
Counterfactual Learning with General Data-Generating Policies

Yusuke Narita1, Kyohei Okumura2, Akihiro Shimizu3, Kohei Yata4

1 Yale University,
2 Northwestern University,

3 Mercari, Inc.,
4 University of Wisconsin-Madison,

yusuke.narita@yale.edu, kyohei.okumura@u.northwestern.edu, akihiro-shimizu@mercari.com, yata@wisc.edu

Abstract

Off-policy evaluation (OPE) attempts to predict the perfor-
mance of counterfactual policies using log data from a dif-
ferent policy. We extend its applicability by developing an
OPE method for a class of both full support and deficient
support logging policies in contextual-bandit settings. This
class includes deterministic bandit (such as Upper Confi-
dence Bound) as well as deterministic decision-making based
on supervised and unsupervised learning. We prove that our
method’s prediction converges in probability to the true per-
formance of a counterfactual policy as the sample size in-
creases. We validate our method with experiments on partly
and entirely deterministic logging policies. Finally, we apply
it to evaluate coupon targeting policies by a major online plat-
form and show how to improve the existing policy.

1 Introduction
In bandit and reinforcement learning, off-policy (batch)
evaluation attempts to estimate the performance of some
counterfactual policy given data from a different logging
policy. Off-policy evaluation (OPE) is essential when de-
ploying a new policy might be costly or risky, such as in ed-
ucation, medicine, consumer marketing, and robotics. OPE
relates to other fields that study counterfactual/causal rea-
soning, such as statistics and economics.

Most existing OPE studies focus on full support log-
ging policies, which take all actions with positive probabil-
ity in any context, such as stochastic bandit (e.g. ε-greedy
and Thompson Sampling) and random A/B testing. How-
ever, real-world decision-making often uses deficient sup-
port logging policies, including deterministic bandit (e.g.
Upper Confidence Bound) as well as deterministic decision-
making based on predictions obtained from supervised and
unsupervised learning. An example in the latter group is a
policy that greedily chooses the action with the largest pre-
dicted reward. OPE is difficult with a deficient support log-
ging policy, since its log data contain no information about
the reward from actions never chosen by the logging policy.
There appears to be no established OPE estimator for defi-
cient support logging policies (Sachdeva, Su, and Joachims
2020).
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We provide a solution to this problem. Our proposed OPE
estimator is applicable not only to full support logging poli-
cies but also to deficient support ones. We also allow for hy-
brid stochastic and deterministic logging policies, i.e., log-
ging policies that choose actions stochastically for some in-
dividuals and deterministically for other individuals. 1

Method. Our OPE estimator is based on a modification of
the Propensity Score (Rosenbaum and Rubin 1983), which
we dub the “Approximate Propensity Score” (APS) (Narita
and Yata 2022). APS of action (arm) a at context (covari-
ate) value x is the average probability that the logging pol-
icy chooses action a over a shrinking neighborhood around
x in the context space. If two actions have nonzero APS at
x, the logging policy chooses both actions locally around x.
This enables us to estimate the difference in the mean reward
between the two actions by exploiting the local subsample
around x. When the logging policy is deterministic, the sub-
sample consists of individuals near the decision boundary
between the two actions. We then use the estimated reward
differences to construct an estimator for the performance of
any given counterfactual policy.

As the main theoretical result, we prove that our proposed
OPE estimator is consistent. That is, the estimator converges
in probability to the true performance of a counterfactual
policy as the sample size increases, under the assumption
that the mean reward differences are constant over the con-
text space (Theorem 1). This result holds whether the log-
ging policy is of full support or deficient support. The proof
exploits results from differential geometry and geometric
measure theory, which have not been applied in machine
learning research as far as we know.

Simulation Experiments. We validate our method with
two simulation experiments. The first considers a mix of full
support and deficient support policies as the logging policy.
Actions are randomly chosen for a small A/B test segment of
the population and are chosen by a deterministic supervised
learning algorithm for the rest of the population. For the task
of evaluating counterfactual policies, our method produces
smaller mean squared errors than a baseline estimator that
only uses the A/B test subsample. The second experiment
considers a situation in which we have a batch of data gen-

1The full version of the paper, which includes technical appen-
dices, can be found at https://arxiv.org/abs/2212.01925.
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erated by a deterministic bandit algorithm. We find that our
estimator outperforms a regression-based estimator in terms
of mean squared errors.

