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Abstract
Proximal Policy Optimization (PPO) is an important rein-
forcement learning method, which has achieved great success
in sequential decision-making problems. However, PPO faces
the issue of sample inefficiency, which is due to the PPO can-
not make use of off-policy data. In this paper, we propose an
Off-Policy Proximal Policy Optimization method (Off-Policy
PPO) that improves the sample efficiency of PPO by utiliz-
ing off-policy data. Specifically, we first propose a clipped
surrogate objective function that can utilize off-policy data
and avoid excessively large policy updates. Next, we theoret-
ically clarify the stability of the optimization process of the
proposed surrogate objective by demonstrating the degree of
policy update distance is consistent with that in the PPO. We
then describe the implementation details of the proposed Off-
Policy PPO which iteratively updates policies by optimizing
the proposed clipped surrogate objective. Finally, the experi-
mental results on representative continuous control tasks vali-
date that our method outperforms the state-of-the-art methods
on most tasks.

Introduction
Off-policy deep reinforcement learning has achieved huge
success in domains, e.g., games (Mnih et al. 2015), (Sil-
ver et al. 2016), (Silver et al. 2017), (Vinyals et al. 2019),
(Schrittwieser et al. 2020), (Xing et al. 2021), (Meng et al.
2019), robotics (Kober, Bagnell, and Peters 2013), and con-
tinuous control tasks (Lillicrap et al. 2016), (Haarnoja et al.
2018), (Yang et al. 2022b). These off-policy deep reinforce-
ment learning methods make use of off-policy data collected
during the interaction between agent and environment to
optimize policies (Degris, White, and Sutton 2012), (Sil-
ver et al. 2014), which are more sample efficient than on-
policy methods only using on-policy data (Fujimoto, Hoof,
and Meger 2018), (Mnih et al. 2016). With the utilization of
off-policy data whose behavior policy differs from the target
policy, these off-policy deep reinforcement learning meth-
ods can avoid the expensive cost on large amounts of on-
policy interaction and are suitable for solving complex real-
world sequential decision-making problems (Haarnoja et al.
2018), (Yang et al. 2022a), (Lillicrap et al. 2016), (Mnih
et al. 2015).
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Proximal Policy Optimization (PPO) (Schulman et al.
2017) is one of the most popular deep reinforcement learn-
ing methods, which optimizes policies by optimizing a
clipped surrogate objective of policy performance. In or-
der to further improve the sample efficiency of PPO, several
works are proposed to achieve this goal from different per-
spectives. Specifically, Trust Region-Guided Proximal Pol-
icy Optimization (TRGPPO) (Wang et al. 2019) improves
the sample efficiency of PPO by adaptively adjusting the
clipping range within a trust region. Truly Proximal Policy
Optimization (Wang, He, and Tan 2020) improves the sam-
ple efficiency of PPO by adopting a new clipping function to
restrict the policy ratio, and substituting the triggering condi-
tion for clipping by a trust region-based one. Separated Trust
Regions Policy Optimization (Zou et al. 2019) improves the
sample efficiency of PPO by proposing a softer objective
with more conservative constraints and building the sepa-
rated trust-region for optimization. However, these methods
ignore the perspective of directly utilizing off-policy data to
improve the sample efficiency of PPO (Wang et al. 2019),
(Wang, He, and Tan 2020), (Zou et al. 2019).

In this paper, we put forward an Off-Policy Proximal Pol-
icy Optimization (Off-Policy PPO) method that leverages
off-policy data to further improve the sample efficiency of
PPO. Specifically, we first propose a clipped surrogate ob-
jective that can use off-policy data and avoid the excessively
large policy update. Next, we theoretically clarify the use of
off-policy data during the optimization process of this objec-
tive does not harm the stability of PPO. We then introduce
the implementation details of the proposed Off-Policy PPO,
which include the whole procedure of this method and the
network update procedure in this method. Our contributions
are described as follows:
• We propose an Off-Policy Proximal Policy Optimization

method (Off-Policy PPO) that introduces a clipped sur-
rogate objective using off-policy data and iteratively uti-
lizes off-policy data to optimize policies by maximizing
this proposed clipped surrogate objective.
• We theoretically clarify that the stability of the proposed

Off-Policy PPO by demonstrating the degree of the pol-
icy update distance in our method is the same as that in
PPO. We also conduct experiments on a variety of repre-
sentative continuous control tasks and the experimental
results demonstrate that our method can achieve better
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performance than state-of-the-art methods on most tasks.

