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Abstract

An evaluation criterion for safe and trustworthy deep learning
is how well the invariances captured by representations of deep
neural networks (DNNs) are shared with humans. We identify
challenges in measuring these invariances. Prior works used
gradient-based methods to generate identically represented
inputs (IRIs), i.e., inputs which have identical representations
(on a given layer) of a neural network, and thus capture in-
variances of a given network. One necessary criterion for a
network’s invariances to align with human perception is for
its IRIs look “similar” to humans. Prior works, however, have
mixed takeaways; some argue that later layers of DNNs do not
learn human-like invariances yet others seem to indicate other-
wise. We argue that the loss function used to generate IRIs can
heavily affect takeaways about invariances of the network and
is the primary reason for these conflicting findings. We propose
an adversarial regularizer on the IRI-generation loss that finds
IRIs that make any model appear to have very little shared
invariance with humans. Based on this evidence, we argue that
there is scope for improving models to have human-like invari-
ances, and further, to have meaningful comparisons between
models one should use IRIs generated using the regularizer-
free loss. We then conduct an in-depth investigation of how dif-
ferent components (e.g. architectures, training losses, data aug-
mentations) of the deep learning pipeline contribute to learning
models that have good alignment with humans. We find that
architectures with residual connections trained using a (self-
supervised) contrastive loss with `p ball adversarial data aug-
mentation tend to learn invariances that are most aligned with
humans. Code: github.com/nvedant07/Human-NN-Alignment.
We strongly recommend reading the arxiv version of this
paper: https://arxiv.org/abs/2111.14726.

1 Introduction
The ability to train deep neural networks (DNNs) which learn
useful features and representations is key for their widespread
use (LeCun, Bengio, and Hinton 2015). In domains where
DNNs are used for tasks that previously required human in-
telligence (e.g. image classification) and where safety and
trustworthiness are important considerations, it is helpful to
assess the alignment of the learned representations with hu-
man perception. Such assessments can help in understanding
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and diagnosing issues such as lack of robustness to distribu-
tion shifts (Recht et al. 2019), adversarial attacks (Goodfel-
low, Shlens, and Szegedy 2015) or using undesirable features
for a downstream task (Buolamwini and Gebru 2018).

One test of human-machine alignment is whether different
images that map to identical internal network representation
are also judged as identical by humans. To study alignment
with human perception, prior works have used the approach
of representation inversion (Mahendran and Vedaldi 2014).
The key idea is the following: given an input to a neural
network, the approach first finds identically represented in-
puts (IRIs), i.e. inputs which have similar representations on
some given layer(s) of the neural network. In the second step,
the inputs that are perceived similarly by the neural network
are checked by humans for visual similarity. Thus, the ap-
proach relies on estimating whether a transformation of the
inputs which is representation invariant to a neural network
is also an invariant transformation to the human eye, i.e. it
checks whether models and humans have shared or aligned
invariances.

Prior works use gradient-based methods to generate IRIs
for a given target input starting with a random seed input.
These works revealed exciting insights: (a) Feather et al. stud-
ied representational invariance for different layers of DNNs
trained over ImageNet data (using the standard cross-entropy
loss). They showed that while later layer representations of
DNNs do not share any invariances with human perception,
the earlier layers are somewhat better aligned with human
perception (Feather et al. 2019). (b) Engstrom et al. found
that, unlike standard DNNs, adversarially robust DNNs, i.e.,
DNNs trained using adversarial training (Madry et al. 2019),
learn representations that are well aligned with human per-
ception, even in later layers (Engstrom et al. 2019b). This
was also confirmed by other works (Kaur, Cohen, and Lipton
2019; Santurkar et al. 2019). However, some of these findings
are contradicted when differently regularized methods are
used for generating IRIs, which show that even later layers
of DNNs learn human aligned representations (Mahendran
and Vedaldi 2014; Olah, Mordvintsev, and Schubert 2017).

