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Abstract

Evaluating neural network performance is critical to deep
neural network design but a costly procedure. Neural pre-
dictors provide an efficient solution by treating architectures
as samples and learning to estimate their performance on a
given task. However, existing predictors are task-dependent,
predominantly estimating neural network performance on im-
age classification benchmarks. They are also search-space de-
pendent; each predictor is designed to make predictions for
a specific architecture search space with predefined topolo-
gies and set of operations. In this paper, we propose a novel
All-in-One Predictor (AIO-P), which aims to pretrain neural
predictors on architecture examples from multiple, separate
computer vision (CV) task domains and multiple architec-
ture spaces, and then transfer to unseen downstream CV tasks
or neural architectures. We describe our proposed techniques
for general graph representation, efficient predictor pretrain-
ing and knowledge infusion techniques, as well as methods
to transfer to downstream tasks/spaces. Extensive experimen-
tal results show that AIO-P can achieve Mean Absolute Er-
ror (MAE) and Spearman’s Rank Correlation (SRCC) below
1% and above 0.5, respectively, on a breadth of target down-
stream CV tasks with or without fine-tuning, outperforming
a number of baselines. Moreover, AIO-P can directly transfer
to new architectures not seen during training, accurately rank
them and serve as an effective performance estimator when
paired with an algorithm designed to preserve performance
while reducing FLOPs.

Introduction

Performance evaluation of neural network models is re-
source and time consuming. Several factors contribute to
its expensiveness, such as task complexity, training dataset
size, architecture topology, and training time. It is yet a main
component and the bottleneck in Neural Architecture Search
(NAS) (Elsken et al. 2019). Early NAS approaches train
sampled architectures to completion during search (Zoph
and Le 2017) while later approaches adopt weight-sharing
supernet approaches (Pham et al. 2018; Liu, Simonyan,
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and Yang 2019; Changiz Rezaei et al. 2021; Mills et al.
2021a,c), which reduce the computational burden but do not
eliminate it. Advanced supernet schemes like Once-for-All
(OFA) (Cai et al. 2020) and BootstrapNAS (Munoz et al.
2022) introduce progressive shrinking to train a reusable su-
pernet. Specifically, OFA supernets are robust enough that
individual architectures can be sampled for immediate eval-
uation on ImageNet (Russakovsky et al. 2015).

Zero-Cost Proxies (ZCP) (Abdelfattah et al. 2021) are a
recent development aiming to correlate performance with
gradient statistics and thus can generalize to any type of net-
work. However, the efficacy of ZCP methods depend on the
architecture and task and may not be always reliable. Other
recent schemes like NAS-Bench-301 (Zela et al. 2022),
SemiNAS (Luo et al. 2020), TNASP (Lu et al. 2021b) and
WeakNAS (Wu et al. 2021) develop neural predictors that
estimate architecture performance from network topology
and operation features. However, they model customized
architectures in specific search spaces, e.g., NAS-Bench-
101 (Ying et al. 2019) and 201 (Dong and Yang 2020) for
common benchmark tasks like CIFAR image classification
(Krizhevsky, Hinton et al. 2009), and cannot be directly
transferred to other challenging tasks like pose estimation or
segmentation or to architectures with new types of topolo-
gies/connections.

In this paper, we propose All-in-One Predictor (AIO-P),
a multi-task neural performance predictor which achieves
cross-task and cross-search-space transferability via predic-
tor pretraining and domain-specific knowledge injection.
AIO-P uses Computational Graphs (CG) to represent neu-
ral architectures, which is lower-level information extracted
from TensorFlow execution and thus can model general
types of architectures. We make the observation that many
CV architectures consist of a body (e.g., ResNet) that per-
forms feature extraction and a head that uses extracted fea-
tures to generate task-specific outputs. Figure 1 illustrates
how architectures can be constructed for different tasks by
combining various types of bodies and heads. Based on such
network representations, we introduce an effective transfer
learning scheme to first pretrain AIO-P on image classifica-
tion benchmarks, then infuse domain knowledge from other
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Figure 1: Network bodies from classification search spaces
can pair with heads for different tasks. A simple classifica-
tion head has pooling and a linear layer. Faster R-CNN (Ren
etal. 2015) uses a Feature Pyramid Network (FPN) with fea-
ture maps of different sizes. FPN feeds a Regional Proposal
Network (RPN) and a Region of Interest module (Rol) to
estimate bounding boxes.

tasks or architecture spaces efficiently, and finally transfer to
a downstream task with minimum or no fine-tuning. Specifi-
cally, we propose the following techniques to achieve trans-
ferability to downstream tasks:

First, we introduce K -Adapters (Wang et al. 2021), orig-
inally used to inject domain knowledge into language mod-
els, into a GNN predictor pretrained on network benchmarks
for image classification (IC) such that the predictor can in-
fuse knowledge from segmentation/detection tasks or other
network topologies. We then transfer the learned model to
perform predictions on potentially unseen downstream tasks
or architectures.