Real-World Application. We empirically apply our
method to evaluate and optimize coupon targeting policies.
Our application is based on proprietary data provided by
Mercari Inc., a major e-commerce company running online
C2C marketplaces in Japan and the US. This company uses
a deterministic policy based on uplift modeling to decide
whether they offer a promotional coupon to each target cus-
tomer. We use the data produced by their policy and our
method to evaluate a counterfactual policy that offers the
coupon to more customers. Our method predicts that the
counterfactual policy would increase revenue more than the
cost of coupon offers, suggesting that redesigning the cur-
rent policy is profitable.

Related Work. Widely-used OPE methods include in-
verse probability weighting (IPW) (Precup 2000; Strehl
et al. 2010), self-normalized IPW (Swaminathan and
Joachims 2015), Doubly Robust (Dudı́k et al. 2014), and
more advanced variants (Wager and Athey 2018; Farajtabar,
Chow, and Ghavamzadeh 2018; Su et al. 2020). These meth-
ods are based on importance sampling (IS) and require that
the logging policy be of full support, i.e., assign a positive
probability to every action potentially chosen by the counter-
factual policy. This restriction makes them hard to use when
the logging policy is of deficient support.

There are two existing approaches to deficient support
logging policies.2 The first approach considers a logging
policy that varies over time or across individuals (Strehl
et al. 2010). Viewing the sequence of varying logging poli-
cies as a single full support logging policy, it is possible to
apply IS-based OPE methods. Unlike this approach, our ap-
proach is usable even when the logging policy is fixed.

The second approach, called the Direct Method or Re-
gression Estimator, predicts the mean reward conditional
on the action and context by supervised learning and uses
the prediction to estimate the performance of a counterfac-
tual policy (Beygelzimer and Langford 2009; Dudı́k et al.
2014). Similar regression-based methods are proposed for
reinforcement learning settings (Duan, Jia, and Wang 2020).
This approach is sensitive to the accuracy of the mean re-
ward prediction. It may have a large bias if the regression
model is not correctly specified. This issue is particularly
severe when the logging policy is of deficient support, since
each action is observed only in a limited area of the context
space. Our approach instead predicts the mean reward differ-
ences between actions by exploiting local subsamples near
the decision boundaries without specifying the regression
model. Narita and Yata (2022) originally develop and empir-
ically apply this approach in the context of treatment effect
estimation with a binary treatment. This paper extends their
approach to OPE with multiple actions. This idea relates to
regression discontinuity designs in the social sciences (Lee
and Lemieux 2010).

It is worth noting that our approach is applicable to off-

2Sachdeva et al. (2020) also proposes another approach in
which they restrict the policy space.

policy selection, in which the researcher is to design a de-
cision rule to select a policy given a finite set of policies
(Kuzborskij et al. 2021). Since our method can estimate the
expected reward of the policies, we can first estimate the
reward of each, and then choose the one with the highest
expected reward.

2 Framework
A := {1, ...,m} is a set of actions that the decision maker
can choose from. Let Rp-valued random variable X denote
the context that the decision maker observes when pick-
ing an action. Let X denote the support of X . To sim-
plify the exposition, we assume that X is continuously
distributed. Let a tuple of m R-valued random variables
(Y (1), . . . , Y (m)) denote potential rewards; Y (a) denotes
a potential reward that is observed when action a is cho-
sen. (Y (1), . . . , Y (m), X) follows distribution P , which is
unknown to the decision maker.

A policy chooses an action given a context. Let ML :
Rp → ∆(A) represent the logging policy, where ML(a|x)
is the probability of taking action a for individuals with
context x. We assume that the analyst knows the logging
policy and is able to simulate it. That is, the analyst is
able to compute the probability ML(a|x) for each action
a ∈ A given any context x ∈ Rp. Suppose we have log
data {(Yi, Xi, Ai)}ni=1 generated as follows. For each in-
dividual i, (1) (Yi(1), . . . , Yi(m), Xi) is i.i.d. drawn from
P ; 3 (2) Given Xi, the action Ai is randomly chosen based
on the probability ML(·|Xi); (3) We observe the reward
Yi := Yi(Ai). Note that only one of Yi(1), . . . , Yi(m) is
observed for individual i and recorded as Yi in the log data.
The joint distribution of (Y,X,A) is determined once ML
and P are given.

Prediction Target. We are interested in estimating the
expected reward from any given counterfactual policy π :
Rp → ∆(A), which chooses a distribution of actions given
individual context:

V (π) := E

[∑
a∈A

Y (a)π(a|X)

]
.

