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Abstract

This paper presents SVAM (Sequential Variance-Altered
MLE), a unified framework for learning generalized linear
models under adversarial label corruption in training data.
SVAM extends to tasks such as least squares regression, lo-
gistic regression, and gamma regression, whereas many ex-
isting works on learning with label corruptions focus only on
least squares regression. SVAM is based on a novel variance
reduction technique that may be of independent interest and
works by iteratively solving weighted MLEs over variance-
altered versions of the GLM objective. SVAM offers provable
model recovery guarantees superior to the state-of-the-art for
robust regression even when a constant fraction of training
labels are adversarially corrupted. SVAM also empirically
outperforms several existing problem-specific techniques for
robust regression and classification. Code for SVAM is avail-
able at https://github.com/purushottamkar/svam/

Introduction
Generalized linear models (GLMs) (Nelder and Wedderburn
1972) are effective models for a variety of discrete and con-
tinuous label spaces, allowing the prediction of binary or
count-valued labels (logistic, Poisson regression) as well as
real-valued labels (gamma, least-squares regression). Infer-
ence in a GLM involves two steps: given a feature vector
x ∈ Rd and model parameters w∗, a canonical parameter is
generated as θ := ⟨w∗,x⟩ then the label y is sampled from
the exponential family distribution

P [y | θ] = exp(y · θ − ψ(θ)− h(y)),

where the function h(·) is specific to the GLM and ψ(·)
is a normalization term, also known as log partition func-
tion. It is common to use a non-canonical link such as
θ := exp(⟨w∗,x⟩) for gamma distribution. GLMs also ad-
mit vector valued label y ∈ Rn by substituting the scalar
product by inner product ⟨y,η⟩ where η := Xw∗ is the
canonical parameter and X ∈ Rn×d is the covariate matrix.

Problem Description: Given data {(xi, yi)}ni=1 gener-
ated using a known GLM but unknown model parameters
w∗, statistically efficient techniques exist to recover a con-
sistent estimate of the model w∗ (McCullagh and Nelder
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1989). However, these techniques break down if several ob-
served labels yi are corrupted, not just by random statistical
noise but by adversarially generated structured noise. Sup-
pose k < n labels are corrupted i.e. for some k data points
i1, . . . , ik, the actual label yij , j = 1, . . . , k generated by the
GLM are replaced by the adversary with corrupted ones say
ỹij . Can we still recover w∗? Note that the learning algo-
rithm is unaware of the points that are corrupted.

Breakdown Point: The largest fraction α = k/n of cor-
ruptions that a learning algorithm can tolerate while still of-
fering an estimate of w∗ with bounded error is known as its
breakdown point. This paper proposes the SVAM algorithm
that can tolerate k = Ω(n) corruptions i.e. α = Ω(1).

Adversary Models: Contamination of the training la-
bels y1, . . . , yn by an adversary can misguide the learn-
ing algorithm into selecting model parameters of the ad-
versary’s choice. An adversary has to choose (1) which
labels i1, . . . , ik to corrupt and (2) what corrupted labels
ỹi1 , . . . , ỹik to put there. Adversary models emerge based
on what information the adversary can consult while making
these choices. The oblivious adversary must make both these
choices with no access to the original data {(xi, yi)}ni=1 or
true model w∗ and thus, can only corrupt a random/fixed
subset of k labels by sampling ỹij from some predetermined
noise distribution. This is also known as the Huber noise
model. On the other hand, a fully adaptive adversary has
full access to the original data and true model while mak-
ing both choices. Finally, the partially adaptive adversary
must choose the corruption locations without knowledge of
original data or true model but has full access to these while
deciding the corrupted labels. See Appendix B for details.

Contributions: This paper describes the SVAM (Se-
quential Variance-Altered MLE) framework that offers:
1. robust estimation with a breakdown point α = Ω(1)
against partially and fully adaptive adversaries for robust
least-squares regression and mean estimation and α =

Ω
(
1/
√
d
)

for robust gamma regression. Prior works do not
offer any breakdown point for gamma regression.
2. exact recovery of the true model w∗ against a fully-
adaptive adversary for the case of least squares regression,
3. the use of variance reduction technique (see §) in robust
learning, which is novel to the best of our knowledge,
4. extensive empirical evaluation demonstrating that despite
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being a generic framework, SVAM is competitive to or out-
performs algorithms specifically designed to solve problems
such as least-squares and logistic regression.

Related Works
In the interest of space, we review aspects of literature most
related to SVAM and refer to others (Diakonikolas et al.
2019a; Mukhoty et al. 2019) for a detailed review.

Robust GLM learning has been studied in a variety of set-
tings. (Cantoni and Ronchetti 2001) considered an oblivi-
ous adversary (Huber’s noise model) but offered a break-
down point of α = O

(
1√
n

)
i.e. tolerate k ≤ O (

√
n) cor-

ruptions. (Yang, Tewari, and Ravikumar 2013) solve robust
GLM estimation by solving M-estimation problems. How-
ever, they require the magnitude of the corruptions to be
upper-bounded by some constant i.e. |yi − ỹi| ≤ O (1) and
offer a breakdown point of α = O

(
1√
n

)
. Moreover, their

approach solves L1-regularized problems using projected
gradient descent that offers slow convergence. In contrast,
SVAM offers a linear rate of convergence, offers a break-
down point of α = Ω(1) i.e. tolerate k = Ω(n) corruptions
and can tolerate corruptions with unbounded magnitude in-
troduced by a partially or fully adaptive adversary.