Second, we propose an efficient learning scheme to
train AIO-P, and especially adapters, by a pseudo-labeling
scheme for task-specific network performance. In order to
reduce the high cost associated with labeling each individ-
ual architecture’s performance on a given task, we propose
to train a weight-sharing task head for all body architec-
tures in an entire search space, e.g., all variants of Mo-
bileNetV3 (Howard et al. 2019) in OFA. After training the
shared head, it can pair with any architecture body and fine-
tune for a few minutes to obtain a pseudo-label that is pos-
itively correlated with the true label seen when individu-
ally training the architecture for several hours. Moreover, we
further propose a latent representation sampling technique
to enhance the correlations of pseudo labels to true perfor-
mance labels.

Third, since performance metrics and their distributions
differ by task, we use several scaling techniques such as
standardization and FLOPs-based transform to rescale labels
when adapting AIO-P to a downstream task. AIO-P learns a
unitless understanding of architecture performance that can
then revert into a task-appropriate metric like Average Pre-
cision (AP) or mean Intersection over Union (mloU).

Through extensive experiments, we demonstrate that
AIO-P pretrained on one or two tasks in addition to clas-
sification is able to transfer to predict neural network perfor-
mance for a diverse range of CV tasks including 2D Human
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Pose Estimation (HPE), Object Detection (OD), Instance
Segmentation (IS), Semantic Segmentation (SS), and Panop-
tic Segmentation (PS). AIO-P consistently achieves a Mean
Absolute Error (MAE) below 1% on task-specific metrics
and a Spearman’s Rank Correlation Coefficient (SRCC)
above 0.5, outperforming both ZCP and GNN baselines un-
der zero-shot transfer and minimum fine-tuning settings. In
addition, AIO-P is able to correctly rank architectures in for-
eign model zoos whose body networks are different from
those observed in training, including DeepLab (Chen et al.
2018) and TF-Slim (Guadarrama and Silberman 2016). Fi-
nally, by pairing AIO-P with a search algorithm, we can op-
timize a proprietary facial recognition model to preserve per-
formance while reducing FLOPs by over 13.5%. We open-
source! our data, code, and predictor design to advance re-
search in this field.

Related Work

Benchmark datasets and neural predictors provide a quick
avenue for performance estimation. Arguably, the most sig-
nificant difference is how performance is queried. For ex-
ample, NAS-Bench-101 and 201 contain 423k and 15.6k ar-
chitectures, respectively. They store individual architecture
performances on a look-up table. By contrast, NAS-Bench-
301 operates on the DARTS search space, which contains
10'8 architectures which are too many to evaluate individu-
ally. Instead, they train a neural predictor (Zela et al. 2022;
Luo et al. 2020; Lu et al. 2021b; Wu et al. 2021). In both
cases, architecture configurations define the keys to the table
or predictor input, and serve to showcase the limitations of
these approaches. Specifically, these configurations are for
micro, cell-based NAS, where a network is built by stacking
identical cell structures. These configurations generally as-
sume details like latent representation sizes and the number
of cells in the network to be constant.

On the other hand, OFA networks (Cai et al. 2020) use
macro search spaces where networks are built by indi-
vidually selecting and then stacking pre-defined blocks. It
searches over the number of blocks in the network, kernel
size and channel expansions (Mills et al. 2021b) within a
block. Regardless, both approaches assume the stem and
head of the network to be a nonsearchable fixed structure.
This is acceptable when considering one task. They also ab-
stract multiple operations into pre-defined sequences, e.g.,
MBConv block, that is specific to the search space and net-
work body and thus may not exist in the head. By contrast,
we aim to predict performance across various tasks with dif-
ferent heads and data sizes. Thus, we require a more robust
and generalizable data format. AIO-P uses Compute Graphs
(CG) as input, which incorporates full network topological
details, latent tensors size, and node features.

A few approaches appear in the literature regarding NAS
for CV tasks other than IC. For example, Ding et al. (2022)
use NAS on nine tasks, including IC and SS. They perform
a search to find architectures that provide high-performance
on multiple objectives. Auto-DeepLab (Liu et al. 2019) re-
configure DARTS to perform variable upsampling/down-

"https://github.com/Ascend-Research/AIO-P
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Figure 2: Example CG subgraph of a Squeeze-and-Excite
(SE) module (Hu, Shen, and Sun 2018) in MBv3. We store
properties like kernel size and channels as node features.

sampling and search for a good SS architecture. Next,
TransNAS-Bench-101 (Duan et al. 2021) train architectures
from separate micro and macro search spaces on various
tasks for several hours and demonstrate the performance of
multiple search algorithms. In contrast, we train architec-
tures using the hyperparameters of Detectron2 (Wu et al.
2019) and Zhou et al. (2017b). We develop a novel shared
head approach to build a generalizable performance predic-
tor that learns on data from multiple CV tasks and predicts
the performance of other downstream tasks.

Methodology

We cast performance prediction as a supervised learning re-
gression problem where each data sample belongs to a given
task domain ¢. Each task ¢ contains instances (A, y!) where
A; is an architecture, and y; is its performance label de-
noted by a metric value on ¢. For example, y! is the accu-
racy value for an Image Classification (IC) architecture, or
average precision for Object Detection (OD). The goal is a
neural predictor that can generalize across many tasks and
provide accurate performance estimations. In this section,
we describe how AIO-P represents architectures as Com-
putational Graphs and uses K -Adapters to learn task trans-
ferable knowledge. Furthermore, we describe how shared
task heads and pseudo-labeling let us form a large dataset
of training instances. Finally, we discuss label scaling tech-
niques for making accurate predictions across different per-
formance distributions.