We seek to make sense of these confusing earlier results,
and thereby to better understand alignment. We show that
when we evaluate alignment of DNNs’ invariances and hu-
man perception using IRIsgenerated using different loss func-
tions, we can arrive at very different conclusions. For ex-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9277



ample, Fig 1 shows how visual similarity of IRIs can vary
massively across different categories of losses.

We group existing IRI generation processes into two broad
categories: regularizer-free, where the goal is to find an
IRI without any additional constraints; and human-leaning,
where the goal is to find an IRI that is also visually human-
comprehensible. Additionally, we propose and explore a new
(third) broad category, adversarial, where the goal is to find
an IRI that is visually (from a human perception perspective)
far apart from the target input.

We find that compared to the regularizer-free IRI genera-
tion approach, the human-leaning IRI generation approach
applies strong constraints on the kind of IRIs generated and
thus limits the ability to freely explore the large space of
possible IRIs. On the other hand, our proposed adversarial
approach shows that in the worst case, all models have close
to zero alignment, suggesting that there is scope for improve-
ment in designing models that have human-like invariances
(as shown in Fig 1 and Table 2). Based on this evidence, we
argue that in order to have meaningful comparisons between
models, one should measure alignment using the regularizer-
free loss for IRI generation.

Many prior works do not formally define a measure that
can quantify alignment with human perception beyond re-
lying on visual inspection of the images by the authors
(e.g. (Olah et al. 2020)). We show how alignment can be
quantified reliably by designing simple visual perception
tests that can be crowdsourced, i.e. used in human surveys.
We also show how one can leverage widely used measures
of perceptual distance (Zhang et al. 2018) to automate our
human surveys, which allows us to obtain insights at a scale
not possible in previous works.

Next, inspired by the prior works that suggest that changes
in the model training pipeline (as in training adversarially ro-
bust DNNs (Engstrom et al. 2019b; Kaur, Cohen, and Lipton
2019)) can lead to human-like invariant representations, we
conduct an in-depth investigation to understand which parts
of the deep learning pipeline are critical in helping DNNs bet-
ter learn human-like invariances. We find that certain choices
in the deep learning pipeline can significantly help learn rep-
resentation that have human-like invariances. For example,
we show that residual architectures (e.g., ResNets (He et al.
2016)), when trained with a self-supervised contrastive loss
(e.g., SimCLR (Chen et al. 2020a)), using `2 ball adversarial
data augmentations (e.g., as in RoCL (Kim, Tack, and Hwang
2020)); the learned representations – while typically having
lower accuracies than their fully supervised counterparts –
have higher alignment of invariances with human perception.
We highlight the following contributions:

• We show how different losses used for generating IRIs lead
to different conclusions about a model’s shared invariances
with human perception, thus leading to seemingly contra-
dictory findings in prior works.

• We propose an adversarial IRI generation loss, using which
we show empirically that we can almost always discover
invariances of DNNs that do not align with human percep-
tion, thus suggesting that there is scope to design better
mechanisms to learn representations that are more aligned

with human perception.
• We conduct an in-depth study of how loss functions, archi-

tectures, data augmentations and training paradigms lead
to learning human-like shared invariances.

2 Measuring Shared Invariance with Human
Perception

Measuring the extent to which invariances learned by DNNs
are shared by humans is a two step process. We first generate
IRIs, i.e., inputs that are mapped to identical representations
by the DNN. IRIs give us an estimate about the invariances of
the DNN. Then, we assess if these inputs are also considered
identical by humans. More concretely, if invariances of a
given DNN (gmodel) are shared by humans (ghuman) on a set
of n d-dimensional samples X ∈ Rn×d, then:

ghuman(X
i) ≈ ghuman(X

j) ∀ (Xi, Xj) ∈ S × S ;

S = {X} ∪ {Xi | gmodel(X
i) ≈ gmodel(X)}.

S denotes the IRIs for gmodel. There are three major chal-
lenges here:

• Access to representations in the brain, i.e., ghuman is not
available.

• Due to the highly non-linear nature of DNNs, S can be
very hard to obtain.

