larger effect on the order of saturation, it mitigates gradi-
ent vanishing of the gate function more in accordance with
Theorem 0.4. Thus, we take a limit of the degree to infinity,
which leads to a simple function expression

α(z) = z +
z3

3!
+
z5

5!
+ · · · (18)

= sinh(z) :=
ez − e−z

2
. (19)

Therefore, we adopt α(z) = sinh(z) for the alternative func-
tion φ = σ ◦ α and obtain the fast gate

φ(z) := σ(sinh(z)). (20)

This simple expression enables us to implement it with only
one additional function. Note that there are infinitely many
possible choices satisfying the desirable properties, and the
above particular form is one of the simplest choices. For dis-
cussion of other candidates, see Appendix D.

Comparison with Other Gate Functions
We analyze the fast gate φ(z) and compare it with other
gate functions. First, the order of saturation of the fast gate
is O(e−e

z

) since e−e
az

/(1 − φ(z)) → 0 as z → ∞ for
any a > 1. We briefly describe the method of the refine
gate (Gu et al. 2020), which was proposed to avoid gradient
vanishing of the gate function. This method exploits an aux-
iliary gate rt ∈ (0, 1)n to modify the forget gate value ft to
gt = rt(1−(1−ft)2)+(1−rt)f2t . When a large output value

Softsign Sigmoid Refine Fast
Saturation

order O(z−1) O(e−z) O(e−2z) O(e−e
z

)

Convergence
rate O(τ−

1
3) O(τ−1) O(τ−1) O(F (τ))

Additional
parameters No No Yes No

Table 1: Comparison of order of saturation and convergence
rate for simplified long-time-scale learning problem (see
also Fig. 2). “Fast” denotes our method. Function F (τ) :=

W 2(cτ−
1
2) is asymptotically large than τ−1, where c > 0

is some constant and W 2(·) is square of Lambert’s function
W defined as inverse of map z 7→ zez .

Figure 3: MSE loss for adding task of sequence length 5000

is desired for the forget gate value, the auxiliary gate is ex-
pected to take rt ≈ 1 to push ft to gt ≈ 1−(1−ft)2. There-
fore, from the asymptotic view point, this method modifies
the order of saturation of the gate function from O(e−z) to
O(e−2z). Compared with the refine gate, the fast gate has a
much higher order of saturation. We also analyze the asymp-
totic convergence rates of solving the toy problem defined in
the previous section. We summarize the results in Tab. 1. See
Appendix C.3 for detailed derivation. Since the fast gate has
a doubly exponential order of saturation, the order of con-
vergence rate of learning long time scales is faster than the
sigmoid and refine gates which have an exponential order of
saturation (see also Fig. 2 for comparison of the convergence
rates). In addition, the fast gate does not require additional
parameters whereas the refine gate does. Therefore, the fast
gate is computationally more efficient than the refine gate.

Experiments
Synthetic Tasks
We evaluate the learnability for long time scales across var-
ious methods on two synthetic tasks, adding and copy, fol-
lowing previous studies (Hochreiter and Schmidhuber 1997;
Arjovsky, Shah, and Bengio 2016). While these tasks are
simple and easy to solve for short sequences, they get ex-
tremely difficult for gated RNNs to solve when the sequence
length grows to hundreds or thousands.

Setup. We compare the fast gate with the refine gate be-
cause Gu et al. (2020) reported that the refine gate achieved
the best performance among other previous gate variants.

9323

Figure 4: Accuracy for copy task of sequence length 500

Figure 5: Growth of time scales of units over various gate
functions on adding task. Lines and shaded areas represent
mean and standard deviation (divided by 10 for visibility) of
time scales over 128 units in memory cell. Fast gate learns
exponentially larger magnitudes of time scales than others.

