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Abstract
Self-supervised multiplex graph representation learning (SM-
GRL) has attracted increasing interest, but previous SMGRL
methods still suffer from the following issues: (i) they focus on
the common information only (but ignore the private informa-
tion in graph structures) to lose some essential characteristics
related to downstream tasks, and (ii) they ignore the redundant
information in node representations of each graph. To solve
these issues, this paper proposes a new SMGRL method by
jointly mining the common information and the private infor-
mation in the multiplex graph while minimizing the redundant
information within node representations. Specifically, the pro-
posed method investigates the decorrelation losses to extract
the common information and minimize the redundant informa-
tion, while investigating the reconstruction losses to maintain
the private information. Comprehensive experimental results
verify the superiority of the proposed method, on four public
benchmark datasets.

Introduction
Multiplex graph representation learning (MGRL) is a pow-
erful approach to extracting multiple relationships among
nodes in the graph data, and has recently attracted much at-
tention in real applications (Chu et al. 2019; Zhang and Kou
2022; Peng et al. 2022). The multiplex graph can be regarded
as a combination of multiple graphs. Different graphs con-
sist of shared node features and different graph structures,
and each graph structure focuses on one type of relationship.
Therefore, MGRL is available to explore more relationships
than traditional graph representation learning (GRL) (Kipf
and Welling 2017; Fan et al. 2019).

Since node labels are usually difficult to be obtained,
self-supervised multiplex graph representation learning (SM-
GRL) has emerged as a hot research topic with great success
(Hwang et al. 2020; Pan and Kang 2021; Lin et al. 2021).
SMGRL aims at extracting the hidden information of the mul-
tiplex graph and generating discriminative representations
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without the help of labeled nodes. Existing SMGRL methods
can be broadly classified into two categories, i.e., the con-
trastive learning within the same graph and the contrastive
learning across graphs. The contrastive learning within the
same graph aims to improve the quality of node representa-
tions by capturing the global properties (Park et al. 2020; Ren
et al. 2020; Jing, Park, and Tong 2021). However, it treats ev-
ery graph independently and ignores the intrinsic correlation
(i.e., common information) among different graphs. To alle-
viate this, the contrastive learning across graphs is designed
to extract the common information among different graphs
by contrasting their representations (Zhu et al. 2022; Li, Jing,
and Tong 2022; Zhou et al. 2022). For instance, to extract the
common information, STENCIL (Zhu et al. 2022) conducts
multi-view contrastive learning between each graph and the
aggregation graph, while CKD (Zhou et al. 2022) conducts
the contrastive learning between different graphs.

Despite its effectiveness, the contrastive learning across
graphs still has limitations to be addressed. On the one hand,
these methods only focus on the common information and ig-
nore the private information in each graph structure. However,
it has been demonstrated that private information contains
discriminative characteristics, which is important for down-
stream tasks in real applications such as cross-modal retrieval
and image recognition (Xie et al. 2020; Wang et al. 2022).
Similarly, private information in graph structures may convey
significant connection characteristics between nodes in the
multiplex graph. Therefore, ignoring the private information
in graph structures may lead to decreased effectiveness in
downstream tasks. On the other hand, these methods ignore
the redundant information in node representations of each
graph. That is, different dimensionalities of node representa-
tions may share the same content. As a result, the redundancy
may weaken the discriminative information of representa-
tions and even lead to collapse (Zbontar et al. 2021).

Based on the above observations, jointly capturing the
common information and the private information while mini-
mizing the redundant information in node representations is
a possible solution to achieve an effective SMGRL. However,
few methods address these issues in a unified framework due
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Figure 1: The flowchart of the proposed CPIM on the dataset with two graphs. Specifically, given the node features and graph
structures, CPIM first employs the graph convolutional layer to generate the node representations, and then investigates the
decorrelation losses (i.e., L(1)

deco, L(2)
deco, and L(12)

deco) to mine the common information among different graphs and minimize
the redundant information within node representations, while investigates the reconstruction losses (i.e., L(1)

rec and L(2)
rec) to

maintain the private information within each graph. Finally, the node representations of different graphs are fused by the attention
mechanism to obtain the final representations.

to the following challenges: (i) it is difficult to simultane-
ously mine the common information and private information
in the multiplex graph due to their conflicting nature, and (ii)
a new framework needs to be designed to minimize the re-
dundant information within node representations to maintain
the effectiveness of the SMGRL method.