Specific GLMs such as robust regression have received
focused attention. Here the model is y = Xw∗ + b where
X ∈ Rn×d is the feature matrix and b is k-sparse corrup-
tion vector denoting the adversarial corruptions. A variant of
this, studies a hybrid noise model that replaces the zero en-
tries of b with Gaussian noise N (0, σ2). (Nguyen and Tran
2013; Wright and Ma 2010) solve an L1 minimization prob-
lem which is slow in practice. (see §). (Bhatia, Jain, and Kar
2015) use hard thresholding techniques to estimate the sub-
set of uncorrupted points while (Mukhoty et al. 2019) mod-
ify the IRLS algorithm to do so. However, (Bhatia, Jain, and
Kar 2015; Mukhoty et al. 2019) are unable to offer consis-
tent model estimates in the hybrid noise model even if the
corruption rate α = k/n → 0 which is surprising since
α → 0 implies vanishing corruption. In contrast, SVAM
offers consistent model recovery in the hybrid noise model
against a fully adaptive adversary when α → 0. (Suggala
et al. 2019) also offer consistent recovery with breakdown
points α > 0.5 but assume an oblivious adversary.

Robust classification with yi ∈ {−1,+1} has been ex-
plored using robust surrogate loss functions (Natarajan et al.
2013) and ranking (Feng et al. 2014; Northcutt, Wu, and
Chuang 2017) techniques. These works do not offer break-
down points but offer empirical comparisons.

Robust mean estimation entails recovering an estimate
µ̂ ∈ Rd of the mean µ∗ of a multivariate Gaussian
N (µ∗,Σ) given n samples of which an α fraction are cor-
rupted (Lai, Rao, and Vempala 2016). Estimation error is

known to be lower bounded ∥µ̂− µ∗∥2 ≥ Ω
(
α
√
log 1

α

)
for this application even if n → ∞ (Diakonikolas and
Kane 2019). (Diakonikolas et al. 2019a) use convex pro-
gramming techniques and offer O

(
α log

3
2 1

α

)
error given

n ≥ Ω̃
(

d2

α2

)
samples and a poly

(
n, d, 1

α

)
runtime. (Cheng,

Diakonikolas, and Ge 2019) improve the running time to
Õ(nd)
poly(α) . The recent work of (Dalalyan and Minasyan 2022)
uses an IRLS-style approach that internally relies on expen-
sive SDP-calls but offers high breakdown points. SVAM
uses n = O

(
log2 1

α

)
samples and offers a recovery error

of O
(
trace(Σ)(log 1

α )
−1/2

)
. This is comparable to exist-

ing works if trace(Σ) = O (1). Moreover, SVAM is much
faster and simpler to implement in practice.

Meta algorithms such as robust gradient techniques,
median-of-means (Lecué and Lerasle 2020), tilted ERM
(Li et al. 2021) and maximum correntropy criterion (Feng
et al. 2015) have been studied. SEVER (Diakonikolas et al.
2019b) uses gradient covariance matrix to filter out the out-
liers along its largest eigenspace while RGD (Prasad et al.
2018) uses robust gradient estimates to perform robust first-
order optimization directly. While convenient to execute,
they may require larger training sets, e.g., SEVER requires
n > d5 samples for robust least-squares regression whereas
SVAM requires n > Ω (d log(d)). In terms of recovery
guarantees, for least-squares regression without Gaussian
noise, SVAM and other methods (Bhatia, Jain, and Kar
2015; Mukhoty et al. 2019)) offer exact recovery of w∗ so
long as the fraction of corrupted points is less than the break-
down point while SEVER’s error continues to be bounded
away from zero. RGD only considers an oblivious/Huber
adversary while SVAM can tolerate partially/fully adaptive
adversaries. SEVER does not report an explicit breakdown
point, RGD offers a breakdown point of α = 1/ log d (see
Thm 2 in their paper) while SVAM offers an explicit break-
down point independent of d. SVAM also offers faster con-
vergence than existing methods such as SEVER and RGD.

The SVAM Algorithm
A popular approach in robust learning is to assign weights
to data points, hoping that large weights would be given
to uncorrupted points and low weights to corrupted ones,
followed by weighted likelihood maximization. Often the
weights are updated, and the process is repeated. (Cantoni
and Ronchetti 2001) use Huber style weighing functions
used in Mallow’s type M-estimators, (Mukhoty et al. 2019)
use truncated inverse residuals, and (Valdora and Yohai
2014) use Mahalanobis distance-based weights.