We also include the normalized softsign function σns(z) as
a referential baseline to test the compatibility of our the-
ory. We use these gate functions in a single-layer LSTM.
Since the initialization of the forget gate bias bf is critical
to model performance (Tallec and Ollivier 2018), we set it
so that φ(bf) = 1/(1 + e−1) is satisfied for each gate func-
tion φ (with the bias for an additional gate function initial-
ized by 0 for the refine gate), which amounts to bf = 1 in
the usual sigmoid case (Gers, Schmidhuber, and Cummins
2000; Greff et al. 2016). We also compare performance of
these gate variants to that of chrono-initialization (Tallec
and Ollivier 2018), a method to initialize parameters to rep-
resent long time scales for the sigmoid gate. In addition to
the LSTM, we include JANET (Van Der Westhuizen and
Lasenby 2018) and NRU (Chandar et al. 2019) as baselines.
JANET is one of the simplest gated RNNs specialized to
learn long time scales by omitting gates other than the for-
get gate and applying chrono-initialization. NRU uses non-
saturating activation functions to write or erase to a memory
cell. We train and evaluate each model three times by vary-
ing the random seed. See Appendix E.3 for detailed setting.

Results. The mean squared error on the adding task of
sequence length 5000 and the accuracy on the copy task of
sequence length 500 during training are shown in Fig. 3 and
4, respectively. While NRU requires the least number of pa-
rameter updates on the adding task, the training diverges on
the copy tasks due to gradient explosion (Pascanu, Mikolov,

sMNIST psMNIST sCIFAR Time
Softsign 97.50 ± 0.58 91.71 ± 0.33 59.21 ± 0.39 17.7
Sigmoid 98.88 ± 0.12 95.71 ± 0.02 69.14 ± 0.39 14.3
Refine 98.94 ± 0.03 95.93 ± 0.16 69.55 ± 0.50 22.7
Fast 99.05 ± 0.04 96.18 ± 0.14 70.06 ± 0.38 14.7

chrono 98.83 ± 0.09 94.37 ± 0.69 60.36 ± 0.51 14.3
JANET 98.59 ± 0.03 93.85 ± 0.23 60.99 ± 0.51 10.6
NRU 98.73 ± 0.27 94.76 ± 0.35 62.32 ± 0.30 35.0

Table 2: Test accuracy on image classification tasks and pro-
cessing time (min.) per epoch on psMNIST

and Bengio 2013). This is because the state in the NRU
evolves on an unbounded region; thus, a small parameter
update can drastically change the behavior of the model. We
could not fix this instability even by reducing the clipping
threshold for gradient by a factor of 10. We hypothesize that
the training of the NRU tends to be more unstable on the
copy task because this task has higher dimensional nature
than the adding task in the sense of input dimension (10 vs 2)
and the number of tokens to memorize (10 vs 2). Among the
gate functions, the fast gate converges the fastest. This is due
to the higher order of saturation: the fast gate has the order
of saturation O(e−e

z

) whereas the refine gate has O(e−2z),
thus learns long time scales more efficiently. The normalized
softsign gate completely fails to learn since it has a lower
order of saturation O(z−1) than the sigmoid function. Thus,
the performance of the models is well explained by the dif-
ference in the order of saturation in Tab. 1. This indicates
that our theoretical analysis matches practical settings de-
spite the fact that it builds on a simplified learning problem.
The result also shows that modification of the gate function
is more effective for learning long-term dependencies than
other methods such as chrono-initialization and JANET.

We further observe the growth of time-scale distribution
of the memory cell in the LSTM on the adding task. The time
scale of i-th unit in the memory cell is measured using the
bias term of the forget gate by −1/ log φ(bf,i) (Tallec and
Ollivier 2018; Mahto et al. 2021). We show the statistics of
time scales over all 128 units at each iteration of the training
in Fig. 5. The fast gate represents much longer time scales
than other gate functions after training, which validates our
method. While chrono-initialization set time scales so that
they are uniformly distributed within the range [1, 5000],
they do not change at all during training due to saturation
of the usual sigmoid function σ(z). Since the fast gate can
learn to adapt to even longer time scales than such initial-
ization, it is effective to approximate arbitrary desired time
scales which is usually unknown a priori.

Pixel-by-pixel Image Recognition
Next, we evaluate the fast gate on the sequential image
recognition task, where a pixel value is applied into recur-
rent models at each time step (Le, Jaitly, and Hinton 2015).