3 Learning with Infinite Data
We first consider the identification problem, which asks
whether it is possible to learn V (π) if we had an infinite
amount of data. Formally, we say that V (π) is identified if it
is uniquely determined by the joint distribution of (Y,X,A).
A key step toward answering the identification question is
what we call the Approximate Propensity Score (APS). To
define it, for a ∈ A and x ∈ X , let:

pML
δ (a|x) :=

∫
B(x,δ)

ML(a|x∗)dx∗∫
B(x,δ)

dx∗
,

where B(x, δ) = {x∗ ∈ Rp : ‖x − x∗‖ < δ} is the δ-ball
around x ∈ X . Here, ‖ · ‖ denotes the Euclidean norm on
Rp. To make common δ for all dimensions reasonable, we

3This assumption is valid when we have a batch of log data
generated by a fixed policy.
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(a)

(b)
Notes: This figure shows an example of logging policy ML (panel
(a)) and corresponding APS pML (panel (b)). The shaded region
in panel (b) indicates the subpopulation for which pML(1|x) > 0
and pML(2|x) > 0. As discussed in Section 4, our method uses
the subsample in the shaded region to estimate the conditional
mean difference E[Y (2)|X]− E[Y (1)|X].

Figure 1: Example of the Approximate Propensity Score

normalize Xij to have mean zero and variance one for each
j = 1, ..., p. We assume that ML is a Lebesgue measurable
function so that the integrals exist. We then define APS pML

as follows: for a ∈ A and x ∈ X ,

pML(a|x) := lim
δ→0

pML
δ (a|x).

Figure 1 illustrates APS. Here X ⊆ R2, A = {1, 2, 3},
and the support of X is divided into four sets depending
on the value of ML as in panel (a). Panel (b) shows the
corresponding APS. For the interior points of each of the
four sets, APS is equal to ML. On the border of any two
sets, APS is the average of the ML values in the two sets.

Our identification analysis uses the following assumption.

Assumption 1 (Local Mean Continuity). For any a ∈ A,
the conditional expectation function E[Y (a)|X = x] is
continuous at each x ∈ X such that pML(a|x) > 0 and
ML(a|x) = 0.

ML(a|x) = 0 means that action a is never taken for
individuals with context x. If APS of a at x is nonzero
(pML(a|x) > 0), however, there exists a point close to x
that has a positive probability of receiving action a, which
enables us to observe the reward from the action near x. For
any such point x, Assumption 1 ensures that the points close
to x have similar conditional means of the potential reward
Y (a). Thus, the conditional mean reward from action a at x
is identified. On the other hand, whenML(a|x) > 0, action-
context pair (a, x) is observed, allowing us to identify the
mean reward without any assumptions. Assumption 1 there-
fore does not impose continuity at such points. The lemma
below summarizes the above argument. For a set A ⊂ Rp,
let int(A) denote the interior of A.

Lemma 1 (Identification of Conditional Means). If Assump-
tion 1 holds, then for each a ∈ A, E[Y (a)|X = x] is iden-
tified for every x ∈ int(X ) such that pML(a|x) > 0.

We use Lemma 1 to analyse identification of V (π). Sup-
pose first that π(a|x) > 0 =⇒ pML(a|x) > 0, that is, the
counterfactual policy π only chooses actions with nonzero
APS. Lemma 1 implies that the conditional mean reward is
identified at every (a, x) pair that could be realized under the
policy π. As a result, the expected reward V (π) is identified
for any such policy. However, if there exists (a, x) such that
π(a|x) > 0 but pML(a|x) = 0, we cannot identify V (π)
without additional assumptions. To be able to identify V (π)
for any policy π, we assume that the difference in the con-
ditional mean reward function E[Y (a)|X] between any two
actions is constant over X .

Assumption 2 (Constant Conditional Mean Differences).
There exists a function β : A × A → R such that
E[Y (a)|X]− E[Y (a′)|X] = β(a, a′).

At the end of Section 4, we discuss how our results would
change if we drop Assumption 2 and a potential way of re-
laxing this. We also impose the following condition on APS.

Assumption 3 (Existence of Nonzero APS). For every a ∈
{2, ...,m}, there exists a sequence {a1, ..., aL} with a1 = 1
and aL = a for which the following condition holds: for
every l ∈ {1, ..., L − 1}, there exists x ∈ int(X ) such that
pML(al|x) > 0 and pML(al+1|x) > 0.