Network Representation

A CV architecture usually consists of a ‘body’ that performs
feature extraction on an input and a ‘head’ that uses ex-
tracted features to make predictions. The ‘body’ structure
comes from a given search space while the head comes from
a specified task t.

The search spaces we consider are from OFA. These in-
clude ProxylessNAS (PN) (Cai, Zhu, and Han 2019), Mo-
bileNetV3 (MBv3) (Howard et al. 2019) and ResNet-50
(R50) (He et al. 2016a). Architectures bodies from these
spaces are pre-trained on ImageNet classification. Head de-
signs vary with task complexity. For example, a typical IC
head uses global average pooling and MLP layers to pre-
dict class labels for an entire image. By contrast, we con-
sider tasks like HPE, OD, and segmentation, which upsam-
ple feature maps with different resolutions to make predic-
tions. Specifically, HPE (Zheng et al. 2020) generates large
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Figure 3: CG K-Adapter Diagram. We start with a graph
encoder pre-trained on NAS-Bench-101 for IC and further
extend the design with an adapter. The original encoder is
frozen while we train the K-Adapter on a new search space
and task, e.g., R50 on OD.

heat maps to estimate joint locations, while Semantic Seg-
mentation (SS) (Liu et al. 2019) upsamples to predict class
labels for every pixel in an image. OD (Ren et al. 2015)
uses a Region Proposal Network (RPN) and Region of In-
terest Poolers (Rol) to estimate bounding box coordinates
and classes, while Instance Segmentation (IS) replaces the
bounding boxes with pixel-level masks for each instance of
a class. Finally, Panoptic Segmentation (PS) (Kirillov et al.
2019) combines IS and SS to generate pixel masks for an im-
age while differentiating individual instances of each class,
e.g., masks for every person in a crowd will have different
colors. We illustrate this breakdown of how search space
bodies pair and interact with task heads in Figure 1 and pro-
vide finer details for each task head in the supplementary
materials.

While prior neural predictors like White, Neiswanger, and
Savani (2021) as well as Wen et al. (2020) adopt a cus-
tomized encoding limited to predefined search spaces, e.g.,
NAS-Benchmarks on IC, we use a general encoding that can
represent any neural network. Specifically, we derive Com-
putational Graphs (CG) using the underlying graph structure
that libraries like TensorFlow (Abadi et al. 2016) generate in
the forward pass to execute backpropagation.

CGs are fine-grained graph structures where nodes denote
individual atomic operations such as convolutions, linear
layers, pooling, padding, addition, concatenation, etc. Node
features describe properties like kernel sizes, strides, and
channels. Featureless, directed edges denote the flow of la-
tent data across the network, allowing for a task-transferable
representation that incorporates the body and task head. Fig-
ure 2 illustrates how CGs represent one module of a Mo-
bileNetV3 (MBv3) body.

Finally, we note that our CG format can be extended to
other network types, like those which perform Natural Lan-
guage Processing tasks such as recurrent or attention-based
models or even simple MLP models. However, such experi-
ments are beyond the scope of this paper.

K-Adapters for Knowledge Infusion

AIO-P, as shown in Figure 3, starts with a GNN (Morris
et al. 2019) regressor backbone. The stem consists of an en-
coding layer that transforms discrete node features, e.g., op-
eration categories, into a continuous format. The GNN en-



| PN | MBv3 | RS50
#Architectures 215 217 215
Ground-Truth PCK | 65.16% | 65.22% | 65.64%
Body Swap PCK 52.67% | 43.62% | 49.61%
SRCC 0.574 0.443 0.246
Sampling PCK 59.57% | 61.58% | 59.46%
SRCC 0.659 0.576 0.375

Table 1: Shared head performance distributions and SRCC
on HPE PCK [%]. We compare performance obtained using
body swapping and latent sampling to the ground-truth PCK
from individually training architectures.

coder takes the computational graph as input, learns node
embeddings using the adjacency matrix, and generates an
overall graph embedding by aggregating node embeddings.
The graph embedding is fed into an MLP, which outputs a
performance prediction. In all our experiments, we pre-train
the GNN regressor to predict classification accuracy on 50k
NAS-Bench-101 CGs.

To predict performance on another downstream CV task,
we extend this base GNN regressor with K -Adapters to in-
fuse external knowledge from other tasks and datasets be-
yond image classification. To do this, we discard the original
regressor MLP and freeze all remaining weights. We append
the K -Adapter by pairing each existing GNN layer in the en-
coder with a new GNN “Adapter” layer. Each adapter layer
accepts concatenated input from the previous adapter layer
and the adjacent GNN layer. Formally, given the intermedi-
ate node embeddings for a graph x, we define the forward
function to K -Adapter layer GN N** as

hkt = GNNF(Concat[hF1=1, h01)), 1)
where h%i=1 and h%' are the intermediate node embed-
dings produced by the previous K-Adapter layer and adja-
cent GNN layer in the backbone, respectively. Like the back-
bone, the K-Adapter produces an overall graph embedding.
We concatenate both graph embeddings and feed them into
a new MLP predictor.