In this paper, to address the above issues, we propose a self-
supervised multiplex graph representation learning frame-
work via Common and Private Information Mining (CPIM)
to conduct effective SMGRL. To do this, CPIM explores
both the common information and the private information in
the multiplex graph and minimizes the redundant informa-
tion within node representations in a unified framework, as
shown in Figure 1. Specifically, we first employ the graph
convolutional layer (Kipf and Welling 2017) to generate node
representations for each graph. After that, we investigate the
decorrelation losses on the node representations to extract
the common information among them and reduce the redun-
dant information within node representations. Meanwhile,
we investigate the reconstruction losses on the reconstructed
graph structures to preserve the private information within
each graph. Finally, we employ the attention mechanism (You
et al. 2016) to fuse the node representations from different
graphs for downstream tasks.

Compared to previous SMGRL methods, the main contri-
butions of our method are summarized as follows:

• To the best of our knowledge, we make the first attempt to
simultaneously explore both the common information and
the private information in the multiplex graph in a unified
framework for SMGRL.

• The proposed method extracts the common information
among different graphs and reduces the redundant infor-
mation within node representations by the decorrelation

losses, and preserves the private information within each
graph by the reconstruction losses.

• Extensive experiments on four datasets demonstrate the
superiority of the proposed method, compared to twelve
comparison methods, on the node classification task.

Related Work
Contrastive Learning
Recently, the contrastive learning has drawn much attention
due to its great success in many research areas (Liu et al.
2021a), such as computer vision (Xu et al. 2022a; Zhang et al.
2022; Xu et al. 2022b), natural language processing (Devlin
et al. 2019; Gao, Yao, and Chen 2021; Lan et al. 2020) and
graph representation learning (Cen et al. 2019; Zhou et al.
2020; Mo et al. 2022). Contrastive learning aims to learn
discriminative representations by contrasting the positive
pairs and negative pairs without labeled data. As a result,
contrastive learning avoids the issue of relying on labels and
is able to mine the hidden information in the original data.

Previous contrastive learning methods typically encourage
the encoder to learn representations by maximizing the mu-
tual information between the local representations and their
related representations. Depending on pretext tasks, the re-
lated representations can be either the global representations
of the input or the local representations of another view. The
contrastive learning between the local and global represen-
tations aims to maximize the mutual information between
them by contrasting each other. For example, Deep InfoMax
(Hjelm et al. 2019) conducts contrastive learning by maxi-
mizing the mutual information between a local patch and its
global context. CPC (Oord, Li, and Vinyals 2018) achieves
great results on the speech recognition task by maximizing
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the mutual information between the local audio representa-
tions and its global audio representations.

Different from local-global contrastive learning, con-
trastive learning between the local and local representations
aims to learn the invariance between the original local rep-
resentations and the augmented local representations. For
example, CMC (Tian, Krishnan, and Isola 2020) conducts
contrastive learning between local representations from mul-
tiple views of an image, and learns the invariant information
among them. MoCo (He et al. 2020) further enhances the
effectiveness of local-local contrastive learning by introduc-
ing the momentum mechanism, which substantially increases
the number of negative samples. SimCLR (Chen et al. 2020)
conducts the contrastive learning between the original view
and the augmented view, and argues that data augmentation
plays an important role in contrastive learning.

Multiplex Graph Representation Learning
MGRL aims to reveal the relationships between nodes in the
graph from multiple aspects (Tang et al. 2015; Park et al.
2020). Thus, MGRL is more relevant to practical applica-
tions than GRL since entities in the real world are generally
connected by multiple relationships.