Assumption 3 states that there exists a path from a base-
line action (a1 = 1) to any other action (aL = a) for
which APS of any two consecutive actions (al and al+1)
is positive at some x. For example, suppose that m = 3,
pML(1|x1) > 0, pML(2|x1) > 0, pML(2|x2) > 0 and
pML(3|x2) > 0 for some x1, x2 ∈ X as in Figure 1 (b).
In this case, the sequence {1, 2} satisfies the condition in
Assumption 3 for a = 2, and the sequence {1, 2, 3} satisfies
the condition for a = 3. By Lemma 1, the four conditional
means E[Y (1)|X = x1], E[Y (2)|X = x1], E[Y (2)|X =
x2] and E[Y (3)|X = x2] are identified. Hence, the two
differences E[Y (1)|X = x1] − E[Y (2)|X = x1] and
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E[Y (2)|X = x2] − E[Y (3)|X = x2] are identified. Un-
der Assumption 2, the two differences do not depend on
x. As a result, E[Y (1)|X = x] − E[Y (2)|X = x] and
E[Y (2)|X = x] − E[Y (3)|X = x] are identified for ev-
ery x ∈ X . Noting that E[Y (a)|X = x] is identified for at
least one a ∈ A for every x ∈ X , we can use the differences
to identify E[Y (a)|X = x] for every (a, x) pair, even for
those not observed in data. Thus, V (π) is identified for any
policy π.
Proposition 1 (Identification of V (π)). Under Assumptions
1–3, V (π) is identified for any policy π.

Assumption 3 typically holds if every action is chosen
with a positive probability in some region of the context
space X . For example, consider a deterministic logging pol-
icy that chooses the action with the largest predicted condi-
tional mean reward given the context (E[Y (a)|X]), where
the predictions are obtained from supervised learning. If ev-
ery action a has a region where it is predicted to be optimal,
then every action usually shares boundaries with at least one
other action. Since pML(a|x) > 0 and pML(a′|x) > 0 at
the boundaries shared by two actions a and a′ (unless the
boundaries are irregularly shaped), we can find a sequence
of actions that satisfies Assumption 3.

4 Learning with Finite Data
OPE Estimator. Suppose that we observe a sample
{(Yi, Xi, Ai)}ni=1 of size n. We propose an OPE estimator
based on the following expression of our prediction target
V (π): under Assumption 2,
V (π) = V (ML)

+ E

[
m∑
a=2

β(a, 1)
(
π(a|X)−ML(a|X)

)]
. (1)

Appendix E derives this expression. Since V (ML) is the
value from the logging policy ML, V (ML) can be esti-
mated by the sample mean of Yi. Our identification analysis
suggests a way of conducting OPE on any policy π: (1) es-
timate β(a, a′) for each (a, a′) pair such that pML(a|x) > 0
and pML(a′|x) > 0 for some x; (2) use the estimates to re-
cover β(a, 1) for every a ∈ {2, ...m} and plug them into the
sample analogue of the above expression. For simplicity, we
consider a setup in which pML(a|x) > 0 and pML(1|x) > 0
for some x for every a so that we can directly estimate
β(a, 1) in step (1) above.

To estimate β(a, 1), we use the subsample

I(a; δn) :=
{
i : Ai ∈ {1, a}, qML

δn (a | Xi) ∈ (0, 1)
}
,

where

qML
δn (a | Xi) :=

pML
δn

(a | Xi)

pML
δn

(a | Xi) + pML
δn

(1 | Xi)
,

and δn is a given bandwidth. The bandwidth shrinks to-
wards zero as the sample size n increases.4 qML

δn
(a|Xi)

4For the bandwidth δn, we suggest considering several different
values and check if the estimates are robust to bandwidth changes.
It is hard to pick δn in a data-driven way to minimize the mean
squared error, since it would require nonparametric estimation of
functions on the high-dimensional context space.

can be viewed as APS of action a within the subsample
for which either action 1 or a is assigned. The subsam-
ple I(a; δn) contains all observations i such that both ac-
tions 1 and a can be chosen by the logging policy locally
around Xi. For example, in Figure 1 (b), the shaded re-
gion corresponds to the subsample I(2; δn). This covers not
only the subsample subject to full randomization (for which
ML(1|x) = ML(2|x) = ML(3|x) = 1/3) but also the lo-
cal subsample near the deterministic decision boundary AB
between actions 1 and 2.