SVAM notes that the label likelihood offers a natu-
ral measure of how likely the point is to be uncorrupted.
Given a model estimate ŵt at iteration t, the weight
si = P [yi | ηti ] = exp(yi · ηti − ψ(ηti) − h(yi)) can
be assigned to the ith point where ηti =

〈
ŵt,xi

〉
. This

gives us the weighted MLE1 Q̃(w | ŵt) = −
∑n

i=1 si ·
logP

[
yi |

〈
w,xi

〉]
solving which gives us the next model

iterate as
ŵt+1 = arg min

w∈Rd
Q̃(w | ŵt) (1)

However, as § will show, this strategy does not perform well.

1Recall that for gamma/Poisson regression we need to set ηt
i =

exp(
〈
ŵt,xi

〉
) given the non-canonical link for these problems.
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If the initial model ŵ1 is far from w∗, it may result in im-
precise weights si that are large for the corrupted points. For
example, if the adversary introduces corruptions using a dif-
ferent model w̃ i.e. ỹij ∼ P

[
yi |

〈
w̃,xij

〉]
, j ∈ [k] and we

happen to initialize close to w̃ i.e. ŵ1 ≈ w̃, then it is the
corrupted points that would get large weights initially that
may cause the algorithm to converge to w̃ itself.

Key Idea: It is thus better to avoid drastic decisions, say
setting si ≫ 0 in the initial stages no matter how much a
data point appears to be clean. SVAM implements this in-
tuition by setting weights using a label likelihood distribu-
tion with very large variance initially. This ensures that no
data point (not even the uncorrupted ones) gets large weight
(c.f. the uniform distribution that has large variance and as-
signs to point a high density). As SVAM progresses towards
w∗, it starts using likelihood distributions with progressively
lower variance. Note that this allows data points (hopefully
the uncorrupted ones) to get larger weights (c.f. the Dirac
delta distribution that has vanishing variance and assigns
high density to isolated points).

Mode-Preserving Variance-Altering Likelihood
Transformations
To implement the above strategy, SVAM (Algorithm 1)
needs techniques to alter the variance of a likelihood distri-
bution at will. Note that the likelihood values of the altered
distributions must be computable as they will be used as
weights si i.e. merely being able to sample the distribution
is not enough. Moreover, the transformation must be order-
preserving – say the original and transformed distributions
are P and P̃ resp., then for every pair of labels y, y′ and ev-
ery parameter value η, we must have P [y | η] > P [y′ | η] ⇔
P̃ [y | η] > P̃ [y′ | η]. If this is not true, then SVAM could
exhibit anomalous behavior.

The Transformation: If P [y | η] = exp(y · η − ψ(η) −
h(y)) is an exponential family distribution with parameter η
and log-partition function ψ(η) = log

∫
exp(y·η−h(y)) dy,

then for any β > 0, we get the variance-altered density,

P̃β [y | η] =
1

Z(η, β)
exp(β · (y · η − ψ(η)− h(y))),

where Z(η, β) =
∫
exp(β · (y · η − ψ(η) − h(y))) dy.

This transformation is order and mode preserving since xβ
is an increasing function for any β > 0. This generalized
likelihood distribution has variance (Nelder and Wedderburn
1972) 1

β∇
2ψ(η), which tends to 0 as β → ∞. Table 1 lists

a few popular distributions, their variance altered versions,
and asymptotic versions as β → ∞.

We note that (Jiang, Kulis, and Jordan 2012) also
study variance altering transformations for learning hidden
Markov models, topic models, etc.. However, their transfor-
mations are unsuitable for use in SVAM for a few reasons:
1. SVAM’s transformed distributions are always available
in closed form whereas those of (Jiang, Kulis, and Jordan
2012) are not necessarily available in closed form.
2. SVAM’s transformations are order-preserving while
(Jiang, Kulis, and Jordan 2012) offer mean-preserving that
are not assured to be order-preserving.

Algorithm 1: SVAM: Sequential Variance-Altered MLE

Input: Data
{
(xi, yi)

}n

i=1
, initial model ŵ1, initial scale β1,

scale increment ξ > 1, likelihood dist. P [· | ·]
1: for t = 1, 2, . . . , T − 1 do
2: sti ← P̃βt [yi |

〈
ŵt,xi

〉
] // βt-var altered P [· | ·]

3: Q̃βt(w | ŵt)
def
= −

∑n
i=1 s

t
i · log P

[
yi |

〈
w,xi

〉]
4: ŵt+1 = argminw Q̃βt(w | ŵt)

5: βt+1 ← ξ · βt // Variance of P̃β [· | ·] ↓ as β ↑
6: end for
7: return ŵT

The Algorithm: As presented in Algorithm 1, SVAM re-
peatedly constructs weighted MLEs Q̃β(w | ŵt) that take
β-variance altered weights si = P̃β [yi |

〈
w,xi

〉
] for all

i ∈ [n] and solves them to get new model estimates.
We take a pause to assert that whereas the approach in

(Mukhoty et al. 2019), although similar at first to Eq (1), ap-
plies only to least-squares regression as it relies on notions
of residuals missing from other GLMs. In contrast, SVAM
works for all GLMs e.g. least-squares/logistic/gamma re-
gression and offers stronger theoretical guarantees.