Background & Notation
In this paper, we study the Markov decision process denoted
by the tuple (S,A, P, ρ0, r). S and A separately represent
the state space and the action space; P : S×A×S → R de-
notes the transition dynamics distribution; ρ0 : S → R and
r : S × A → R represent distribution of the initial state s0
and the reward function, respectively. During the interaction,
the agent given a state st chooses an action at conforming to
policy π : S × A→ [0, 1] at timestep t; environment yields
a reward r(st, at) and the next state st+1.

With above interaction, the discounted return from
timestep t can be formulated as Rt =

∑∞
k=t γ

k−tr(sk, ak),
where γ is the discount factor. Based on such Rt, we next
introduce the state value Vπ(st) given st, the action value
Qπ(st, at) given (st, at) and the corresponding advantage
value Aπ(st, at) (Schulman et al. 2016):

Vπ(st) = Eat,st+1,···∼π
[ ∞∑
k=t

γk−tr(sk, ak)
]
, (1)

Qπ(st, at) = Est+1,at+1,∼π
[ ∞∑
k=t

γk−tr(sk, ak)
]
, (2)

Aπ(st, at) = Qπ(st, at)− Vπ(st). (3)

The standard reinforcement learning learns a policy π to
maximize the policy performance objective (the discounted
return from the start state) (Sutton and Barto 2018):

η(π) = Es0,a0,···[R0] = Es0,a0,···
[ ∞∑
t=0

γtr(st, at)
]

(4)

where s0 ∼ ρ0, at ∼ π(at|st), st+1 ∼ P (st+1|st, at).
In the following, we first describe the Trust Region Policy

Optimization (TRPO) which maximizes the policy perfor-
mance (η(π)) by optimizing its surrogate objective with on-
policy data. Next, we state the Proximal Policy Optimization
(PPO) which proposes a clipped surrogate objective to avoid
the excessively large policy update in TRPO.
Trust Region Policy Optimization (TRPO). To maximize the
performance objective in Eq. (4), the TRPO method (Schul-
man et al. 2015) uses on-policy data to optimize policies by
maximizing a surrogate objective function subject to a con-
straint on a Kullback-Leibler (KL) divergence:

max
π

Es∼ρπold ,a∼πold

[ π(a|s)
πold(a|s)

Aπold(s, a)
]

(5)

subject to Es∼ρπold

[
DKL

(
πold(·|s)||π(·|s)

)]
≤ δ, (6)

where πold is the current policy, δ denotes the bound,
DKL

(
πold(·|s)||π(·|s)

)
represents the KL deivergence be-

tween πold(·|s) and π(·|s), ρπold denotes the discounted state
distribution starting at initial state s0 and following πold:
ρπold(s) =

∑∞
t=0 γ

tP (st = s|s0, πold) (Sutton et al. 2000).
However, without a constraint, the optimization of the surro-
gate objective function in Eq. (5) would lead to excessively
large policy updates.

Proximal Policy Optimization (PPO). In order to avoid such
a large policy update, Proximal Policy Optimization (PPO)
(Schulman et al. 2017) puts forward a clipped surrogate ob-
jective and optimizes policies by maximizing this clipped
surrogate objective. The clipped surrogate objective pro-
posed in PPO can be expressed as:

LCLIP
PPO = Es∼ρπold ,a∼πold

[
min

( π(a|s)
πold(a|s)

Aπold(s, a),

clip(
π(a|s)
πold(a|s)

, 1− ε, 1 + ε)Aπold(s, a)
)]
,

(7)

where ε is a hyperparameter. Note that clipped surrogate ob-
jective in Eq. (7) can help PPO avoid large policy updates by
penalizing changes to the policy that moves π(a|s)

πold(a|s) away
from 1 (Schulman et al. 2017). However, PPO faces the is-
sue of high sample complexity due to the lack of utilization
of off-policy data, which leads to great demand for on-policy
interaction between agent and environment.