Setup. We use the usual order sequential MNIST (sM-
NIST) task and permuted order version (psMNIST) to intro-
duce more complex and long-range dependencies. We also
use the sequential CIFAR-10 (sCIFAR) task, which involves
higher dimensional inputs and longer sequence length (i.e.,

9324

Figure 6: Validation accuracy for psMNIST

> 10K 1K-10K 100-1K < 100 All Time
Sigmoid 7.25 27.72 170.25 2026.87 60.22 130
Refine 7.61 28.01 166.46 1936.02 60.50 185
Fast 7.43 27.70 166.68 1975.51 60.09 138

Table 3: Test perplexity for tokens across different frequency
bins on Penn Treebank with training time (sec.) per epoch

3 × 1024) than MNIST. We train the LSTMs with the vari-
ous gates, JANET, and NRU. See Appendix E.4 for training
details. We set the hidden dimension as 512 on all models
and the dimension of the memory cell in NRU as 144 fol-
lowing the original paper. We evaluate the averaged test ac-
curacy with the standard deviation over three random seeds.
We also report the computational time to train each model on
the psMNIST task to compare the computational efficiency
of the LSTM with the fast gate to other models.

Results. The results are shown in Tab. 2. The fast gate
performs the best among various gates while the normalized
softsign gate poorly performs. This is because the order of
saturation of activation functions in the forget gate directly
affects the learnability for long time scales. The LSTM with
the fast gate also outperforms all the other baselines. Note
that as chrono-initialization gives too heavy-tailed time scale
distribution (Gu et al. 2020), the chrono-LSTM and JANET
performs worse than simply initializing the gate bias as
bf = 1 (Sigmoid in the table). Since large model size tends
to result in high accuracy on these tasks (Voelker, Kajić, and
Eliasmith 2019; Erichson et al. 2021), we provide results
of smaller models in Appendix F.3 for comparison. While
the NRU achieves the highest accuracies on psMNIST with
smaller model size, it performs worse than the LSTMs in
Tab. 2. Therefore, performance of the LSTM seems to scale
better than the NRU in model size. The refine gate requires
more than 1.5 times longer processing time than the fast
gate for training since it involves an auxiliary gate compu-
tation. The NRU requires longer processing time than the
LSTMs due to its complicated state update rule. The learn-
ing curve for the psMNIST task in Fig. 6 shows that the fast
gate reaches high accuracy in as few epochs as the refine
gate. Combining with the results on the processing time per
epoch, we conclude that the fast gate learns complex time
scales the most efficiently among the gate functions.

Language Modeling
In natural language processing, performance of language
models can suffer from difficulty in learning long time scales
because predicting statistically rare words involves long
time scales (Mahto et al. 2021). It is expected that using a
forget gate function with a higher order of saturation im-
proves learning to predict such rare words. We validate this
effect in the following experiment.

Setup. We train and evaluate three-layer LSTM language
models following a previous study (Mahto et al. 2021)3 on
the Penn Treebank (PTB) dataset, replacing every sigmoid
forget gate in the baseline LSTM with the fast gate. We com-
pare the LSTM with the fast gate against the LSTM with
the sigmoid and refine gates and also NRU by replacing all
LSTM modules with NRU modules under the same experi-
mental setting. To evaluate the model performance on data
involving different ranges of time scales, the test dataset is
divided into four bins depending on their frequencies in the
training dataset: more than 10,000, 1000-10,000, 100-1000,
and fewer than 100 occurrences.

Results. The results are shown in Tab. 3. The result for the
NRU is not in the table since the training diverges. Both re-
fine and fast gates improve perplexity for less frequently ob-
served words compared to the sigmoid gate. The model with
the fast gate also achieves the lowest total perplexity. Since
frequently observed words involve short-term dependencies,
this result indicates that the fast gate improves model perfor-
mance by learning a wide range of time scales that appear in
practical tasks. Tab. 3 also shows the training time taken for
one epoch. We observe that the refine gate has larger compu-
tational overhead than the fast gate, although the LSTM with
the refine gate has the same number of parameters as other
LSTMs by using the gate-tying trick (Appendix E.2). This
is due to the two-stage computation for the gate value via
the auxiliary gate, which cannot be parallelized, thus leads
to slow computation. In summary, the fast gate can improve
performance on data involving extremely long time scales
without sacrificing the performance on data involving short
time scales and with less computational overhead.