Theorem 1 shows that SVAM enjoys a linear rate of
convergence. However, we first define notions of Local
Weighted Strong Convexity and Lipschitz Continuity. Let
B2(v, r) := {w : ∥w − v∥2 ≤ r} denote the L2 ball of ra-
dius r centered at the vector v ∈ Rd.

Definition 1 (LWSC/LWLC). Given data
{
(xi, yi)

}n

i=1
and

β > 0 an exponential family distribution P [· | ·] is said to
satisfy λβ-Local Weighted Strongly Convexity and Λβ-Local
Weighted Lipschitz Continuity if for any true model w∗ and
any u,v ∈ B2

(
w∗,

√
1
β

)
the following hold,

1. ∇2Q̃β(v |u) def
= ∇2Q̃β(· |u)

∣∣∣
v
⪰ λβ · I

2.
∥∥∥∇Q̃β(w

∗ |u)
∥∥∥
2

def
=

∥∥∥∇Q̃β(· |u)
∣∣∣
w∗

∥∥∥
2
≤ Λβ

The above requires the Q̃β-function to be strongly convex
and Lipschitz continuous in a ball of radius 1√

β
around the

true model w∗ i.e. as β ↑, the neighborhood in which these
properties are desired also shrinks. We will show that like-
lihood functions corresponding to GLMs e.g., least squares
and gamma regression satisfy these properties for appropri-
ate ranges of β, even in the presence of corrupted samples.

Theorem 1 (SVAM Convergence). If the data and likeli-
hood distribution satisfy the LWSC/LWLC properties for all
β ∈ (0, βmax] and if SVAM is initialized at ŵ1 and scale
β1 > 0 s.t. β1 ·

∥∥ŵ1 −w∗
∥∥2
2
≤ 1, then for any ϵ > 1/βmax,

for small-enough scale increment ξ > 1, SVAM ensures∥∥ŵT −w∗
∥∥2
2
≤ ϵ after T = O

(
log 1

ϵ

)
iterations.

It is useful to take a moment to analyze this result.
Note that if the LWSC/LWLC properties hold for larger
values of β, SVAM is able to offer smaller model re-
covery errors. Lets take least-squares regression with hy-
brid noise (see §) as an example. The proofs will show
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Name Standard Form Variance Altered Form Variance Asymptotic Form
(Mass/Density function) (β) (β → ∞)

Gaussian (univariate) √
1
2π exp(− 1

2 (y − η)
2
)

√
β
2π exp(−β

2 (y − η)
2
)

1
β δη(y)N (y | η)

Gaussian (multivariate) (
1
2π

) d
2 exp(− 1

2 ∥y − η∥22)
(

β
2π

) d
2

exp(−β
2 ∥y − η∥22)

1
β δη(y)N (y |η)

Bernoulli P [y = 1 | η] = π P [y = 1 | η] = π̃
< 1

βη δsign(η)(y)y ∈ {−1,+1} π = (1 + exp(−yη))−1 π̃ = (1 + exp(−βyη))−1

1
yΓ( 1

ϕ )

(
yη
ϕ

) 1
ϕ

exp(−yη
ϕ ) 1

yΓ( 1
ϕ̃β

)

(
yη̃β

ϕ̃β

) 1
ϕ̃β exp(−yη̃β

ϕ̃β
)

ϕ
η2

ϕ+β(1−ϕ)
β2

δ 1−ϕ
η

(y)Gamma
G(y | η, ϕ) ϕ < 1 ϕ̃β = ϕ/ (ϕ + β(1 − ϕ))

Note: η = exp(⟨w,x⟩) η̃β = ηβ/ (ϕ + β(1 − ϕ))

Table 1: Some common distributions and their variance altered forms. Note that in all cases, the form of the distribution is
preserved after transformation, as well as that the variance asymptotically goes down at the rate Θ(1/β) as β → ∞.

that LWSC/LWLC properties are assured for β as large as
βmax = Õ

(
min

{
1

α2/3 ,
√

n
d

})
(see §). Thus, with proper

initialization of ŵ1, ξ and β1 (discussed below), SVAM

ensures
∥∥ŵT −w∗

∥∥2
2

≤ Õ
(
max

{
α2/3,

√
d
n

})
within

T = O (ln(n)) steps. This proof will hold so long as SVAM
is offered at least n = Ω(d log d) training samples.

Initialization: SVAM needs to be invoked with ŵ1, β1
that satisfy the requirements of Thm 1 and small enough ξ.
If we initialize at the origin i.e. ŵ1 = 0, then Theorem 1’s
requirement translates to β1 ≤ 1

∥ŵ1−w∗∥2
2

i.e. we need only
find a small enough β1. Thus, SVAM needs to tune two
scalars ξ, β1 to take small enough values which it does as
described below. In practice, SVAM offered stable perfor-
mance for a wide range of β1, ξ (see Fig 1).