Off-Policy Proximal Policy Optimization
To tackle the sample inefficiency problem in the PPO
method, we propose an Off-Policy Proximal Policy Opti-
mization method (Off-Policy PPO) that employs off-policy
data for policy optimization, as outlined in this section.
Specifically, we first introduce the clipped surrogate objec-
tive using off-policy data in the proposed Off-Policy PPO.
We next clarify the stability of the proposed Off-Policy PPO
by clarifying our method makes an update close to the older
policy, and the degree of this update distance is the same as
that in PPO. Finally, we describe the implementation details
of the proposed Off-Policy PPO.

Clipped Surrogate Objective Using Off-Policy Data
In this section, we describe the proposed clipped surrogate
objective that utilizes off-policy data in Off-Policy PPO. To
do this, we first present the optimization problem that max-
imizes the surrogate objective using off-policy data in Off-
Policy TRPO (Meng et al. 2021). Using this surrogate ob-
jective, we then explain how we derive a clipped surrogate
objective that effectively uses off-policy data while avoiding
large policy updates.

Specifically, the optimization problem which can use off-
policy data in the Off-Policy TRPO (Meng et al. 2021) is:

max
π

Es∼ρµ,a∼µ
[π(a|s)
µ(a|s)

Aπold(s, a)
]

(8)

s.t. D
ρµ,sqrt
KL (µ, πold)D

ρµ,sqrt
KL (πold, π) +D

ρµ
KL(πold, π) ≤ δ,

(9)

where µ represents the behavior policy and
ρµ(s) =

∑∞
t=0 γ

tP (st = s|s0, µ), D
ρµ
KL(πold, π) :=

Es∼ρµ [DKL(πold(·|s) ‖ π(·|s))], D
ρµ,sqrt
KL (µ, πold) :=

Es∼ρµ [
√
DKL(µ(·|s) ‖ πold(·|s))], D

ρµ,sqrt
KL (πold, π) :=

Es∼ρµ [
√
DKL(πold(·|s) ‖ π(·|s))]. However, without the

constraint in Eq. (9), the maximization of the above sur-
rogate objective utilizing off-policy data in Eq. (8) suffers
from an excessively large policy update.
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To address this issue, a straightforward solution is to ap-
ply the clipping strategy from PPO to adjust the surrogate
objective in Eq. (8). To clarify the clipped objective, we be-
gin by presenting the surrogate objective in Eq. (8):

Lµ(π) = Es∼ρµ,a∼µ
[π(a|s)
µ(a|s)

Aπold(s, a)
]
. (10)

With Lµ(π) in Eq. (10), the corresponding clipped surrogate
objective using off-policy data is:

Lµ(π) = Es∼ρµ,a∼µ
[
min
[π(a|s)
µ(a|s)

Aπold(s, a),

clip
(π(a|s)
µ(a|s)

, 1− ε, 1 + ε
)
Aπold(s, a)

]]
.

(11)

Note that in Eq. (11), the policy ratio π(a|s)
µ(a|s) is generally ei-

ther less than 1− ε or greater than 1 + ε. Consequently, the
target policy π(a|s) often remains unchanged and does not
undergo any updates during the optimization process of the
clipped surrogate objective in Eq. (11).

In order to address this issue, we propose a clipped sur-
rogate objective which scales the lower and upper bound
((1− ε), (1 + ε)) in Eq. (11) by a factor of πold(a|s)

µ(a|s) :

LCLIP
Off-Policy PPO(π) = Es∼ρµ,a∼µ

[
min

[
rπ(s, a)Aπold(s, a),

clip
(
rπ(s, a), ls,a, hs,a

)
Aπold(s, a)

]]
,

(12)

where rπ(s, a) = π(a|s)
µ(a|s) , ls,a = πold(a|s)

µ(a|s) (1 − ε), hs,a =
πold(a|s)
µ(a|s) (1 + ε).

Stability Analysis
In this section, we analyze the stability of the proposed Off-
Policy PPO by clarifying our method makes an update close
to the older policy, and the degree of this update distance
is the same as that in PPO. In order to clarify this, we first
describe the optimal policy set in Lemma 1, which maxi-
mizes the proposed clipped objective in Eq. (12). We then
clarify the maximum KL divergence between current policy
πold and the optimal policy πnew in the proposed Off-Policy
PPO is consistent with that in PPO in Theorem 1.