The pioneering MGRL methods are mainly based on the
proximity among nodes to generate representations. For ex-
ample, the very first work PMNE (Liu et al. 2017) extends
the random walk based strategies (Perozzi, Al-Rfou, and
Skiena 2014) to the multiplex graph by maximizing the prob-
abilities of the sampled neighbors. Moreover, Metapath2vec
(Dong, Chawla, and Swami 2017) designs a meta-path guided
random walk and employs the skip-gram to generate node
representations. Despite effectiveness, these methods ignore
the node features, which may contain the critical contents
(e.g., user profiles in social networks). To alleviate this, HAN
(Wang et al. 2019) introduces self-attention mechanisms
(Vaswani et al. 2017) to aggregate representations at both
the node-level and semantic-level. Moreover, MAGNN (Fu
et al. 2020) further improves HAN by utilizing intermediate
node features along each meta-path.

Regarding the cost of obtaining labels, self-supervised mul-
tiplex graph representation learning (SMGRL) has drawn the
attention of researchers. Previous SMGRL methods generally
conduct the contrastive learning within the same graph or
across graphs. For example, DMGI (Park et al. 2020), HDMI
(Jing, Park, and Tong 2021), and HDGI (Ren et al. 2020)
perform the contrastive learning by maximizing the mutual
information between node representations and the graph sum-
mary generated from the same graph. To extract the common
information among different graphs, STENCIL (Zhu et al.
2022) conducts the contrastive learning across graphs by
contrasting node representations from each graph and an ag-
gregation graph. GCool (Li, Jing, and Tong 2022) conducts
contrastive learning by contrasting node representations and
community representations from different graphs.

Despite their success, existing methods generally ig-
nore the non-common information (i.e., private information)
within each graph. This may lead to the loss of some critical
information related to downstream tasks and weakens the
effectiveness of previous SMGRL methods.

Method
Notations. Let G = {G(1),G(2), . . . ,G(R)} to denote the
multiplex graph, where G(r) = {X,A(r)} is the r-th graph in
the multiplex graph, R is the number of graphs. X ∈ RN×F

represents the node features and A(r) ∈ RN×N represents
the graph structure of each graph G(r), where N and F denote
the number of nodes and the dimension of node features,
respectively. The goal of the proposed CPIM is to learn the
encoders to map the original inputs into low-dimensional
representations Z ∈ RN×d, where d ≪ F is the dimension
of the representation space.

Motivation
The SMGRL methods aim at generating discriminative node
representations by extracting the hidden information (e.g., the
common and private information) in the multiplex graph. We
argue that both the common information among different
graphs and the private information within each graph are
important for node representation learning. On the one hand,
node representations should contain the common informa-
tion among different graphs since they share the same node
features and there are correlations among different graph
structures (i.e., different types of relationships among nodes).
For example, in citation networks, if papers are connected
by the same author, they tend to be connected by the same
research topic as well. On the other hand, node represen-
tations should contain the private information within each
graph. The reason is that each graph structure focuses on
one type of relationship among nodes, and some significant
connections may exist in only one graph structure, i.e., the
private information within one graph. Considering the same
example of citation networks, if papers are only connected
by the same author rather than by the same research topic,
these private connection characteristics should be preserved.
The reason is that the relationship connected by authors is
important for the citation multiplex graph (Sun et al. 2022).

However, recent works (Zhou et al. 2022; Li, Jing, and
Tong 2022; Zhu et al. 2022) are mainly proposed to focus
on the common information while ignoring the private infor-
mation within each graph, which leads to the loss of some
essential connection characteristics in the multiplex graph
and weakens the effectiveness of previous SMGRL meth-
ods. In addition, recent works generally ignore the redundant
information within node representations, which may lead
to the homogenization of different dimensionalities of node
representations and weaken the discriminative information
among them (Zhu et al. 2022). To solve these issues, the
proposed CPIM investigates the decorrelation losses to mine
the common information among different graphs and mini-
mize the redundant information within node representations.
Meanwhile, the proposed method also investigates the graph
structure reconstruction losses to mine the private informa-
tion within each graph. We show the framework in Figure 1
and introduce the details as follows.

Common Information Mining
Given the node features X and multiple graph structures
{A(1), . . . ,A(R)}, our method first employs the encoder
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(i.e., the graph convolutional layer) g(r) : RN×F ×RN×N →
RN×d to generate node representations H(r) for each graph,
formulated as:

H(r) = σ(Â(r)XΘ(r)), (1)

where σ is the activation function, and Θ(r) is the weight
matrix of the encoder g(r). Â(r) = D̂(r)−1/2

(A
(r)

+

wIN )D̂(r)−1/2 ∈ RN×N is the symmetrically normalized
graph structure of each graph, D̂(r) is the degree matrix of
A(r) + wIN , and w is the weight of identity matrix IN .