Hyperparameter Tuning: SVAM’s two hyperparame-
ters β1, ξ were tuned using a held-out validation set. As the
validation data could also contain corruptions, validation er-
ror was calculated by rejecting the top α fraction of valida-
tion points with the highest prediction error. The true value
of α was provided to competitor algorithms as a handicap
but not to SVAM. Thus, α itself was treated as a (third) hy-
perparameter for SVAM.

Robust GLM Applications with SVAM
This section adapts SVAM to robust least-
squares/gamma/logistic regression and robust mean
estimation and establishes breakdown points and LWSC/L-
WLC guarantees for their respective Q̃β functions (see
Defn 1). We refer the reader to § for definitions of
partially/fully adaptive adversaries.

Robust Least Squares Regression. We have n data
points (xi, yi), xi ∈ Rd sampled from a subGaussian dis-
tribution D over Rd. We consider the hybrid corruption
setting where on the G = (1 − α) · n “good” data points,
we get labels yi =

〈
w∗,xi

〉
+ ϵi with Gaussian noise

ϵi ∼ N (0, 1
β∗ ) with variance 1

β∗ added. On the remaining
B = α·n “bad” points, we get adversarially corrupted labels

ỹi =
〈
w∗,xi

〉
+bi where bi ∈ R is chosen by the adversary.

Note that bi can be unbounded. We also consider the pure
corruption setting where clean points receive no Gaussian
noise (note that this corresponds to β∗ = ∞). SVAM-RR
(Alg. 2) adapts SVAM to the task of robust regression.

Theorem 2 (Partially Adaptive Adversary). For hybrid cor-
ruptions by a partially adaptive adversary with corrup-
tion rate α ≤ 0.18, there exist ξ > 1 s.t. with proba-
bility at least 1 − exp(−Ω (d)), LWSC/LWLC properties
are satisfied for the Q̃β function for β values as large as

βmax = O
(
β∗ min

{
1

α2/3 ,
√

n
d log(n)

})
. If initialized with

ŵ1, β1 s.t. β1 ·
∥∥ŵ1 −w∗

∥∥2
2

≤ 1, SVAM-RR assures∥∥ŵT −w∗
∥∥2
2
≤ O

(
1
β∗ max

{
α2/3,

√
d log(n)

n

})
within

T ≤ O
(
log n

β1

)
iterations. For pure corruptions by a par-

tially adaptive adversary, we have βmax = ∞ and thus, for
any ϵ > 0, SVAM-RR assures

∥∥ŵT −w∗
∥∥2
2
≤ ϵ within

T ≤ O
(
log 1

ϵβ1

)
iterations.

Note that in the pure corruption setting, SVAM assures
exact recovery of w∗ simply by running the algorithm long
enough. This is not a contradiction since in this case, the
LWSC/LWSS properties can be shown to hold for all values
of β < ∞ since we effectively have β∗ = ∞ in this case.
Thm 2 holds against a partially adaptive adversary but can
be extended to a fully adaptive adversary as well but at the
cost of a worse breakdown point (see Thm 3 below). Note
that SVAM continues to assure exact recovery of w∗.

Theorem 3 (Fully Adaptive Adversary). For pure corrup-
tions by a fully adaptive adversary with corruption rate
α ≤ 0.0036, LWSC/LWLC are satisfied for all β ∈ (0,∞)
i.e. βmax = ∞ and for any ϵ > 0, SVAM-RR assures∥∥ŵT −w∗

∥∥2
2
≤ ϵ within T ≤ O

(
log 1

ϵβ1

)
iterations if

initialized as described in the statement of Theorem 2.

Establishing LWSC/LWLC: In the appendices, Lem-
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SVAM-RR

(a) β1 Sensitivity
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(b) ξ Sensitivity
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SVAM-RR
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(c) α Sensitivity
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10−14
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TORRENT
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SEVER-M
SVAM-RR
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(d) d Sensitivity

Figure 1: SVAM offers stable convergence and recovery,
∥∥ŵT −w∗

∥∥
2
, superior to competitor algorithms for a wide range of

hyperparameters β1, ξ, corruption rates α = k/n and feature dimensionality d.

mata 15 and 16 establish LWSC/LWLC properties for robust
least squares regression while Theorems 14 and 21 establish
the breakdown points and existence of suitable increments
ξ > 1. Handling a fully adaptive adversary requires making
mild modifications to the notions of LWSC/LWLC, details
of which are present in Appendix G.1.

Model Recovery and Breakdown Point: For pure cor-
ruption, SVAM-RR offers exact model recovery against
partially and fully adaptive adversaries as it assures∥∥ŵT −w∗

∥∥2
2
≤ ϵ for any ϵ > 0 if SVAM-RR is executed

long enough. For hybrid corruption where even “clean”
points receive Gaussian noise with variance 1

β∗ , SVAM-RR

assures
∥∥ŵT −w∗

∥∥2
2
≤ O

(
1
β∗

√
d log(n)

n

)
as α → 0 i.e.∥∥ŵT −w∗

∥∥2
2
→ 0 as n → ∞ assuring consistent recovery.