We propose minimizing the sum of squared errors on the
subsample I(a; δn):

(α̂a, β̂a, γ̂a) = argmin
(αa,βa,γa)∑

i∈I(a;δn)

(
Yi − αa − βa1{Ai = a} − γaqML

δn (a|Xi)
)2
,

(2)

where 1{·} is the indicator function. β̂a is our estimator of
β(a, 1). We include qML

δn
(a|Xi) as an explanatory variable

to adjust for imbalance in the context distribution between
actions 1 and a, as is done with the standard propensity score
(Angrist and Pischke 2008; Hull 2018). We then define our
OPE estimator as:

V̂ (π)

=
1

n

n∑
i=1

(
Yi +

m∑
a=2

β̂a
(
π(a|Xi)−ML(a|Xi)

))
. (3)

It is worth noting that our method does not require the model
selection.

For estimating β(a, 1), the above method uses APS
pML
δn

(a|Xi), which may be difficult to compute analytically
if ML is complex. In such a case, we propose approxi-
mating it by brute force simulation. We draw a value of x
from the uniform distribution on B(Xi, δn) a number of
times, compute ML(a|x) for each draw, and take the av-
erage of ML(a|x) over the draws.5 We then use it instead
of pML

δn
(a|Xi) to compute qML

δn
(a|Xi), and then compute

β̂(a, 1) and V̂ (π) as in (2) and (3).
Consistency. We show that V̂ (π) is a consistent estimator

of V (π), that is, V̂ (π) converges in probability to V (π) as
n→∞ under some regularity conditions.
Assumption 4 (Regularity conditions). See Appendix A for
details.
Theorem 1 (Consistency of V̂ (π)). Suppose that Assump-
tions 2 and 4 hold, δn → 0, and nδn →∞ as n→∞. Then
V̂ (π) converges in probability to V (π) for every policy π.

The main argument in the proof of Theorem 1 is similar
to the one used for the consistency result of Narita and Yata

5The approximation error of the simulated APS relative to true
pML
δn (a|Xi) has a S−

1
2 rate of convergence, where S is the number

of simulation draws. This rate does not depend on the dimension of
Xi, so the simulation error can be made negligible by using a large
number of simulation draws even when Xi is high dimensional.
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(2022) (the first part of their Theorem 1). We extend their
result to OPE with multiple actions.

Our consistency result requires that δn go to zero slower
than n−1. This ensures that, when ML is deterministic, we
have sufficiently many observations in the δn-neighborhood
of the boundary of Ω∗a := {x : ML(a|x) = 1} (the set of the
context values for which the probability of choosing action
a is one). Importantly, the rate condition does not depend
on the dimension of Xi. This is because we use all the ob-
servations in the δn-neighborhood of the boundary, and the
number of those observations is of order nδn regardless of
the dimension of Xi if the boundary is (p− 1) dimensional.
Our estimator is therefore expected to perform well even if
Xi is high dimensional.

Our result holds under the assumption of constant condi-
tional mean reward differences (Assumption 2). If this as-
sumption does not hold for a deterministic logging policy,
β̂a is a consistent estimator of the mean reward difference
for the subpopulation on the decision boundary between ac-
tions a and 1 (see Appendix E). Therefore, our estimator
may still perform well when we are interested in a counter-
factual policy that marginally changes the logging policy’s
decision boundary.

One way to relax Assumption 2 is to consider a partition
of X and assume that the conditional mean difference be-
tween any two actions is constant within each cell in the par-
tition. This allows the conditional mean differences to vary
across cells. If for each (a, a′) pair, each cell contains x such
that pML(a|x) > 0 and pML(a′|x) > 0, we can consistently
estimate the conditional mean differences and the expected
reward from any policy. How to find such a partition is an
interesting future topic.

5 Simulations
Experiment 1: Mix of A/B Test and Deterministic
Logging Policy
Consider a tech company that conducts an A/B test using a
small segment of the population. The company applies a de-
terministic logging policy to the rest of the population. We
generate a random sample {(Yi, Xi, Ai)}ni=1 of size n =
50,000 as follows. There are 5 actions (m = 5) and 100
context variables (p = 100), with Xi ∼ N(0,Σ). Yi(a) is
generated as Yi(a) = 0.75