• The fine-grained input space implies very many inputs n,
making the choice of X hard.

We address each of these below. We also show how prior
works that do not directly engage with these points can miss
important issues in their conclusions about shared invariances
of DNNs and humans.

2.1 Approximating ghuman

Assuming we have a set of images with identical represen-
tations (S; how we obtain this is discussed in Section 2.2),
we must check if humans also perceive these images to be
identical. The extent to which humans think this set of images
is identical defines how aligned the invariances learned by
the DNN are with human perception. In prior works this has
been done by either eyeballing IRIs (Engstrom et al. 2019b)
or by asking annotators to assign class labels to IRIs (Feather
et al. 2019); both approaches do not scale well. Additionally,
assigning class labels to IRIs limits X to being samples from
a data distribution containing human-recognizable images
(i.e., X cannot be sampled from any arbitrary distribution)
with only a few annotations (e.g., asking annotators to assign
one class label out of 1000 ImageNet classes is not feasible).
To address the issues of scalability and class labels, we pro-
pose the following as a measure of alignment between DNN
and human invariances:

Alignment =
|A|∑

xt∈X |Sxt
|
,where (1)
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Target (xt)

Standard

Regularizer-free

AT ℓ2 𝝐 = 1

Human-leaning 
Regularizer

Adversarial 
Regularizer

Standard

AT ℓ2 𝝐 = 1

Model Result (xr)

Seed (x0)

Figure 1: [Representation Inversion for different kinds ofR; For ImageNet trained ResNet50] For the standard ResNet50, with
regularizer-free and adversarial inversion, xr looks perceptually much closer to x0 than xt, even though from the model’s point
of view, xr and xt are the same. However, with the human-leaning regularizer, we see that xr contains some information like
color patterns of xt. For adversarially robust ResNet50 (Salman et al. 2020) even though regularizer-free and human-leaning
inversions look perceptually similar to xt, for the adversarial regularizer even these models produce xr that looks nothing like xt.
Images are generated by starting from x0 and solving Eq 2 with different kinds of regularizers.

(a) 2AFC (b) Hard ImageNet Clustering (c) Random ImageNet Clustering

Figure 2: [Survey Prompts for AMT workers] In the 2AFC (left) setting we ask the annotator to choose which of the two images
(xt or x0) is perceptually closer to the query image (xr). In the clustering setting (center and right) we show 3 images from the
dataset (target images, xt) in the columns and for each of these, we generate xr1 ∈ Sxt and xr2 ∈ Sxt . Each of these is shown
across the rows. The task here is to match each image on the row with the corresponding target image on the column.

A = {xri | ||ghuman(xt)− ghuman(xri)|| <
||ghuman(x0)− ghuman(xri)|| ∀xt ∈ X,xri ∈ Sxt},
Sxt

= {xri |gmodel(xri) ≈ gmodel(xt) ∀xt ∈ X},

where x0 is the starting point for Eq 2 sampled from
N (0, 1). In Section 2.4 we see how alignment is robust to
the choice of x0. By directly looking for perceptual simi-
larity of IRIs (captured by A), we get past the issue of as-
signing class labels to IRIs. The comparison used to gen-
erate A is referred to as the 2 alternative forced choice
test (2AFC) which is commonly used to assess sensitivity
of humans to stimuli (Fechner, Howes, and Boring 1966).
In order to compute A, we estimate perceptual distance
d(xi, xj) = ||ghuman(xi)− ghuman(xj)|| between two inputs.

Ideally, we would like to measure d(xi, xj) by directly asking
for human annotations, however, this approach is expensive
and does not scale when we wish to evaluate many models. To
address scalability, we use LPIPS (Zhang et al. 2018) which
is a commonly used measure for perceptual distance and thus
can be used to approximate d(xi, xj) 1. While LPIPS is by no
means a perfect approximation, it allows us to gain insights
at a scale not possible in prior works.