This significantly improves previous results by (Bhatia, Jain,
and Kar 2015; Mukhoty et al. 2019) which offer O

(
1
β∗

)
er-

ror even if α → 0 and n → ∞. Note that SVAM-RR has
a superior breakdown point (allowing upto 18% corruption
rate) against an oblivious adversary. The breakdown point
deteriorates as expected (still allowing upto 0.36% corrup-
tion rate) against a fully adaptive adversary. We now present
analyses for other GLM problems.

Robust Gamma Regression. The data generation and
corruption model for gamma regression are slightly differ-
ent given that the gamma distribution has support only over
positive reals. First, the canonical parameter is calculated as
ηi = exp(

〈
w∗,xi

〉
) using which a clean label yi is gener-

ated. To simplify the analysis, we assume that ∥w∗∥2 = 1,
ϕ = 0.5, xi ∼ N (0, I). For the G = (1 − α) · n “good”
points, labels are generated as yi = exp(

〈
w∗,xi

〉
)(1 − ϕ)

i.e. the no-noise model. For the remaining B = α · n “bad”
points, the label is corrupted as ỹi = yi · bi where bi > 0
is a positive real number (but otherwise arbitrary and un-
bounded). A multiplicative corruption makes more sense
since the final label must be positive. SVAM-GAMMA (Al-
gorithm 4) adapts SVAM to robust gamma regression. Due
to the alternate canonical parameter used in gamma regres-
sion, the initialization requirement also needs to be modified
to β1 ·

(
exp

(∥∥ŵ1 −w∗
∥∥
2

)
− 1

)2 ≤ 1. However, the hyper-
parameter tuning strategy discussed in § continues to apply.

Theorem 4. For data corrupted by a partially adaptive ad-
versary with α ≤ 0.002√

d
, there exist ξ > 1 s.t. with proba-

bility at least 1−exp(−Ω (d)), LWSC/LWLC conditions are
satisfied for the Q̃β function for β values as large as βmax =

O
(
1/

(
exp

(
O
(
α
√
d
))

− 1
))

. If initialized at ŵ1, β1 s.t.

β1 ·
(
exp

(∥∥ŵ1 −w∗
∥∥
2

)
− 1

)2 ≤ 1 and β ≥ 1, SVAM-

GAMMA assures
∥∥ŵT −w∗

∥∥
2
≤ ϵ for any ϵ ≥ O

(
α
√
d
)

within T ≤ O
(
log 1

ϵ

)
steps.

Model recovery, Consistency, Breakdown pt. It is no-
table that prior results in literature do not offer any break-
down point results for gamma regression. We find that
Thm 4 requires β1 ·

(
exp

(∥∥ŵ1 −w∗
∥∥
2

)
− 1

)2 ≤ 1 and
β ≥ 1 which imply

∥∥ŵ1 −w∗
∥∥
2
≤ ln 2. This is in contrast

to Thms 2 and 3 that allow any initial ŵ1 so long as β1, ξ are
sufficiently small. SVAM-GAMMA guarantees convergence
to a region of radius O

(
α
√
d
)

around w∗ whereas Thms 2
and 3 assure exact recovery. However, these do not seem to
be artifacts of the proof technique. In experiments, SVAM-
GAMMA did not offer vanishingly small recovery errors and
did indeed struggle if initialized with β1 ≪ 1. It may be the
case that there exist lower bounds preventing exact recovery
for gamma regression similar to mean estimation.

Robust Mean Estimation. We have n data points of
which the set G of (1 − α) · n ”good” points are generated
from a d-dimensional spherical Gaussian xi ∼ N (µ,Σ) i.e.
xi = µ + ϵi where ϵi ∼ N (0,Σ) and Σ = 1

β∗ · I for
some β∗ > 0. The rest are the set B of α · n ”bad” points
that are corrupted by an adversary i.e. x̃i = µ∗ + bi where
bi ∈ Rd can be unbounded. SVAM-ME (Algorithm 3)
adapts SVAM to the robust mean estimation problem. For
notational clarity we use, η = µ, in this problem.
Theorem 5. For data corrupted by a partially adaptive ad-
versary with corruption rate α ≤ 0.26, there exists ξ > 1 s.t.
with probability at least 1−exp(−Ω (d)), LWSC/LWLC con-
ditions are satisfied for the Q̃β function for β upto βmax =

O
(

β∗

d min
{
log 1

α ,
√
nd

})
. If initialized with µ̂1, β1 s.t.

β1 ·
∥∥µ̂1 − µ∗

∥∥2
2
≤ 1, SVAM-ME assures

∥∥∥µ̂T − µ∗
∥∥∥2
2
≤

ϵ for any ϵ ≥ O
(

trace2(Σ) ·max
{

1
ln(1/α) ,

1√
nd

})
within

T ≤ O
(
log n

β1

)
iterations.