∑100
k=1X

2
kiα0,k + 0.25ui + εi(a),

where α0 = (α0,1, ..., α0,100) ∈ R100, ui ∼ N(0, 1),
and εi(a) ∼ N(a, 1). The conditional mean difference
E[Yi(a)|Xi] − E[Yi(1)|Xi] is constant over x. The choice
of parameters Σ and α0 is explained in Appendix B. To
generate Ai, let qk0.99 be the 99th percentile of the kth con-
text variable Xki. Let τML

pred(x, a) be a prediction of the re-
ward from action a given context value x obtained by su-
pervised learning from a past, independent training sample
D̃ = {(Ỹi, X̃i, Ãi)}ñi=1 of size ñ = 10,000 (see Appendix B
for how we constructed D̃ and τML

pred). Ai is then generated
based on the logging policy:

ML(a|x) =


1/5 if x1 ≥ q10.99

1

{
a = argmax

a′∈{1,...,5}
τML
pred(x, a

′)

}
if x1 < q10.99.

The first case corresponds to the A/B test segment while the
second case to the deterministic policy segment. Finally, Yi
is generated as Yi = Yi(Ai).

We simulate 1,000 hypothetical samples from the above
data-generating process. For each simulation, we use the
simulated sample to estimate the value of a counterfactual
policy π, another mix of an A/B test and a deterministic pol-
icy. With another reward prediction function τπpred,

π(a|x) =


1/5 if x2 ≥ q20.99

1

{
a = argmax

a′∈{1,...,5}
τπpred(x, a

′)

}
if x2 < q20.99.

Alternative Methods. We compare our method with two
alternative estimators. The first uses the A/B test segment
(for whichML(a|Xi) = 1/5) while the second uses the full
sample. The methods first compute the simple mean differ-
ences in reward Yi between actions a ∈ {2, ..., 5} and 1, and
then plugs them into β̂a of Eq. (3). Both our method and
the alternative estimator with the A/B test segment produce
consistent estimators of the prediction target V (π). How-
ever, the alternative uses only the A/B test segment while our
method additionally uses the local subsample near the deci-
sion boundary of the deterministic policy as we discussed in
Section 4.

Result. The first panel of Table 1 presents the bias, stan-
dard deviation (S.D.) and root mean squared error (RMSE)
of our proposed estimators with several choices of δ and
two alternative estimators. The alternative estimator using
the full sample has a larger bias than the other two, since
it does not control for the difference in the context distribu-
tion between actions. Our proposed estimator outperforms
the alternative estimator using the A/B test sample in terms
of RMSE. This suggests that exploiting both of the A/B test
segment and the local subsample near the deterministic de-
cision boundary can lead to better performance than using
only the A/B test segment.

Experiment 2: Upper Confidence Bound Logging
Policy
In the second experiment, both the logging policy and the
counterfactual policy are deterministic. The rest of the setup
is the same as that in the first experiment. We first use the in-
dependent training sample D̃ to train an Upper Confidence
Bound bandit algorithm. The logging policy ML is given
by ML(a|x) = 1

{
a = arg maxa′∈{1,...,5} UCB(x, a′)

}
,

where UCB(x, a) is an upper confidence bound of
E[Yi(a)|Xi = x]. See Appendix B for training details. We
do not update the policy while generating {(Yi, Xi, Ai)}ni=1
in the simulation. The sample is a batch of log data.

For the counterfactual policy π, we use D̃ to train a model
f(x, a) that predicts the reward given the context and ac-
tion, using sklearn’s RandomForestRegressor with 500 trees
and otherwise default parameters. The counterfactual pol-
icy tries to maximize the expected reward V (π) by choos-
ing the action with the largest predicted reward: π(a|x) =
1
{
a = arg maxa′∈{1,...,5} f(x, a′)

}
.

Alternative Method. We compare our method with an
alternative estimator using the Direct Method. This first
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Our Proposed Method with APS Controls Method with Mean Differences Direct
δ = 0.1 δ = 0.5 δ = 1 δ = 2.5 A/B Test Sample Full Sample Method

(1) (2) (3) (4) (5) (6) (7)
Experiment 1: Mix of A/B Test and Deterministic Logging Policy