To ensure the efficacy of LPIPS as a proxy for human
judgements, we deploy two types of surveys on Amazon Me-

1For all evaluations we report the average over 4 different back-
bones used to calculate LPIPS including the finetuned weights
released by the authors. More details in Appendix A.2
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CIFAR10

MODEL
HUMAN
2AFC

LPIPS
2AFC

HUMAN
CLUSTERING

LPIPS
CLUSTERING

AT
`2

ε = 1

RESNET18 96.00±2.55 87.25±9.52 97.48±1.80 88.13±6.57

VGG16 38.83±7.59 4.00±3.86 55.39±5.63 46.09±3.84

INCEPTIONV3 82.00±8.44 54.12±19.23 84.47±6.32 74.87±6.74

DENSENET121 98.67±0.24 91.75±8.2 97.64±2.08 91.92±6.13

STANDARD

RESNET18 0.17±0.24 0.0±0.0 38.55±1.19 35.35±3.27

VGG16 0.17±0.24 0.0±0.0 33.84±2.70 32.58±1.04

INCEPTIONV3 0.17±0.24 0.38±0.41 38.38±4.06 36.62±3.08

DENSENET121 9.83±9.97 0.12±0.22 42.42±5.02 37.12±3.54

IMAGENET

MODEL
HUMAN
2AFC

LPIPS
2AFC

HUMAN
CLUSTERING

HUMAN
CLUSTERING

HARD

LPIPS
CLUSTERING

AT
`2

ε = 3

RESNET18 93.17±5.95 53.37±20.19 96.00±3.59 87.75±7.60 65.28±10.58

RESNET50 99.50±0.00 53.63±20.64 99.49±0.71 97.06±3.47 71.21±9.93

VGG16 95.50±2.12 59.38±21.48 91.75±5.22 90.69±3.13 70.33±9.78

STANDARD

RESNET18 0.00±0.00 1.12±1.67 33.33±0.00 - 34.60±0.56

RESNET50 5.33±7.54 0.38±0.41 38.38±2.53 - 35.35±0.62

VGG16 0.00±0.00 0.00±0.00 33.96±2.00 - 34.47±1.49

Table 1: [CIFAR10 and ImageNet Surveys To Confirm Efficacy of LPIPS] We use LPIPS to simulate a human in both 2AFC and
Clustering setups described in Section 2.1 and compare it with AMT worker’s responses. We see that LPIPS and humans rank
models similarly, thus showing that LPIPS is a reliable proxy for judging perceptual similarity of IRIs.

chanical Turk (AMT) to also elicit human similarity judge-
ments. Prompts for these surveys are shown in Fig. 2. We
received approval from the Ethical Review Board of our insti-
tute for this survey. Each survey consists of 100 images plus
some attention checks to ensure the validity of our responses.
The survey was estimated to take 30 minutes (even though
on average our annotators took less than 20 minutes), and we
paid each worker 7.5 USD per survey.

Clustering In this setting, we ask humans to match the
IRIs (xri) on the row to the most perceptually similar im-
age (xt) on the column (each row can only be matched to
one column). A prompt for this type of a task is shown in
Fig. 2b & 2c. With these responses, we calculate a quan-
titative measure of alignment by measuring the fraction of
xri that were correctly matched to their respective xt. For
ImageNet, we observed that a random draw of three images
(e.g., Fig. 2c) can often be easy to match to based on how
different the drawn images (xt) are. Thus, we additionally
construct a “hard” version of this task by ensuring that the
three images are very “similar” (as shown in Fig. 2b). We
leverage human annotations of ImageNet-HSJ (Roads and
Love 2021) to draw these similar images. More details can
be found in Appendix A.

2AFC This is the exact test used to generateA. In this setting
we show the annotator a reconstructed image (xr) and ask
them to match it to one of the two images shown in the
options. The images shown in the options are the seed (x0, i.e.,
starting value of x in Eq. 2) and the original image (xt). Since
xr and xt are IRIs for the model (by construction), alignment
would imply humans also perceive xr and xt similarly. See
Fig. 2a for an example of this type of survey.