Model recovery, Consistency, Breakdown pt. Note that
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Algorithm 2: SVAM-RR: Robust Least Squares Regression

Input: Data {(xi, yi)}ni=1, initial scale β1, initial model ŵ1, ξ
Output: A model estimate ŵ ≈ w∗

1: for t = 1, 2, . . . , T − 1 do
2: si ← exp

(
−βt

2
(yi −

〈
xi, ŵt

〉
)2
)

3: S ← diag(s1, . . . , sn)
4: ŵt+1 ← (XSX⊤)−1(XSy)
5: βt+1 ← ξ · βt

6: end for
7: return ŵT

Algorithm 3: SVAM-ME: Robust Mean Estimation

Input: Data {xi}ni=1, initial scale β1, initial model µ̂1, ξ
Output: A mean estimate µ̂ ≈ µ∗

1: for t = 1, 2, . . . , T − 1 do
2: si ← exp

(
−βt

2

∥∥xi − µ̂t
∥∥2

2

)
3: µ̂t+1 ←

(∑n
i=1 si

)−1 (∑n
i=1 six

i
)

4: βt+1 ← ξ · βt

5: end for
6: return µ̂T

Algorithm 4: SVAM-GAMMA: Robust Gamma Regression

Input: Data {(xi, yi)}ni=1, initial scale β1, initial model ŵ1, ξ
Output: A model estimate ŵ ≈ w∗

1: for t = 1, 2, . . . , T − 1 do
2: si ← G(yi | η̃βt , ϕ̃βt) //see Table 1
3: ŵt+1 ← argmin

∑n
i=1 si · ℓ(w,xi, yi) where

ℓ(w,x, y) = (1− ϕ)−1y exp(⟨w,x⟩)− ⟨w,x⟩
4: βt+1 ← ξ · βt

5: end for
6: return ŵT

Algorithm 5: SVAM-LR: Robust Classification

Input: Data {(xi, yi)}ni=1, initial scale β1, initial model ŵ1, ξ
Output: A model estimate ŵ ≈ w∗

1: for t = 1, 2, . . . , T − 1 do
2: si ← (1 + exp(−βtyi

〈
xi, ŵt

〉
))−1

3: ŵt+1 ← argmin
∑n

i=1 si · ℓ(w,xi, yi) where
ℓ(w,x, y) = log(1 + exp(−y ⟨x,w⟩))

4: βt+1 ← ξ · βt

5: end for
6: return ŵT

for any constant α > 0, the estimation error does not go to
zero as n → ∞. As mentioned in §, an error of Ω (α) is
unavoidable no matter how large n gets. Thus, the best hope
we have is of the estimation error going to zero as α → 0
and n → ∞. The error in Theorem 5 does indeed go to
zero in this setting. Also, note that the error depends only
on the trace of the covariance matrix of the clean points, and
thus for trace(Σ) = O (1), the result offers an estimation
error independent of dimension. SVAM-ME offers a large
breakdown point (allowing upto 26% corruption rate).

Establishing LWSC/LWLC for Gamma Regression
and Mean Estimation: In the appendices, Lemmata 28, 29,
Lemmata 23, 24 establish the LWSC/LWLC properties for
the Q̃β function for gamma regression and mean estimation
and Theorems 27 and Theorem 22 establish the breakdown
points and existence of increments ξ > 1.

Robust Classification. In this case the labels are gener-
ated as yi = sign(

〈
w∗,xi

〉
) and the bad points in the set B

get their labels flipped ỹi = −sign(
〈
w∗,xi

〉
). SVAM-LR

(Algorithm 5) adapts SVAM to robust logistic regression.

Experiments
We used a 64-bit machine with Intel® Core™ i7-6500U
CPU @ 2.50GHz, 4 cores, 16 GB RAM, Ubuntu 16.04 OS.

Benchmarks. SVAM was benchmarked against several
baselines (a) VAM: this is SVAM executed with a fixed
value of the scale β by setting the scale increment to ξ = 1
to investigate any benefits of varying the scale β, (b) MLE:
likelihood maximization on all points (clean + corrupted)
without any weights assigned to data points – this checks
for benefits of performing weighted MLE, (c) Oracle: an
execution of the MLE only on the clean points – this is
the gold standard in robust learning and offers the best pos-
sible outcome. In addition, several problem-specific com-
petitors were also considered. For robust regression, STIR
(Mukhoty et al. 2019), TORRENT (Bhatia, Jain, and Kar
2015), SEVER (Diakonikolas et al. 2019b), RGD (Prasad
et al. 2018), and the classical robust M-estimator of Tukey’s
bisquare loss were included. Note that TORRENT already
outperforms L1 regularization methods while achieving bet-
ter or competitive recovery errors (see (Bhatia, Jain, and
Kar 2015, Fig 2(b))). Since SVAM-RR was faster than
TORRENT itself, L1 regularized methods such as (Nguyen
and Tran 2013; Wright and Ma 2010) were not consid-
ered. For robust mean estimation, popular baselines such as
coordinate-wise median and geometric median were taken.
For robust classification, the rank-pruning method RP-LR
(Northcutt, Wu, and Chuang 2017) and the method from
(Natarajan et al. 2013) were used.