Based on the node representations H(r) of each graph,
previous methods generally conduct the contrastive learn-
ing within the same graph or across graphs. The contrastive
learning within the same graph aims at improving the qual-
ity of node representations by capturing global properties
(i.e., graph summary) (Wu et al. 2021). Despite its success, it
is counterintuitive to treat every graph independently and ig-
nore the common information among different graphs (Zhou
et al. 2022). To solve this issue, recent works (Zhou et al.
2022; Zhu et al. 2022; Li, Jing, and Tong 2022) conduct the
contrastive learning across graphs by maximizing the mutual
information between representations from different graphs, to
extract the common information among them. However, these
efforts generally ignore the redundant information within
node representations, which weakens the effectiveness of
previous SMGRL methods (Zhang et al. 2021; Ermolov et al.
2021; Bardes, Ponce, and Lecun 2022).

In this paper, inspired by the canonical correlation analy-
sis (Andrew et al. 2013; Zbontar et al. 2021), we introduce
the decorrelation losses to extract the common information
among different graphs, while minimizing the redundant in-
formation within node representations. Specifically, we first
conduct the decorrelation loss on node representations from
different graphs, aiming to maintain the correlation among
them. After that, we further conduct the decorrelation loss
on node representations in each graph, aiming to filter the
redundancy among different dimensionalities of the node
representations. To conduct the decorrelation loss on node
representations from different graphs, we first generate the
correlation matrix C(rr′) ∈ Rd×d between H(r) and H(r′)

(r ̸= r′), by defining its element as:

c
(rr′)
ij =

∑
nh

(r)
n,ih

(r′)
n,j

∥
∑

nh
(r)
n,i∥∥

∑
nh

(r′)
n,j ∥

, (2)

where i, j ∈ [1, d] indicate the i-th and j-th dimensionalities
of the n-th node representations from different graphs. We
then enforce the correlation matrix C(rr′) converge to the
identity matrix I ∈ Rd×d, formulated as:

L(rr′)
deco =

∑
(C(rr′) − I)2

=
d∑

i=1

(c
(rr′)
ii − 1)2 +

d∑
i=1

∑
j ̸=i

(c
(rr′)
ij )2.

(3)

We further introduce a non-negative parameter λ(rr′) to bal-
ance the first term and the second term of Eq. (3). Thus, the

decorrelation loss between different graphs becomes:

L(rr′)
deco =

d∑
i=1

(c
(rr′)
ii − 1)2 + λ(rr′)

d∑
i=1

∑
j ̸=i

(c
(rr′)
ij )2. (4)

Intuitively, Eq. (4) mainly focuses on enforcing the cor-
responding node representations from different graphs to
agree with each other, and maintaining the correlation among
them. To further filter the redundancy among different dimen-
sionalities of the node representations, we also conduct the
decorrelation loss on node representations in each graph. Sim-
ilarly, we first generate the correlation matrix C(r) ∈ Rd×d

for H(r) and H(r)T by defining its element as:

c
(r)
ij =

∑
nh

(r)
n,ih

(r)
n,j

∥
∑

nh
(r)
n,i∥∥

∑
nh

(r)
n,j∥

. (5)

We then enforce the correlation matrix C(r) to converge
to the identity matrix I ∈ Rd×d. As a result, we obtain the
decorrelation loss within each graph as:

L(r)
deco =

d∑
i=1

(c
(r)
ii − 1)2 + λ(r)

d∑
i=1

∑
j ̸=i

(c
(r)
ij )2, (6)

where λ(r) is a non-negative parameter to balance the first
term and the second term of Eq. (6). Eq. (6) mainly focuses
on minimizing the agreement among different dimensionali-
ties of node representations in each graph, and reducing the
redundancy among them.