Note that we can augment the original backbone with
multiple K-Adapters, where each K-Adapter infuses the
knowledge from a different task ¢. Hence, the overall pre-
dictor can generalize to different downstream tasks with dif-
ferent task head CG structures and labels.

Training K -Adapters Based on Latent Sampling

To train K-Adapters, we need datasets composed of ar-
chitecture samples and their performance labels on tasks
other than IC. We can obtain task-specific labels by sam-
pling a body from a search space, e.g., OFA, coupling it
with a task head, and training it. However, this is costly.
Rather than having AIO-P learn on ground-truth labels ob-
tained from individually trained architectures, we propose
a pseudo-labeling method to efficiently obtain task-specific
labels to train adapters, via a specially-trained task head that
is shared amongst all network bodies in a search space.
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Task | PN | MBv3 | R50
HPE-LSP | 215/2580 | 217/2862 | 215/2986
HPE-MPII 246/- 236/- 236/-
OD/IS/SS/PS | 118/1633 | 118/1349 | 115/1399

Table 2: AIO-P K -Adapter dataset size, across each search
space and task. ‘/’ denotes architectures that we individually
train (left) and those we label using a shared head (right).

A typical approach for training a shared task head is ‘body
swapping’, which involves iteratively sampling pre-trained
architecture bodies from a search space, e.g., OFA, attach-
ing them to the shared head and training the head on a few
batches of images. However, note that during body swap-
ping, for each mini-batch of images, the head only samples a
single body. To encourage randomness, rather than sampling
body networks, we propose an approach where we directly
sample the latent representations of the mini-batch of im-
ages from a distribution as if they are generated by sampled
bodies. Yet, this will further mimic random body sampling
per image instead of per mini-batch.

Specifically, let = be an image, S be an architecture search
space and B € S be a body network. As OFA search spaces
each contain roughly 10'® bodies, we take a subset of archi-
tectures S’ and compute the mean fi(z) and standard devia-
tion &'(x) of their latent representations of image z, i.e.,

f(z) = Epes[fB(2)], )

&*(z) = Varpes:[f5(2)], 3)
where fp denotes the function given by network body B.
We then sample a latent representation Z(z) = fi(z) + ¢ o

&(x) where  is a standard normal A(0,1) random vector
and o is element-wise multiplication. We denote this ap-
proach as ‘latent sampling’, where we train the shared task
head by {(Z(z),y.)}, using the sampled latent vector Z(x)
as input to the head and y,, as the ground-truth task label for
2. We limit the size of S’ and use a round robin strategy with
binning to constantly swap new bodies into S’. We provide
procedural details on our round robin strategy, shared head
hyperparameters and resource cost breakdown in the supple-
mentary materials.

To assess the reliability of our pseudo-labelling approach,
we form a ground-truth set by individually training sev-
eral hundred architectures (with bodies sampled from three
spaces) on the Leeds Sports Pose-Extended (LSP) dataset
for Human Pose Estimation (HPE) and measure perfor-
mance in terms of Percentage of Correct Keypoints (PCK).
We obtain pseudo-labels by fine-tuning the same bodies
when connected to shared heads trained using body swap-
ping and latent sampling, respectively. We compare the
PCK distributions and SRCC between the pseudo-labels and
ground-truth labels. We do not use the pseudo-labeled ar-
chitectures from this experiment to train AIO-P. They are
only for comparison. Table 1 shows the results. We note that
latent sampling achieves much better performance on aver-
age, relative to the ground truth, while body swapping lags
by over 10%. Also, the SRCC we observe using the latent



| ProxylessNAS | MobileNetV3 | ResNet-50
Task ‘ GNN +Eqgs. 4 & 5 AIO-P ‘ GNN +Eqgs. 4 & 5 AIO-P ‘ GNN +Egs.4 &5 AIO-P
LSP | 27.27% 0.72% 0.70% | 27.07% 0.74% 0.52% | 21.47% 1.07% 0.94%
MPII | 8.10% 0.34% 0.42% | 891% 0.36% 0.27% | 2.48% 1.11% 1.03%
OD 59.53% 1.15% 0.63% | 59.56% 1.24% 0.62% | 54.07% 0.88% 0.60%
IS 62.00% 0.93% 0.52% | 61.76% 0.73% 0.58% | 56.74% 0.64% 0.48%
SS 53.07% 0.71% 0.50% | 53.40% 0.90% 0.56% | 47.90% 0.52% 0.44%
PS 56.19% 0.76% 0.50% | 56.18% 0.74% 0.57% | 51.63% 0.52% 0.45%

Table 3: MAE [%] of AIO-P on three search spaces and six tasks in the zero-shot transfer setting (no fine-tuning), compared to
GNN without and with rescaling by Eqgs. 4 & 5. AIO-P adopts 2 K-Adapters, trained on LSP and OD. AIO-P uses Equation 5
and standardizes regression targets. Results averaged across 5 seeds.