Bias −.060 −.057 −.057 −.060 −.061 −.075 —

S.D. .099 .098 .096 .096 .101 .103 —

RMSE .115 .113 .112 .113 .118 .128 —

Avg.N 1862 6362 12502 33122 500 50000 —

Experiment 2: Upper Confidence Bound Logging Policy

Bias .048 .047 .046 .047 — — .342

S.D. .033 .030 .029 .029 — — .012

RMSE .058 .056 .055 .055 — — .342

Avg.N 3397 17344 31107 47601 — — 50000

Notes: This table shows the bias, the standard deviation (S.D.), and the root mean squared error (RMSE) of the estimators of the reward
from the counterfactual policy V (π) in the two simulation experiments. We use 1, 000 simulations of a size 50, 000 sample to compute these
statistics. Columns (1)–(4) report estimates from our method with several choices of δ. Each APS is computed by averaging 100 simulation
draws of the ML value. In columns (5)–(6), we estimate the mean reward differences β(a, 1) by the sample mean differences in the A/B
test segment and the full sample, respectively. In column (7), we estimate β(a, 1) by fitting a linear model that predicts the reward from the
context and action. The bottom row of each panel shows the average number of observations with nonzero APS for every action (Columns
(1)–(4)), that with nonzero ML for every action (Column (5)), or the total sample size (Columns (6)–(7)).

Table 1: Simulation results: bias, S.D., and RMSE of estimators of V (π)

fits a linear model Yi = α +
∑5
a=2 βa1 {Ai = a} +∑100

k=1Xkiγk + ei, then makes the reward prediction from
action a for individual i by µ̂i(a) = Yi+ (β̂a− β̂Ai

), and fi-
nally computes V̂ (π) = 1

n

∑n
i=1

∑5
a=1 µ̂i(a)π(a|Xi). The

linear model used by this method correctly imposes the con-
stant conditional mean differences but misspecifies the func-
tional form with respect to Xi.

Result. The second panel of Table 1 shows the result.
The alternative using the Direct Method is significantly bi-
ased due to model misspecification. Our proposed estimator
seems to effectively use the local subsample near the de-
cision boundary and has smaller bias and RMSE than the
alternative.

6 Real-World Application
Setup. We apply our method to empirically evaluate a
coupon targeting policy of an online platform. This appli-
cation uses proprietary data provided by Mercari, Inc. This
company conducts the following promotional campaign.
They target customers who signed up for Mercari 4 days ago
but have not made a purchase yet. The company uses a log-
ging policy based on an uplift model to determine whether
they offer a promotional coupon to each target customer. If
customers receive the coupon and make a purchase, they get
900 points (equivalent to 8.34 USD) that they can use for
future purchases. We observe data (Yi, Xi, Ai) for each tar-
get user i from this campaign, where action Ai ∈ {0, 1}
is whether the logging policy recommended offering the
coupon to the customer (Ai = 1) or not (Ai = 0), Xi is the

vector of more than 200 input features for the uplift model,
and Yi is an outcome such as the customer’s spending after
this coupon offer.

The company’s logging policy works as follows. They
first use data from a past A/B test and XGBoost to train a
model of the conditional average effect of the coupon on
purchases (they use library pylift for implementation). Let
τ(x) be the predicted coupon effect for those whose feature
value is Xi = x. The logging policy then recommends of-
fering a coupon to customer i if the predicted effect is in the
top 80% of the distribution of predicted effects. That is, the
logging policy ML is given by ML(1|x) = 1{τ(x) ≥ c},
where c is the 20th quantile of the distribution of τ(Xi).

Effects of Policy Recommendation. We first apply our
method to the logged data generated by the above pol-
icy to estimate the effect of the policy recommendation Ai
(β(1, 0) = E[Yi(1) − Yi(0)]) on the following three out-
comes: (1) the purchase value (how much the customer
spent), (2) the number of transactions, and (3) point us-
age (how many points the customer used). All outcomes are
sums over 18 days after the coupon offer decision. We com-
pute APS with δ ∈ {0.4, 0.8, 1.2, 2.0, 3.0}.6

Columns (1)–(5) in the first three rows of Table 2 report
the estimated effects of the policy recommendation Ai. We
normalize the estimates by dividing the original numbers by

6Unlike the theoretical framework, the feature vector Xi con-
sists of discrete and continuous variables. We compute APS by fix-
ing the value of the discrete part and computing by simulation the
APS integral with respect to the continuous part. See Appendix C
for details.
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Our Proposed Method with APS Controls Mean
δ = 0.4 δ = 0.8 δ = 1.2 δ = 2.0 δ = 3.0 Differences

(1) (2) (3) (4) (5) (6)

Effect on Purchase Value 0.35 0.82 0.92 0.54 0.72 −0.17
(0.59) (0.39) (0.30) (0.28) (0.21) (0.11)