Finally, the decorrelation losses in Eq. (4) and Eq. (6)
maintain the correlation among node representations from
different graphs, and filter the redundancy among different
dimensionalities of node representations in each graph. In
other words, L(rr′)

deco and L(r)
deco extract the common informa-

tion among node representations from different graphs, and
minimize the redundant information within node representa-
tions of each graph. Moreover, as a byproduct, compared to
recent SMGRL methods, our method avoids negative samples
to achieve efficiency.

Private Information Mining
Apart from extracting the common information among differ-
ent graphs, it is important to preserve the private information
within each graph as well. However, recent works (Li, Jing,
and Tong 2022; Zhu et al. 2022; Zhou et al. 2022) tend to
focus only on the common information and fail to preserve
the private information within each graph. As a result, some
essential connection characteristics in graph structures may
be ignored, resulting in the degradation of downstream task
performance.

To solve this issue, we investigate the graph structure re-
construction loss (Kipf and Welling 2016; Wu et al. 2020) to
preserve the private information within each graph. Specif-
ically, we first reconstruct the graph structure based on the
node representations and then conduct the reconstruction loss
on it, aiming to encourage the reconstructed graph structure
Ã(r) to preserve the connection characteristics in the orig-
inal graph structure Â(r). To do this, we first generate the
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Datasets Nodes Meta-paths Edges Features Labeled Nodes Classes

ACM 3,025 Paper-Subject-Paper (PSP) 2,210,761 1,830 600 3Paper-Author-Paper (PAP) 29,281 (Paper Abstract)

IMDB 4,780 Movie-Actor-Movie (MAM) 98,010 1,232 300 3Movie-Director-Movie (MDM) 21,018 (Movie Plot)

DBLP 4,057
Author-Paper-Author (APA) 11,113 334 800 4Author-Paper-Conference-Paper-Author (APCPA) 5,000,495 (Paper Abstract)Author-Paper-Term-Paper-Author (APTPA) 6,776,335

Amazon 11,944
User-Product-User (UPU) 363,160 25 600 2User-Star-User (USU) 7,144,902 (Handcrafted Features)User-Review similarity-User (URU) 2,085,418

Table 1: Statistics of the datasets.

reconstructed graph structure Ã(r) with the reconstruction
function f (r) : RN×d × Rd×N → RN×N , i.e.,

ã(r)nm = sigmoid(h(r)
n h(r)T

m ). (7)

We then conduct the reconstruction loss on the recon-
structed graph structure Ã(r), which thus converges to the
original graph structure Â(r) to have:

L(r)
rec =

1

N2

N∑
n=1

N∑
m=1

(ã(r)nm − â(r)nm)2. (8)

In Eq. (8), the graph structure reconstruction loss enforces
every element in the reconstructed graph structure Ã(r) equiv-
alent to the corresponding element in original graph structure
Â(r). Such consistency between Ã(r) and Â(r) enables L(r)

rec

to preserve the private information in each original graph
structure in node representations. As a result, the node rep-
resentations learned by our method are expected to contain
more discriminative information than those learned by previ-
ous SMGRL methods.

Finally, integrating the decorrelation losses (i.e., Eq. (4)
and Eq. (6)) with the graph structure reconstruction loss in
Eq. (8), the objective function of the proposed CPIM is:

J =
R∑

r=1,r′ ̸=r

L(rr′)
deco +

R∑
r=1

ω(r)L(r)
deco +

R∑
r=1

γ(r)L(r)
rec, (9)

where ω(r) and γ(r) are the non-negative parameters.

Representation Fusion
After obtaining the node representations of every graph con-
taining both the common information and the private infor-
mation, we fuse them for downstream tasks. To do this, the
simplest way is the average pooling (LeCun et al. 1989).
However, the average pooling is generally counterintuitive
since the importance of different graphs is different. In this
work, we employ the semantic attention mechanism (You
et al. 2016) to assign different weights to node representa-
tions from different graphs. Specifically, we first generate
the value b

(r)
n of node representations in each graph with the

semantic attention:

b(r)n = tanh(q(r)TW(r)h(r)
n ), (10)

where W(r) is the weight matrix and q(r) is the represen-
tations of h(r)

n after the Multi-Layer Perceptron. We then
obtain the weights of node representations from different
graphs, i.e.,

α(r)
n =

exp(b
(r)
n )∑R

r′=1 exp(b
(r′)
n )

, (11)

where α(r)
n represents the importance of the r-th graph in the

multiplex graph. With the weights α(r) of each graph, the
fused node representations Z can be obtained by:

zn =
R∑

r=1

α(r)
n h(r)

n . (12)

The fused node representations Z can be used for downstream
tasks such as node classification.