| ProxylessNAS | MobileNetV3 | ResNet-50
Task | GNN  +Egs.4&5  AIO-P | GNN  +Egs.4&5 AIO-P | GNN +Eqs.4&5 AIO-P
LSP | 0.593 0.561 0.698 | 0.259 0.418 0.556 | -0.302 0.176 0.261
MPII | 0.711 0.767 0.753 | 0.300 0.764 0.701 | -0.315 0.446 0.532
OD 0.558 0.471 0.781 | 0.645 0.087 0.515 | -0.489 0.645 0.817
1S 0.599 0.211 0.831 | 0.592 0.034 0.602 | -0.493 0.495 0.817
SS 0.487 0.262 0.735 | 0.517 -0.367 0.689 | -0.406 0.589 0.660
PS 0.562 0.119 0.732 | 0.570 -0.009 0.518 | -0.455 0.599 0.788

Table 4: SRCC of AIO-P on three search spaces and six tasks. Same configurations as Table 3.

sampling approach is positive for all search spaces and more
favorable than body swapping.

Label Scaling

In addition to having different heads, task performance dis-
tributions differ. PN architectures yield ~75% accuracy on
ImageNet, and around 40% SS mloU on COCO. Note that
performance distributions differ amongst tasks, or even the
same task between ground truth and pseudo-labels.

Therefore, we experiment with methods that scale the la-
bels AIO-P learns from to add further task transferability.
Specifically, we employ standardization,

2(y) = =, )

where 1 and o are the mean and standard deviation of the
label y distribution, respectively. This approach fits a set of
data into a normal distribution A/(0, 1). Further, we incorpo-
rate scaling by FLOPs, or Floating Point Operations required
to perform the forward pass of a network, as a divisor prior
to standardization,

yr =y (Logy(F +1)+1)7", )
where F' are the FLOPs of the network with performance y,
measured in GigaFLOPs (1€9), and the addition of 1 in the
denominator assures it will be positive real number. In all
cases, if we apply Equation 5 to labels, we then standardize
them using Equation 4.

Results

In this Section, we describe our suite of tasks, experimental
setup and results. We consider the computer vision tasks of

2D Human Pose Estimation (HPE), Object Detection (OD),
Instance Segmentation (IS), Semantic Segmentation (SS)
and Panoptic Segmentation (PS).

HPE predicts joint locations from an image. We mea-
sure 2D HPE performance using Percentage of Correct Key-
points (PCK) and consider two HPE datasets: MPII (An-
driluka et al. 2014) and Leeds Sports Pose-Extended
(LSP) (Johnson and Everingham 2011), which contain 22k
and 11k images, respectively. We individually train net-
works for both datasets and train a shared head for LSP.

OD and IS measure performance in mean Average Preci-
sion (mAP), while SS uses mean Intersection over Union
(mloU). PS, a combination of IS and SS, uses Panoptic
Quality (PQ), a balance of mAP and mloU. These perfor-
mance metrics are reported as percentages [%]. We con-
sider the 2017 version of MS Common Objects in Context
(COCO) (Lin et al. 2014) as our dataset for these tasks, as it
contains 118k and 5k training and validation images, respec-
tively. We use Detectron2 (Wu et al. 2019) to pair a given
body with OD, IS SS, and PS to train on all four tasks si-
multaneously.

Table 2 enumerates of the number of architectures we
have for each search space and task. We use pseudo-labeled
architecture CGs to train AIO-P and reserve individually
trained ones as held-out test samples. Additionally, we in-
clude a more extensive breakdown with performance and
FLOPs distributions in the supplementary materials.

Training Procedure

Starting with the GNN backbone, we append two K-
Adapter modules. We train these using the pseudo-labeled
CGs for two task domains, OD and LSP-HPE. We separately
apply Equation 5 and then standardize the labels of each K-
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Space | Synflow | Jacov | Fisher | Grad Norm | Snip | FLOPs | AIO-P | AIO-P FT
PN-LSP -0.004 -0.057 | 0.449 0.581 0.624 0.584 0.698 0.668
MBv3-LSP 0.609 0.029 | 0.129 0.426 0.466 0.562 0.556 0.567
R50-LSP 0.639 -0.071 | 0.515 0.581 0.646 0.263 0.261 0.264
PN-MPII 0.046 -0.008 | 0.538 0.733 0.755 0.735 0.753 0.773
MBv3-MPII 0.736 -0.014 | 0.203 0.679 0.691 0.736 0.701 0.744
R50-MPII 0.865 0.111 0.709 0.732 0.849 0.532 0.532 0.532
PN-SS 0.022 -0.023 | 0.050 0.141 -0.082 | 0.608 0.735 0.849
MBv3-SS -0.309 0.042 | 0.022 0.040 0.188 0.445 0.689 0.822
R50-SS -0.255 0.141 0.126 0.354 0.036 0.661 0.660 0.677

Table 5: SRCC between AIO-P, ZCP methods and a FLOPs-based predictor on three tasks. We also include ‘AIO-P FT’, i.e.,
fine-tuning on 20 held-out standardization samples. We bold the best result and italicize the second best.

Adapter task before training and freeze the weights of the
GNN backbone.