Experimental Setting and Reproducibility. Due to lack
of space, details of experimental setup, data generation, how
adversaries were simulated etc are presented in Appendix C.
SVAM also offered superior robustness than competitors
against a wide range of ways to simulate adversarial cor-
ruption (see Appendix D for details). Code for SVAM is
available at https://github.com/purushottamkar/svam/.

Experimental Observations
Robust Regression. Fig 2(a) shows that SVAM-RR,
SEVER, RGD, STIR, and TORRENT are competitive and
achieve oracle-level error. However, SVAM-RR can be
twice as fast in terms of execution time. Since TORRENT
itself outperforms L1 regularization methods while achiev-
ing better or competitive recovery errors (see Fig 2(b) in
(Bhatia, Jain, and Kar 2015)), we do not compare against
L1 methods. SVAM-RR is several times faster than classi-
cal robust M-estimators such as Tukey’s bisquare loss. Also,
no single value of β can offer the performance of SVAM,
as is indicated by the poor performance of VAM. Fig 4 in
the appendix shows that this is true even if very large or
very small values of β are used with VAM. We note that
SEVER chooses a threshold in each iteration to eliminate
specific points as corrupted. This threshold is chosen ran-
domly (possibly for ease of proof) but causes SEVER to of-
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Figure 2: (a,b,c,d) compare SVAM and various competitors. The number of data points n, dimensions d, and fraction of
corruptions α = k/n are mentioned at the top of each figure. The figures show that VAM with a single fixed value of β cannot
replace the gradual variations in βt as done by SVAM. Figs 2(e,f) confirm that SVAM offers convergence to w∗ irrespective
of the model initialization. Corruptions are introduced using an adversarial model w̃ i.e. for corrupted points, the label was set
to ỹi = ⟨w̃,xi⟩. SVAM was then initialized at w̃ itself for faulty initialization but was found to offer exact recovery regardless.

fer sluggish convergence. Thus, we also report the perfor-
mance of a modification SEVER-M that was given an unfair
advantage by revealing to it the actual number of corrupted
points (SVAM was not given this information). This sped-
up SEVER but SVAM continued to outperform SEVER-M.
Fig 3 in the appendix reports repeated runs of the experiment
where SVAM continues to lead.

Robust Logistic and Gamma Regression. Fig 2(c,d) re-
port results of SVAM on robust gamma and logistic regres-
sion problems. The figures show that executing VAM with
a fixed value of β cannot replace the gradual variations in
βt done by SVAM. Additionally, for robust classification,
SVAM-LR achieves error, an order of magnitude smaller
than all competitors except the oracle. SVAM also outper-
forms the RP-LR (Northcutt, Wu, and Chuang 2017) and
(Natarajan et al. 2013) algorithms that were specifically de-
signed for robust classification. A horizontal dashed line
is used to indicate the final performance of algorithms for
which iteration-wise performance was unavailable.

Robust Mean Estimation. Fig 2(b) reports results on ro-
bust mean estimation problems. SVAM outperforms VAM
with any fixed value of β as well as the naive sample mean
(the MLE in this case). Popular approaches coordinate-wise
median and geometric median were fast but offered poor re-
sults. SVAM on the other hand achieved oracle error-level
error by assigning proper scores to all data points.

Sensitivity to Hyperparameter Tuning. In Figs 1(a,b),
SVAM-RR was offered hyperparameters in a wide range
of values to study how it responded when provided mis-
specified hyperparameters. SVAM offered stable conver-

gence for a wide range of β1, ξ indicating that it is resilient
to minor mis-specifications in hyperparameters.

Sensitivity to Dimension and Corruption. Figs 1(c,d)
compare the error offered by various algorithms in recover-
ing w∗ for robust least-squares regression when the frac-
tion of corrupted points α and feature dimension d were
varied. All values are averaged over 20 experiments with
each experiment using 1000 data points. α was varied in the
range [0, 0.4] and d in the range [10, 100] with fixed hyper-
parameters. STIR and Bi-square are sensitive to corruption
while SEVER is sensitive to both corruption and dimension.
RGD is not visible in the figures as its error exceeded the fig-
ure boundaries. Experiments for Fig 1(c) fixed d = 10 and
vary α while Fig 1(d) fixed α = 0.15 and vary d. Figs 1(c,d)
show that SVAM-RR can tolerate large fractions of the data
getting corrupted and is not sensitive to d.

Testing SVAM for Global Convergence. To test the ef-
fect of initialization, in Fig 2(e), corruptions were introduced
using an adversarial model w̃ i.e. for corrupted points, labels
were set to ỹi = ⟨w̃,xi⟩. SVAM-RR was initialized at 1000
randomly chosen models, the origin, as well as at the adver-
sarial model w̃ itself. WORST-1000 (resp. AVG-1000) in-
dicate the worst (resp. average) performance SVAM had at
any of the 1000 initializations. Fig 2(f) further emphasizes
this using a toy 2D problem. SVAM was initialized at all
points on the grid. An initialization was called a success if
SVAM got error < 10−6 within eight or fewer iterations. In
all these experiments SVAM rapidly converged to the true
model irrespective of model initialization.
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