Experiments
In this section, we conduct extensive experiments on four
public benchmark datasets to evaluate the effectiveness and
efficiency of the proposed method, compared to twelve com-
parison methods, on the node classification task.

Experimental Setup
Datasets. We use four public benchmark datasets from vari-
ous domains, including two citation multiplex graph networks
(i.e., ACM (Wang et al. 2019) and DBLP (Wang et al. 2019)),
one movie multiplex graph network (i.e., IMDB (Wang et al.
2019)), and one review multiplex graph network (i.e., Ama-
zon (Liu et al. 2021b)). Table 1 summarizes the data statistics.

Comparison methods. The comparison methods include
four methods designed for the single graph and eight for the
multiplex graph. The former includes three traditional meth-
ods (i.e., DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
GCN (Kipf and Welling 2017), and GAT (Velickovic et al.
2018)), and one self-supervised method, i.e., DGI (Velickovic
et al. 2019). Multiplex graph methods include two traditional
methods (i.e., MNE (Zhang et al. 2018) and HAN (Wang
et al. 2019)), and six self-supervised methods (i.e., DMGI
(Park et al. 2020), DMGIattn (Park et al. 2020), HDMI (Jing,
Park, and Tong 2021), HeCo (Wang et al. 2021), CKD (Zhou
et al. 2022), and STENCIL (Zhu et al. 2022)). To conduct a
fair comparison, in graph network methods for single graph,
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Method ACM IMDB DBLP Amazon

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Deep Walk 73.9 ± 0.3 74.1 ± 0.1 42.5 ± 0.2 43.3 ± 0.4 88.1 ± 0.2 89.5 ± 0.3 80.2 ± 0.2 92.9 ± 0.4
GCN 86.9 ± 0.2 87.0 ± 0.3 45.7 ± 0.4 49.8 ± 0.2 90.2 ± 0.2 90.9 ± 0.5 82.3 ± 0.2 93.3 ± 0.4
GAT 85.0 ± 0.4 84.9 ± 0.3 49.4 ± 0.2 53.6 ± 0.4 91.0 ± 0.4 92.1 ± 0.2 78.6 ± 0.3 92.7 ± 0.1
DGI 89.1 ± 0.4 88.2 ± 0.4 45.1 ± 0.2 46.7 ± 0.2 90.3 ± 0.1 91.1 ± 0.4 83.6 ± 0.4 93.4 ± 0.2

MNE 79.2 ± 0.4 79.7 ± 0.3 44.7 ± 0.5 45.6 ± 0.3 89.3 ± 0.2 90.6 ± 0.4 81.2 ± 0.2 93.0 ± 0.4
HAN 89.4 ± 0.2 89.2 ± 0.2 49.8 ± 0.5 54.2 ± 0.3 91.2 ± 0.4 92.0 ± 0.5 83.9 ± 0.3 93.6 ± 0.2
DMGI 89.8 ± 0.1 89.8 ± 0.1 52.2 ± 0.2 53.7 ± 0.3 92.1 ± 0.2 92.9 ± 0.3 83.2 ± 0.2 92.4 ± 0.5
DMGIattn 88.7 ± 0.3 88.7 ± 0.5 52.6 ± 0.2 53.6 ± 0.4 90.9 ± 0.2 91.8 ± 0.3 83.0 ± 0.3 92.3 ± 0.3
HDMI 90.1 ± 0.3 90.1 ± 0.3 55.6 ± 0.3 57.3 ± 0.3 91.3 ± 0.2 92.2 ± 0.5 86.1 ± 0.3 94.9 ± 0.3
HeCo 88.3 ± 0.3 88.2 ± 0.2 50.8 ± 0.3 51.7 ± 0.3 91.0 ± 0.3 91.6 ± 0.2 84.3 ± 0.4 93.8 ± 0.4
CKD 90.4 ± 0.3 90.5 ± 0.2 54.8 ± 0.2 57.7 ± 0.3 92.0 ± 0.2 92.3 ± 0.5 86.3 ± 0.1 95.1 ± 0.3
STENCIL 90.7 ± 0.2 90.7 ± 0.2 54.1 ± 0.2 58.2 ± 0.1 92.3 ± 0.2 92.7 ± 0.4 86.9 ± 0.1 95.2 ± 0.2
CPIM 91.4 ± 0.3 91.3 ± 0.2 55.9 ± 0.4 57.8 ± 0.2 93.2 ± 0.3 93.8 ± 0.2 90.1 ± 0.1 97.2 ± 0.1