To evaluate individually trained test set CGs for a task,
we consider the zero-shot transfer context where we pro-
vide no data on a target task prior to inference. Similar to Lu
et al. (2021a), we sample 20 random architectures from the
test set to compute standardization parameters ¢ and o and
exclude these architectures from evaluation. We also con-
sider a fine-tuning context where we use the same 20 ran-
dom architectures to train AIO-P prior to inference. As we
evaluate multiple methods using different random seeds, we
ensure the set of 20 sampled architectures is the same for ev-
ery seed value. Also, note that the set of body architectures
we individually train on any task are disjoint from the ones
we pseudo-label. We provide granular predictor details and
training hyperparameters in the supplementary materials.

Zero-Shot Transfer Performance

We consider two predictor evaluation metrics, Mean Abso-
lute Error (MAE) and Spearman’s Rank Correlation Coef-
ficient (SRCC). The former gauges a predictor’s ability to
make accurate estimations on individual labels, while the
latter determines a predictor’s capacity to correctly rank a
population by performance. We report MAE as a percentage
for each task metric, e.g., PCK for HPE and mloU for SS,
where lower is better. SRCC falls in [—1, 1] and indicates
agreement with ground-truth ordering, so higher is better.

Tables 3 and 4 list our results for AIO-P in terms of MAE
and SRCC, respectively. AIO-P achieves the best MAE per-
formance in the majority of scenarios, including every task
on MBv3 and R50. The sole exception is a GNN using stan-
dardization and FLOPs scaling for MPII by less than 0.1%
MAE, while the unmodified GNN fails to generalize to dif-
ferent task performance distributions.

For SRCC, AIO-P consistently achieves the best correla-
tion on all R50 tasks and in at least half for PN and MBv3.
While both variants of the GNN obtain the high SRCC on
at least one search space and task pair, they are overall very
inconsistent as the GNN with re-scaled labels achieves nega-
tive SRCC on MBvV3 and the unmodified GNN fails on R50.

Next, Table 5 compares the ranking performance of AIO-
P with Zero-Cost Proxies (ZCP) and FLOPs. Without fine-
tuning, AIO-P achieves high correlation performance for all
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Task GNN AIO-P AIO-P | AIO-P
+AdaProxy | w/o Eq.5

MPII 0.33% 0.35% 0.29% 0.25%

Inst. Seg. | 0.66% 0.47% 0.39% 0.58%

Pan. Seg. | 0.64% 0.51% 0.46% 0.61%

Table 6: MAE of AIO-P on MPII, IS and PS for the MBv3
search space (with fine-tuning). A single K-Adapter was
trained on SS for AIO-P variants. We bold the best result
and italicize the second best.

Task GNN AIO-P AIO-P | AIO-P
+AdaProxy | w/o Eq. 5

MPII 0.680 0.574 0.650 0.750

Inst. Seg. | 0.547 0.677 0.747 0.585

Pan. Seg. | 0.568 0.627 0.685 0.512

Table 7: SRCC of AIO-P on MPII, IS and PS for the MBv3
search space (with fine-tuning). Same experimental setup as
Table 6.

search spaces on MPII and SS, as well as PN and MBv3 for
LSP, demonstrating high generalizability. The most compet-
itive ZCP method is Synflow (Tanaka et al. 2020), but only
for HPE tasks with MBv3 and R50 as it fails on PN and in
the SS context. Grad Norm achieves positive SRCC across
all search spaces and tasks but never the best performance.
FLOPs are also highly correlated with performance in all
settings, except LSP for R50. Unlike ZCP, the advantage
of AIO-P in this context is its ability undergo fine-tuning
to boost performance, as shown for the MPII and SS tasks.
Next, we compare Egs. 4 and 5 with another fine-tuning-
based method for intertask prediction.

Fine-Tuning Results

We now evaluate the transferability of AIO-P on down-
stream tasks if predictor fine-tuning is allowed based on a
small number, i.e., 20, downstream architectures. As a com-
parison, we also evaluate AIO-P using a weight scaling tech-
nique proposed in AdaProxy (Lu et al. 2021a), which scales
the final MLP layer of a predictor by minimizing the follow-



Task | OD | SS | LSP | OD+SS | OD+LSP
MPIL | 0.60% | 0.39% | 0.28% | 0.35% | 0.42%
1S 0.70% | 0.56% | 1.03% | 0.61% | 0.52%
PS 0.75% | 0.82% | 1.03% | 0.81% | 0.50%
MPIIFT | 0.25% | 0.26% | 027% | 0.27% | 0.26%
ISFT | 0.49% | 0.50% | 0.27% | 0.50% | 0.33%
PSFT | 0.50% | 0.54% | 0.31% | 0.52% | 0.33%

Table 8: MAE of different K -Adapter tasks on the PN search
space. ‘FT’ indicates fine-tuning on 20 held-out target archi-
tectures. We bold the best result and italicize the second best.