2.2 Generating IRIs
Even if we assume a finite sampled set X ∼ D (discussed
in Section 2.3), there can be many samples in S due to the
highly non-linear nature of DNNs. However, we draw on the
insight that there is often some structure to the set of IRIs,
that is heavily dependent on the IRI generation process. Prior
work on understanding shared invariance between DNNs and
humans has used representation inversion (Mahendran and
Vedaldi 2014) to generate IRIs. However, IRIs generated this
way depend heavily on the loss function used in representa-
tion inversion. Fig. 1 shows how different loss functions can
lead to very different looking IRIs. We group these losses pre-
viously used in the literature to generate IRIs into two broad
types: regularizer-free (used by (Engstrom et al. 2019b;
Feather et al. 2019)), and human-leaning (used by (Olah
et al. 2020; Mordvintsev, Olah, and Tyka 2015; Nguyen,
Yosinski, and Clune 2015)). We also explore a third kind of
adversarial regularizer, that aims to generate controversial
stimuli (Golan, Raju, and Kriegeskorte 2020) between a DNN
and a human.

Representation inversion is the task of starting with a ran-
dom seed image x0 to reconstruct a given image xt ∈ X
from its representation g(xt) where g(·) is the trained DNN.
The reconstructed image (xr) is same as xt from the DNN’s
point of view, i.e., g(xt) ≈ g(xr). This is achieved by per-
forming gradient descent on x0 (in our experiments we use
SGD with a learning rate of 0.1) to minimize a loss of the
following general form:

Lx =
||g(xt)− g(x)||2
||g(xt)||2

+ λ ∗ R(x) (2)

where λ is an appropriate scaling constant for regularizer
R. All of these reconstructions induce representations in
the DNN that are very similar to the given image (xt), as
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measured using `2 norm. Depending on the choice of seed
x0 and the choice of R, we get different reconstructions of
xt thus giving us a set of inputs {xt, xr1 , ..., xrk} that are all
mapped to similar representations by g(·). Doing this for all
xt ∈ X , we get the IRIs , S = {X,Xr1 , ..., Xrk}.

In practice we find that the seed x0 does not have any
significant impact on the measurement of shared invariance.
However, the choice ofR does significantly impact the invari-
ance measurement (as also noted by (Olah, Mordvintsev, and
Schubert 2017)). We identify the following distinct categories
of IRIs based on the choice ofR.

Regularizer-free. These methods do not use a regularizer,
i.e.,R(x) = 0.

human-leaning regularizer. This kind of a regularizer pur-
posefully puts constraints on x such that the reconstruction
has some “meaningful” features. A widely used regularizer
isR(x) = TV (x)+ ||x||p where TV is the total variation in
the image. Intuitively this penalizes high frequency features
and smoothens the image to make it look more like natural
images. Other works achieve a similar kind of high frequency
penalization by blurring x before each optimization step. We
combine both these frequency-based regularizers with pre-
conditioning in the Fourier domain and robustness to small
transformations. More details can be found in Appendix A.4.
Intuitively a regularizer from this category generates IRIs that
have been “biased” to look meaningful to humans.

Adversarial regularizer. We propose a new regularizer to
generate IRIs while intentionally making them look percep-
tually dissimilar from the target, i.e., R = −||ghuman(xt)−
ghuman(x)|| (negative sign since we want to maximize percep-
tual distance between x and xt). We leverage LPIPS (Learned
Perceptual Image Patch Similarity), a widely used perceptual
distance measure, to approximate ||ghuman(xt)− ghuman(x)||.
LPIPS uses initial layers of an ImageNet trained model (fine-
tuned on a dataset of human similarity judgements) to approx-
imate perceptual distance between images which makes it
differentiable and thus can be easily plugged into Eq. 2. Thus,
the regularizer used isR(x) = −LPIPS(x, xt). IRIs gener-
ated using this regularizer can be thought of as controversial
stimuli (Golan, Raju, and Kriegeskorte 2020) – they’re simi-
lar from the DNN’s perspective, but distinct from a human’s
perspective.