Table 2: Classification performance (i.e., Macro-F1 and Micro-F1) of all methods on all datasets.

we separately learn the representations for every graph and
further concatenate them for downstream tasks.

Setting-up. All experiments are implemented in PyTorch
and conducted on a server with eight NVIDIA GeForce 3090.
In all experiments, we repeat the experiments five times for
all methods and report the average results. To evaluate the
effectiveness, we use Macro-F1 and Micro-F1 for the node
classification task. To evaluate the efficiency, we collect the
training time of all SMGRL methods.

Effectiveness Analysis
We first evaluate the effectiveness of the proposed method
on the semi-supervised node classification task by reporting
the results (i.e., Macro-F1, Micro-F1) of all methods on four
datasets in Table 2. Obviously, our method achieves the best
effectiveness on the node classification task.

First, compared to methods designed for the single graph
(i.e., Deep Walk, GCN, GAT, and DGI), our CPIM always out-
performs them by a large margin. For example, our method on
average improves by 8.9%, compared to the best single graph
method (i.e., DGI), in terms of Macro-F1 and Micro-F1, on
all datasets. This demonstrates the superiority of multiplex
graph methods, which can learn high-quality node represen-
tations for the multiplex graph by exploiting the correlation
among different graphs.

Second, compared to traditional methods designed for
the multiplex graph (i.e., MNE and HAN), our CPIM ob-
tains promising improvements as well. For example, our
method on average improves by 4.8%, compared to the semi-
supervised method HAN, in terms of Macro-F1 and Micro-
F1, on all datasets. This indicates that self-supervised meth-
ods are sufficient to fully exploit the hidden information of
the data and generate discriminative representations.

Third, compared to previous SMGRL methods, our CPIM
achieves the best results, followed by STENCIL, CKD,
HDMI, DMGI, DMGIattn, and HeCo. For example, our
method on average improves by 1.5%, compared to the best
comparison method STENCIL, in terms of Macro-F1 and
Micro-F1, on all datasets. This can be attributed to the fact
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Figure 2: Training time of all SMGRL methods on all
datasets.

that our CPIM jointly mines the common information by
the decorrelation losses and the private information by the
reconstruction losses. As a result, this introduces more task-
relevant information in node representations, leading to better
downstream task performance.

Efficiency Analysis
We evaluate the efficiency of the proposed method by re-
porting the training time of all self-supervised methods
on all datasets in Figure 2. Obviously, compared to other
self-supervised methods, the proposed method CPIM con-
sistently achieves the best efficiency on all datasets. For
example, CPIM is on average 2.9× faster than the fastest
SMGRL method DMGI, on all datasets. The reason is that
CPIM extracts the common information among different
graphs and minimizes the redundant information by the
decorrelation losses, while preserving the private informa-
tion within each graph by the reconstruction loss instead
of contrastive learning. Thus, the proposed method avoids
the drawbacks (e.g., negative sample encoding) associated
with contrastive learning, which weakens the efficiency of
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L(rr′)
deco L(r)

deco L(r)
rec

ACM IMDB DBLP Amazon

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

− −
√

63.3 ± 0.3 63.1 ± 0.4 39.7 ± 0.2 40.8 ± 0.3 77.9 ± 0.2 78.2 ± 0.3 80.6 ± 0.3 95.5 ± 0.1
−