Task | OD | SS | LSP | OD+SS | OD+LSP
MPIl | 0762 | 0.660 | 0.717 | 0.727 | 0.753
IS 0.749 | 0.728 | 0.929 | 0750 | 0.831
PS 0.650 | 0.669 | 0.859 | 0.672 | 0.732
MPILFT | 0.793 | 0.790 | 0.764 | 0.779 | 0.773
ISFT | 0.749 | 0.757 | 0915 | 0.730 | 0.894
PSFT | 0.670 | 0.671 | 0.880 | 0.647 | 0.858

Table 9: SRCC of different K-Adapter tasks on the PN
search space. Same experimental setup as Table 8.

ing loss on fine-tuning samples:

min |[(alT + b7) o wT]# — y|? + AJb],

a,b

where « is a scalar, Iis an identity vector, w are the weights
in the final layer, bisa sparsity vector and )\ is a regularizer
weight. During this minimization, all of the original predic-
tor weights are frozen. For this experiment, we consider the
MBvV3 search space, train a K-Adapter on SS and evaluate
on MPII, IS and PS.

Tables 6 and 7 list our results in terms of MAE and SRCC,
respectively. We are able to obtain more accurate predictions
in terms of MAE and SRCC using some form of standard-
ization rather than AdaProxy. On MPII specifically, Eq. 5
overcomes the limitations of low inter-task correlation to
produce the best MAE and SRCC, while just using stan-
dardization is enough to obtain the most accurate IS and PS
predictions. Another advantage of our standardization and
FLOPs-based transform approach is the absence of tunable
hyperparameters, e.g., A.

Ablation Study

We ablate the effect of different K-Adapter training tasks
using PN as an example search space. Tables 8 and 9 show
our MAE and SRCC findings, respectively. We see that us-
ing a double K-Adapter on OD and LSP helps to generalize
MAE and SRCC performance across the downstream tasks.
While the best results typically use just OD or LSP, LSP
struggles to produce low MAE on IS and PS without fine-
tuning. However, we overcome this hurdle when adding an-
other K-Adapter for OD. First, we note that the best results
use either OD or LSP, although SS still produces good re-
sults. Particularly, LSP struggles to produce low MAE on IS
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Task | GNN | +K-Adapter | + Eq.4 | AIO-P
MPII 2.48% 55.30% 0.39% | 2.38%
IS 56.74% 2.38% 0.73% | 0.73%
PS 51.63% 7.39% 0.89% | 0.61%
MPITFT | 0.28% 0.77% 0.15% 1.09%
ISFT 0.61% 0.85% 0.36% | 0.45%
PS FT 0.71% 0.61% 0.40% | 0.44%

Table 10: MAE performance comparing the effect of K-
Adapters as well as Egs. 4 and 5 in the zero-shot and fine-
tuning (FT) contexts. We consider the R50 search space and
train a K-Adapter on SS. We bold the best result and itali-
cize the second best.

Task | GNN | +K-Adapter | + Eq.4 | AIO-P
MPIL -0.315 0.708 0418 0.337
IS -0.493 0.669 0.361 0.324
PS -0.455 0.633 0.399 0.291
MPIL FT | 0.700 0.738 0.512 0.532
ISFT 0.611 0.687 0.727 0.840
PSFT 0.601 0.667 0.762 0.811

Table 11: SRCC performance comparing the effect of K-
Adapters. Same experimental setup as Table 10.

and PS without fine-tuning. Introducing another K-Adapter
for OD overcomes this hurdle.

Additionally, we compare the GNN backbone to using a
single K-Adapter, using standardization (Eq. 4), and then
our FLOPs scaling (Eq. 5). Tables 10 and 11 list our results
for MAE and SRCC, respectively. We see that AIO-P with or
without Eq. 5 can obtain top MAE performance in most sce-
narios in the zero-shot and fine-tuning contexts. However,
that is not the case for SRCC, where Eq. 5 allows AIO-P
to achieve correlation metrics above 0.8 with fine-tuning.
While the normal GNN is not very competitive, adding a sin-
gle K-Adapter without standardization can improve rank-
ing performance significantly. However, the prediction error
is still high due to differences in task performance distri-
butions (reported in the Supplementary Materials). Overall,
standardization and Eq. 5 allow AIO-P to strike a balance
between prediction error and ranking correlation.

Transfer to Foreign Network Types

To further test the transferability of AIO-P to new archi-
tecture types not seen in training, we perform inference
on several foreign ‘model zoos’. Each model zoo contains
10 or fewer architecture variants, e.g., Inception (Szegedy
et al. 2017), EfficientNets (Tan and Le 2019), MobileNets
and ResNets. Specifically, we include model zoos from the
DeepLab repository (Chen et al. 2018) which focus on
for semantic segmentation (SS) performance on multiple
datasets. We also evaluate AIO-P on several image classifi-
cation (IC) model zoos from TensorFlow-Slim (Guadarrama
and Silberman 2016).



Model Zoo | AIO-P w/o Eq.5 | AIO-P

DeepLab-ADE20k 0.127 £ 0.255 0.991 + 0.016
DeepLab-Pascal 0.392 + 0.088 0.939 + 0.035
DeepLab-Cityscapes 0.572 £ 0.031 0.925 + 0.024
Slim-ResNets -0.577 £0.183 | 0.920 £ 0.106
Slim-Inception -0.700 £ 0.316 | 0.980 £ 0.040
Slim-MobileNets -0.500 £ 0.000 | 0.400 £ 0.535
Slim-EfficientNets 1.000 + 0.000 1.000 £ 0.000

Table 12: SRCC of AIO-P on several ‘model zoos’. Double
horizontal line demarcates SS models from IC models.