Effect on # of Transactions 0.43 0.47 0.66 0.49 0.74 −0.07
(0.50) (0.34) (0.28) (0.25) (0.19) (0.10)

Effect on Point Usage 0.37 0.71 0.57 0.47 0.64 0.68
(0.42) (0.29) (0.26) (0.22) (0.17) (0.04)

Coupon Cost Effectiveness Measure 79.57 96.35 134 93.51 92.07 —
(130) (48.97) (61.97) (49.33) (28.45)

N 2758 4688 6016 8085 9602 89486

Notes: The first three rows of this table report estimated effects of the policy recommendation Ai on purchase behavior. Columns (1)–(5)
report estimates from our method with several choices of δ used to compute APS. Column (6) reports the outcome mean differences between
those with Ai = 1 and Ai = 0. Each APS is computed by averaging 100 simulation draws of the logging policy’s binary decision. All
numbers in the first three rows are normalized by dividing the original estimates by the sample outcome means. The fourth row reports our
measure of coupon cost effectiveness, which predicts how much the purchase value would increase in USD if we increased the cost of the
campaign by 1 USD. Heteroskedasticity-robust standard errors are reported in parentheses. The last row reports the number of observations
with nonzero APS for every action (Columns (1)–(5)) or the total sample size (Column (6)).

Table 2: Off-policy evaluation using policy’s generated data

the sample outcome means for confidentiality. The results
show that the effects of the policy recommendationAi on the
purchase value, the number of transactions, and point usage
are 35–92%, 43–74%, and 37–71% of their sample means,
respectively. These positive effects mark a sharp contrast
with Column (6), which reports the simple differences in the
outcome means between those with Ai = 1 and those with
Ai = 0. The simple mean differences on the purchase value
and the number of transactions are negative. These negative
estimates suggest that the logging policy tends to recom-
mend a coupon to the customers who have a low propensity
to make purchases. Our proposed method corrects for this
negative selection bias by controlling for APS.

Evaluation of Counterfactual Policies. The company
needs to compensate for the discount that customers get by
using points. Thus, adopting a new policy would be prof-
itable only when the increase in revenue is sufficiently large
compared to that in point usage. The company charges sell-
ers 10% of every payment from the buyer; the revenue in-
creases by 10% of the increase in purchase value. Hence,
the policy change is beneficial if the ratio of the increases in
the average purchase value and point usage is larger than 10.

Suppose we change our policy from ML to a counter-
factual one π. Let Y 1

i and Y 2
i denote the purchase value

and point usage respectively. Under the constant conditional
effect assumption, i.e., E[Y 1

i (1) − Y 1
i (0)|Xi] =: β and

E[Y 2
i (1)− Y 2

i (0)|Xi] =: γ, the ratio is:

E[
∑1
a=0 Y

1
i (a)π(a|Xi)]− E[

∑1
a=0 Y

1
i (a)ML(a|Xi)]

E[
∑1
a=0 Y

2
i (a)π(a|Xi)]− E[

∑1
a=0 Y

2
i (a)ML(a|Xi)]

=
βE[π(1|Xi)−ML(1|Xi)]

γE[π(1|Xi)−ML(1|Xi)]
=
β

γ
.

The fourth row of Table 2 reports the estimates of the ratio
β/γ. The estimates are larger than 10 for all δ’s. This result
suggests that it would be profitable to expand the campaign.

As mentioned in Section 4, without the constant condi-
tional effect assumption, our estimator for the effect of the
policy recommendation is a consistent estimator of the con-
ditional effect for the subpopulation on the decision bound-
ary, i.e., E[Yi(1) − Yi(0)|τ(Xi) = c]. Our estimates in the
fourth row of Table 2 therefore can be interpreted as a mea-
sure for the cost effectiveness of the counterfactual policy
that slightly lowers the threshold c. Without the constant
conditional effect assumption, the result still suggests that
marginally expanding the campaign would be profitable.

7 Conclusion
We develop an OPE method for a class of logging policies
including deficient support ones. Our method is based on
the newly developed “Approximate Propensity Score.” We
prove that our estimator is consistent and demonstrate its
practical performance through simulations and a real-world
application. Promising directions for future work include de-
veloping a data-driven procedure to optimize the bandwidth.
Also, the assumption of constant conditional mean reward
differences may not be plausible in some applications. It will
be challenging but interesting to relax this assumption to al-
low for certain types of heterogeneity. Finally, we look for-
ward to applications of our method in a variety of business,
policy, and scientific domains using machine learning.
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