2.3 Choice of Inputs X
We try out many different distributions, including the training
data distribution and random noise distributions, and find
that takeaways about a alignment of model’s invariances with
humans do not depend heavily on the choice of X . More
discussion and results in Appendix A.3.

2.4 Evaluation and Takeaways
For each model, we randomly picked 100 images from the
data distribution along with a seed image with random pixel
values. For each of the 100 images, we do representation
inversion using one regularizer each from regularizer-free,
human-leaning, and adversarial.
Reliability of using LPIPS Table 1 shows the results for the

surveys conducted with AMT workers 2. Each survey was
completed by 3 workers. For a well aligned model, the scores
under 2AFC and Clustering should be close to 1, while
for a non-aligned model scores under 2AFC should be close
to 0, and scores under Clustering should be close to a
random guess (i.e., about 33%). We see that LPIPS (with
different backbone nets, e.g., AlexNet, VGG) orders models
similar to human annotators for both the survey setups, thus
showing that it’s a reliable proxy.
Reliability of Human Annotators In Table 1, we make
three major observations: 1) variance between different anno-
tators is very low; 2) scores under Human 2AFC and Human
Clustering order different models similarly; and finally,
3) even though accuracy drops for the “hard” version of Ima-
geNet task, the relative ordering of models remains the same.
These observations indicate that alignment can be reliably
measured by generating IRIs and does not depend on bias in
annotators. Note that AMT experiments were only performed
on IRIs generated using the regularizer-free loss in Eq 2.
Impact of regularizer Table 2 shows the results of Align-
ment (Eq 1) for different regularizers for IRI generation. We
evaluated multiple architectures of both standard and adver-
sarially trained CIFAR10 and ImageNet models. We find
that under different types of regularizers, the alignment of
models can look very different. We also see that adversarial
regularizer makes aligment bad for almost all models, thus
showing that for the worst pick of IRIs the alignment between
learned invariances and human invariances has a lot of room
for improvement. Conversely, the human-leaning regularizer
overestimates the alignment.
Impact of X In the case of OOD targets (xt) we see that
humans are still able to faithfully judge similarity, yielding
the same ranking of models as in-distribution targets. Some
results for human judgements about similarity of IRIs for out
of distribution samples are shown in Table 4, Appendix A.3.
As seen in Fig 4 (Appendix A.3), human-leaning regularizer
does not work well for reconstructing noisy targets. This is
because such regularizers explicitly remove high-frequency
features from reconstructions (Olah, Mordvintsev, and Schu-
bert 2017) and thus struggle to meaningfully reconstruct
targets that contain high-frequency features. Hence, all re-
sults in Table 4, Appendix A.3 are reported on IRIs generated
using regularizer-free loss.
Impact of x0 We repeat some of the experiments with other
starting points for Eq 2 and find that results are generally
not sensitive to the choice of x0. Results are included in
Appendix A.5.

3 What Contributes to Learning Invariances
Aligned with Humans

In recent years there have been efforts to understand how
invariances in representations learnt by such networks align
with those of humans (Geirhos et al. 2018; Hermann, Chen,
and Kornblith 2020; Feather et al. 2019). However, how in-
dividual components of the deep learning pipeline affect the
invariances learned is still not well understood. Prior works

2This was conducted only using IRIs from regularizer-free in-
version.
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CIFAR10

TRAINING
MODEL

ALIGNMENT CLEAN
ACC.

ROBUST
ACC.REG.- HUMAN- ADVER-

FREE ALIGNED SARIAL

AT
`2, ε = 1

RESNET18 63.25±26.23 79.00±21.94 0.33±0.47 80.77 50.92
VGG16 0.25±0.43 41.41±16.74 1.00±1.41 79.84 48.36

INCEPTIONV3 23.25±25.56 64.75±24.17 3.00±4.24 81.57 51.02
DENSENET121 82.75±20.07 86.25±14.50 1.33±1.89 83.22 52.86

STANDARD

RESNET18 0.00±0.00 21.09±13.51 1.33±1.89 94.94 0.00
VGG16 0.00±0.00 21.88±14.82 0.00±0.00 93.63 0.00

INCEPTIONV3 0.00±0.00 21.88±17.54 0.33±0.47 94.59 0.00
DENSENET121 0.00±0.00 26.56±16.90 0.00±0.00 95.30 0.00

IMAGENET

TRAINING
MODEL

ALIGNMENT CLEAN
ACC.