√
− 68.2 ± 0.3 68.6 ± 0.4 43.6 ± 0.2 44.7 ± 0.3 65.0 ± 0.2 69.1 ± 0.4 74.1 ± 0.3 94.8 ± 0.2√

− − 83.1 ± 0.2 83.2 ± 0.3 52.8 ± 0.2 54.5 ± 0.4 92.6 ± 0.3 93.4 ± 0.2 81.8 ± 0.2 96.2 ± 0.4
−

√ √
69.4 ± 0.2 69.8 ± 0.4 45.8 ± 0.2 46.3 ± 0.3 78.1 ± 0.4 78.7 ± 0.4 80.8 ± 0.1 95.6 ± 0.4√

−
√

84.2 ± 0.4 83.8 ± 0.2 52.3 ± 0.4 54.4 ± 0.2 81.8 ± 0.3 82.5 ± 0.1 81.2 ± 0.4 95.9 ± 0.4√ √
− 89.7 ± 0.1 89.5 ± 0.1 54.4 ± 0.2 55.8 ± 0.3 92.3 ± 0.1 93.2 ± 0.3 87.0 ± 0.2 96.1 ± 0.3√ √ √

91.4 ± 0.3 91.3 ± 0.2 55.9 ± 0.4 57.8 ± 0.2 93.2 ± 0.3 93.8 ± 0.2 90.1 ± 0.1 97.2 ± 0.1

Table 3: Classification performance (i.e., Macro-F1 and Micro-F1) of each component in our proposed method on all datasets.

previous contrastive-based SMGRL methods.

Ablation Study
The proposed CPIM employs decorrelation losses (i.e., L(rr′)

deco

and L(r)
deco) to extract the common information among differ-

ent graphs, and the reconstruction loss (i.e., L(r)
rec) to preserve

the private information within each graph.
To verify the effectiveness of each loss in the proposed

framework, we investigate the performance of each compo-
nent on the node classification task by reporting the results
in Table 3. First, our method with complete losses on aver-
age improves by 15.1%, compared to the method with the
decorrelation losses or reconstruction loss only, indicating
that both the decorrelation losses and the reconstruction loss
are necessary for our method. This is consistent with our ar-
gument above, i.e., both the common information and private
information in the multiplex graph are important for node
representations. Second, the method with decorrelation losses
on average improves by 25.4%, compared to the method with
reconstruction loss, indicating that the decorrelation losses
may play a more important role than the reconstruction loss.
That is, the common information is more important for the
multiplex graph, while the private information provides some
complementary contents. Thus, the effectiveness of each com-
ponent is verified.

Parameter Analysis
In the objective function of the proposed method CPIM, we
employ a non-negative parameter γ(r) to achieve a trade-off
between the decorrelation losses and the reconstruction loss.
To investigate the impact of γ(r) in Eq. (9) with different
settings, we conduct the node classification on all datasets
by varying the value of γ(r) in the range of [10−3,103]
and reporting the results in Figure 3. Obviously, the pro-
posed method CPIM consistently achieves significant per-
formance while the values of γ(r) are set appropriately
(e.g., [10−1,101]). Moreover, if the values of γ(r) are too
large (e.g., > 102) or too small (e.g., < 10−2), the proposed
CPIM obtains inferior results due to the failure to extract
the common information among different graphs or the fail-
ure to preserve the private information within each graph.
This again validates the importance of the common informa-
tion and the private information in the multiplex graph, and
validates the effectiveness of our method.

 
2 1 0 1 2

Figure 3: Classification results of our method at different
parameter settings (i.e., γ(r)) on all datasets.

Conclusion
In this paper, we proposed a self-supervised multiplex graph
representation learning framework, by jointly mining the
common information and the private information in the mul-
tiplex graph while minimizing the redundant information
within node representations. Specifically, we conducted the
decorrelation losses on node representations, aiming to ex-
tract the common information among different graphs and
minimize the redundant information within node represen-
tations of each graph. Moreover, we conducted the recon-
struction loss on the reconstructed graph structure, aiming to
preserve the private information within each graph. Extensive
experimental results demonstrate that the proposed method
consistently achieves state-of-the-art performance for both
effectiveness and efficiency on the node classification task.
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