DeepLab Semantic Segmentation We consider archi-
tectures on three different SS datasets: ADE20k (Zhou
et al. 2017a), Pascal VOC (Everingham et al. 2015), and
Cityscapes (Cordts et al. 2016). These are different SS
datasets than the MS-COCO we use for training OFA-based
architectures, so the results further demonstrate the gen-
eralizability of AIO-P across datasets, even for the same
task. Specifically, we consider the following architectures
per dataset:

1. ADE20k (5): MobileNetV2, Xception65 (Chollet 2017)
as well as Auto-DeepLab-{S, M, L} (Liu et al. 2019).

. Pascal VOC (6): MobileNetV2, MobileNetV2 w/ re-
duced depth, Xception65 and Auto-DeepLab-{S, M, L}.

3. Cityscapes (8): MobileNet{V2, V3-Small, V3-Large},
Xception65, Xception71 and Auto-DeepLab-{S, M, L}.

TensorFlow-Slim Image Classification We also consider
several architectures that perform IC on ImageNet:

1. ResNets (6): ResNet-v1-{50, 101, 152} (He et al. 2016a)
and ResNet-v2-{50, 101, 152} (He et al. 2016b).

Inception (5): Inception-{v1, v2, v3, v4} and Inception-
ResNet-v2 (Szegedy et al. 2017)

3. MobileNets (6): MobileNet{V1, V1-0.5, V1-0.25, V2,
V2-1.4} where -X.Y” is a channel multiplier.

. EfficientNets (Tan and Le 2019) (8): EfficientNet-{BO0,
B1, B2, B3, B4, B5, B6, B7}.

Using AIO-P pre-trained on ResNet-50 bodies and with a
double K-Adapter trained on OD and LSP tasks, and then
fine-tuned on SS (the task DeepLab performs), we investi-
gate whether AIO-P can adequately rank the architectures in
DeepLab and in TensorFlow-Slim, which contain new types
of body networks other than ResNet-50.

As shown in Table 12, we note that AIO-P can achieve
positive correlation inference on all SS and IC model zoos.
In particular, we obtain perfect SRCC on EfficientNets.
Moreover, this performance is superior to AIO-P when Eq. 5
is not present. This is because while standardization im-
proves MAE performance, it does not affect architecture
rankings, whereas FLOPs-based transformation does. These
findings demonstrate the efficacy of AIO-P and Eq. 5 in
ranking the performance of foreign networks with different
connections/topologies.
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| Full Simple | Lighted Dark | FLOPs
Base Pr 96.3% 98.7% 979%  96.5% | 563M
AIO-PPr | 96.1% 98.7% 979%  96.7% | 486M
Base Rc 91.9% 98.3% 96.8%  92.6% | 563M
AIO-PRc | 91.1% 98.2% 96.6%  93.2% | 486M

Table 13: Precision (Pr) and Recall (Rc) of a proprietary FR
network found by pairing AIO-P with a search algorithm
designed to preserve performance while reducing FLOPs.

Application to NAS

Finally, we apply AIO-P to NAS. Specifically, we use a pre-
dictor that achieves high SRCC on the bounding box task
OD on R50, to optimize a proprietary neural network de-
signed to perform Facial Recognition (FR) on mobile de-
vices. We pair AIO-P with a mutation-based search algo-
rithm that aims to preserve performance while reducing
FLOPs. Although the architecture we optimize does not be-
long to any of the OFA search spaces we consider, like
the aforementioned model zoos, AIO-P can estimate perfor-
mance using the CG framework. Additionally, our mutation
algorithm proposes edits to CGs that vary from swapping
subgraphs of operation sequences to manually pruning the
number of channels in a convolution node.

Table 13 demonstrates that we can maintain performance
in most settings while reducing FLOPs by over 13.5%. In the
‘dark’ setting, where features can be hard to see, our model
improves precision and recall by 0.2% and 0.6%, respec-
tively. At most, we only lose 0.2% precision and 0.8% recall
across other settings. Therefore, these findings demonstrate
the efficacy of AIO-P in the NAS setting for any general
neural network, not simply for well-known search spaces.

Conclusion

We propose AIO-P, or All-in-One Predictors, to broaden the
scope of neural performance prediction tasks. AIO-P uses
K-Adapters to infuse knowledge from different tasks and
accepts Computational Graphs (CG) as input. CGs represent
the body and head of an architecture by encoding all atomic
operations as nodes with directed edges determined by the
network forward pass. At the output, AIO-P incorporates
target scaling techniques, including one based on FLOPs, to
re-scale predictions into the appropriate task metric and ulti-
mately obtain superior performance. To construct a suitable
training set, we devise a shared head approach with latent
sampling, which can pair with any architecture in the search
space to produce a pseudo-label that is highly correlated
with the true label. Experimental results show that AIO-
P can obtain Mean Absolute Error and Spearman’s Rank
Correlations below 1% and above 0.5, respectively, when
transferred to a wide range of downstream tasks. Moreover,
AIO-P can directly transfer and adequately rank different
networks in several foreign model zoos not seen in training
for classification and semantic segmentation. Finally, we use
AIO-P to optimize a proprietary facial recognition network
to effectively preserve precision and recall while reducing
FLOPs by over 13.5%.
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