ROBUST
ACC.REG.- HUMAN- ADVER-

FREE ALIGNED SARIAL

AT
`2, ε = 3

RESNET18 42.00±38.33 46.75±39.37 0.33±0.47 53.12 31.02
RESNET50 51.00±34.89 45.75±37.39 14.00±3.74 62.83 38.84

VGG16 55.50±34.14 55.50±38.29 11.00±3.74 56.79 34.46

STANDARD

RESNET18 0.00±0.00 17.00±28.30 0.00±0.00 69.76 0.01
RESNET50 0.00±0.00 16.25±26.42 0.00±0.00 76.13 0.00

VGG16 0.00±0.00 0.00±0.00 0.00±0.00 73.36 0.16

Table 2: [CIFAR10 and ImageNet Model Alignment Results for Different Regularizers] Ranking of models can look very
different for different regularizers. Comparing Adversarially Trained (AT) Resnet18 vs InceptionV3 on CIFAR10, we see that
reguarizer-free inversion leads to Resnet18 being significantly more aligned, but the trend is much less pronounced for the
human-leaning regularizer.

claim that adversarially robust models tend to learn repre-
sentations with a “human prior” (Kaur, Cohen, and Lipton
2019; Engstrom et al. 2019b). This leads to the question: how
do other factors such as architecture, training paradigm, and
data augmentation affect the invariances of representations?

We explore these questions in this section. All evaluations
in this section are based on regularizer-free IRIs. We chose
regularizer-free loss over the adversarial loss as the latter
shows worst case alignment for all models, which is not use-
ful for understanding the effect of various factors in the deep
learning pipeline (Appendix A.4 shows more results using the
adversarial regularizer). Similarly, we preferred regularizer-
free over human-leaning loss as the latter has a strong ‘bias’
enforced by the regularizer. While our approach generalizes
to any layer, unless stated otherwise, all measurements of
alignment are on the penultimate layer of the network.

3.1 Architectures and Loss Functions

We test the alignment of different DNNs trained using various
loss functions – standard cross-entropy loss, adversarial train-
ing (AT), and variants of AT (TRADES (Zhang et al. 2019),
MART (Wang et al. 2019)). Both TRADES and MART have
two loss terms – one each for clean and adversarial samples,
which are balanced via a hyperparameter β. We report results
for multiple values of β in Fig 3a and find that the alignment
of standard models (blue squares) is considerably worse than
the robust ones (triangles and circles). However, the effect is
also influenced by the choice of model architecture, e.g., for
CIFAR10, for all robust training losses, VGG16 has signifi-
cantly lower alignment than other architectures.

3.2 Data Augmentation
If adversarial training – which augments adversarial sam-
ples during training – generally leads to better aligned rep-
resentations, then how do hand-crafted data augmentations
affect invariances of learned representations? For adversari-
ally trained models, we try with and without the usual data
augmentation (horizontal flip, color jitter, and rotation). Since
standard models trained with usual data augmentation show
poor alignment (Section 3.1), we try stronger data augmenta-
tion (a composition of random flip, color jitter, grayscale and
gaussian blur, as used in SimCLR) to see if hand-crafted data
augmentations can improve alignment. Table 5 Appendix C
shows how hand-crafted data augmentation can be crucial
in learning aligned representations for some models (e.g.,
adversarially trained ResNet18 benefits greatly from data
augmentation). In other cases data augmentation never hurts
the alignment. We also see that standard models do not gain
alignment even with stronger hand-crafted data augmenta-
tions. CIFAR100 and ImageNet results can be found in Ta-
ble 6 Appendix C with similar takeaways.