Conclusion
We analyzed the saturation problem in learning of gate func-
tions in recurrent models. Against the common intuition that
saturation of the activation function degrades training, we
showed that strengthening the saturating behavior is effec-
tive in mitigating gradient vanishing of gate functions. We
proposed the fast gate, which has a doubly exponential order
of convergence with respect to inputs, by simply compos-
ing the hyperbolic sinusoidal function to the usual sigmoid
function. We evaluated the trainability of the fast gate on
data involving extremely long time scales. We empirically
showed that the fast gate improves accuracy on benchmark
tasks with little computational overhead. Our analytical ap-
proach is applicable to any other bounded activation func-
tions that appear in the core of modules such as an attention
mechanism. Thus, we expect that it can improve learnability
of other neural networks beyond recurrent models.

3https://github.com/HuthLab/multi-timescale-LSTM-LMs.

9325

References
Arjovsky, M.; Shah, A.; and Bengio, Y. 2016. Unitary evolu-
tion recurrent neural networks. In International Conference
on Machine Learning, 1120–1128. PMLR.
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432.
Chandar, S.; Sankar, C.; Vorontsov, E.; Kahou, S. E.; and
Bengio, Y. 2019. Towards non-saturating recurrent units
for modelling long-term dependencies. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
3280–3287.
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 1724–1734.
Erichson, N. B.; Azencot, O.; Queiruga, A.; Hodgkinson,
L.; and Mahoney, M. W. 2021. Lipschitz recurrent neural
networks. In International Conference on Learning Repre-
sentations.
Gers, F. A.; Schmidhuber, J. A.; and Cummins, F. A. 2000.
Learning to Forget: Continual Prediction with LSTM. Neu-
ral computation, 12(10): 2451–2471.
Greff, K.; Srivastava, R. K.; Koutnı́k, J.; Steunebrink, B. R.;
and Schmidhuber, J. 2016. LSTM: A search space odyssey.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(10): 2222–2232.
Gu, A.; Gulcehre, C.; Paine, T.; Hoffman, M.; and Pascanu,
R. 2020. Improving the Gating Mechanism of Recurrent
Neural Networks. In International Conference on Machine
Learning, 3800–3809. PMLR.
Gulcehre, C.; Moczulski, M.; Denil, M.; and Bengio, Y.
2016. Noisy activation functions. In International Confer-
ence on Machine Learning, 3059–3068. PMLR.
Harold, K.; and George, Y. 2003. Stochastic approxima-
tion and recursive algorithms and applications, volume 35.
Springer Science & Business Media.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International conference on machine learning, 448–
456. PMLR.
Le, Q. V.; Jaitly, N.; and Hinton, G. E. 2015. A simple way to
initialize recurrent networks of rectified linear units. arXiv
preprint arXiv:1504.00941.
Ling, S.; Liu, Y.; Salazar, J.; and Kirchhoff, K. 2020. Deep
contextualized acoustic representations for semi-supervised
speech recognition. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 6429–6433. IEEE.
Mahto, S.; Vo, V. A.; Turek, J. S.; and Huth, A. G. 2021.
Multi-timescale representation learning in LSTM Language

Models. International Conference on Learning Representa-
tions.
Ohno, K.; Kanai, S.; and Ida, Y. 2022. Fast Saturating Gate
for Learning Long Time Scales with Recurrent Neural Net-
works. arXiv preprint arXiv:2210.01348.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. In International
Conference on Machine Learning, 1310–1318. PMLR.
Tallec, C.; and Ollivier, Y. 2018. Can recurrent neural net-
works warp time? In International Conference on Learning
Representations.
Van Der Westhuizen, J.; and Lasenby, J. 2018. The un-
reasonable effectiveness of the forget gate. arXiv preprint
arXiv:1804.04849.
Voelker, A.; Kajić, I.; and Eliasmith, C. 2019. Legendre
memory units: Continuous-time representation in recurrent
neural networks. Advances in neural information processing
systems, 32.
Zhu, L.; Tran, D.; Sevilla-Lara, L.; Yang, Y.; Feiszli, M.; and
Wang, H. 2020. FASTER recurrent networks for efficient
video classification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 13098–13105.

9326