3.3 Learning Paradigm
Since data augmentations (both adversarial and hand-crafted)
along with residual architectures help alignment, self-
supervised learning (SSL) models – which explicitly rely
on data augmentations – should learn well aligned represen-
tations. This leads to a natural question: how do SSL models
compare with the alignment of supervised models? SimCLR
is a widely used contrastive SSL method that learns ‘meaning-
ful’ representations without using any labels. Recent works
have built on SimCLR to also include adversarial data aug-
mentations. We train both the standard version of SimCLR
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and the one with adversarial augmentation on CIFAR10 and
compare their alignment with the supervised counterparts.
More training details are included in Appendix C. Addition-
ally we also train SimCLR without the color distortion trans-
forms – which were identified as key transforms by its authors
– to see how transforms that are crucial for generalization af-
fect alignment. Fig 3b shows the results when comparing
self-supervised and supervised learning. We see that Sim-
CLR when trained with both hand-crafted and adversarial
augmentations has the best alignment, even outperforming
the best adversarially trained supervised model in initial and
middle epochs of training. We also see that removing color
based augmentations (DA - color) does not have a significant
impact on alignment, thus showing that certain DA can be
crucial for generalization but not necessarily for alignment.
Summary We find that there are three key components that
lead to good alignment: architectures with residual connec-
tions, adversarial data augmentation using `2 threat model,
and a (self-supervised) contrastive loss. We leave a more com-
prehensive study of the effects of these training parameters
on alignment for future work.

4 Related Work
Robust Models Several methods have been introduced to
make deep learning models robust against adversarial at-
tacks (Papernot et al. 2016; Ross and Doshi-Velez 2018; Gu
and Rigazio 2014; Tramèr et al. 2018; Cohen, Rosenfeld,
and Kolter 2019). These works try to model a certain type of
human invariance (small change to input that does not change
human perception) and make the model also learn such an
invariance. Our work, on the other hand, aims to evaluate
what invariances have already been learned by a model and
how they align with human perception. DNNs and Human
Perception Neural networks have been used to model many
perceptual properties such as quality (Amirshahi, Pedersen,
and Yu 2016; Gao et al. 2017) and closeness (Zhang et al.

2018) in the image space. Recently there has been interest
in measuring the alignment of human and neural network
perception. Roads et al. do this by eliciting similarity judge-
ments from humans on ImageNet inputs and comparing it
with the outputs of neural nets (Roads and Love 2021). Our
work, however, explores alignment in the opposite direction,
i.e., we measure if inputs that a network seed the same are
also the same for humans. (Feather et al. 2019; Engstrom
et al. 2019b) are closest to our work as they also evaluate
alignment from model to humans, however as discussed in
Section 2, unlike our work, their approaches are not scalable,
they do not discuss the effects of loss function used to gen-
erate IRIs, and they do not contribute to an understanding
of what components in the deep learning pipeline lead to
learning human-like invariances.

5 Conclusion and Broader Impacts
Our work offers insights into how measures of alignment can
vary based on different loss functions used to generate IRIs.
We believe that when it is done carefully, measuring align-
ment is a useful model evaluation tool that provides insights
beyond those offered by traditional metrics such as clean and
robust accuracy, enabling better alignment of models with
humans. We recognize that there are potentially worrying
use cases against which we must be vigilant, such as tak-
ing advantage of alignment to advance work on deceiving
humans. Human perception is complex, nuanced and discon-
tinuous (Stankiewicz and Hummel 1996), which poses many
challenges in measuring the alignment of DNNs with human
perception (Guest and Love 2017). In this work, we take a
step toward defining and measuring the alignment of DNNs
with human perception. Our proposed method is a necessary
but not sufficient condition for alignment and, thus, must be
used carefully and supplemented with other checks, includ-
ing domain expertise. By presenting this method, we hope
for better design, understanding, and auditing of DNNs.
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