With the surrogate objective in Eq. (12), we denote
Πnew as the optimal policy set maximizing this objective in
Lemma 1. Note that advantage valueAπold(s, a) is simplified
and denoted as A in Lemma 1.
Lemma 1. Πnew={π| for all state and action pair (s, a) that
A < 0, π(a|s) ≤ µ(a|s)ls,a; for all state and action pair
(s, a) that A > 0, π(a|s) ≥ min(µ(a|s)hs,a, 1)}.

Proof. Firstly, we prove that a policy π∗ meeting the condi-
tions in Πnew is the optimal solution maximizing the objec-
tive in Eq. (12). In order to prove this, we need to show that,
given any state and action pair (s, a), the policy π∗ meeting
the condition in Πnew satisfies: Ls,aµ (π∗) ≥ Ls,aµ (π) for any
π. Note that Ls,aµ (π) denotes the surrogate objective given
any (s, a) under the policy π: Ls,aµ (π) = min

[
rπ(s, a)A,

clip
(
rπ(s, a), ls,a, hs,a

)
A
]
.

If A < 0, Ls,aµ (π) could be written as:

Ls,aµ (π) =

{
ls,aA, rπ(s, a) ≤ ls,a
rπ(s, a)A, rπ(s, a) > ls,a.

(13)

Ls,aµ (π∗) can be written as Ls,aµ (π∗) = min
[
rπ∗(s, a)A,

clip
(
rπ∗(s, a), ls,a, hs,a

)
A
]

= ls,aA, where π∗ meeting the
condition in Πnew satisfies π∗(a|s) ≤ µ(a|s)ls,a when A <
0.

Thus, if A < 0, Ls,aµ (π) ≤ ls,aA = Ls,aµ (π∗) for any π.
If A > 0, Ls,aµ (π) could be written as:

Ls,aµ (π) =

{
hs,aA, rπ(s, a) ≥ hs,a
rπ(s, a)A, rπ(s, a) < hs,a.

(14)

Ls,aµ (π∗) can be written as Ls,aµ (π∗) = min
[
rπ∗(s, a)A,

clip
(
rπ∗(s, a), ls,a, hs,a

)
A
]

= hs,aA, where π∗ satisfies
π∗(a|s) ≥ µ(a|s)hs,a when A > 0 , which is due to
that π∗ meeting the conditon in Πnew satisfies π∗(a|s) ≥
min(µ(a|s)hs,a, 1) and π∗(a|s) < 1.

Thus, if A > 0, Ls,aµ (π) ≤ hs,aA = Ls,aµ (π∗) for any π.
Based on such fact, we have proven that a policy π∗ meeting
the conditions in Πnew is the optimal solution.

Secondly, we prove that a policy π0 not meeting condi-
tions in Πnew is not the optimal solution of maximizing the
objective in Eq. (12). In order to prove this, we construct a
policy π∗ satisfying conditions in Πnew. Then, Ls,aµ (π0) ≤
Ls,aµ (π∗) for any state and action pair (s, a). Based on such
fact, we have proven that a policy not meeting the condi-
tions in Πnew is not the optimal solution of maximizing the
objective in Eq. (12).

Finally, combining the above results, we prove that Πnew
described in Lemma 1 contains all the optimal solutions of
maximizing the surrogate objective in Eq. (12).

Based on the optimal policy set Πnew in Lemma 1, we
clarify the degree of the policy update distance in Off-Policy
PPO is the same as that in PPO. Specifically, we demonstrate
that the maximum KL divergence between the new policy
and the old one in our method is equivalent to that in PPO,
as illustrated in Theorem 1.
Theorem 1. Let πOff-Policy PPO

new ∈ Πnew denote the
optimal pilicy in Off-Policy PPO, which achieves
the minimum KL divergence over all optimal poli-
cies, i.e., DKL(πold(·|st), πOff-Policy PPO

new (·|st)) ≤
DKL(πold(·|st), π(·|st)) for π ∈ Πnew at any timestep
t , and let πPPO

new have the similar definition for PPO,
we have maxtDKL(πold(·|st), πOff-Policy PPO

new (·|st)) =
maxtDKL(πold(·|st), πPPO

new (·|st)) for all timestep t.

Proof. In order to simplify the expression in the proof,
we separately denote DKL(πold(·|st), πOff-Policy PPO

new (·|st)),
DKL(πold(·|st), πPPO

new (·|st)) as Dst
KL(πold, π

Off-Policy PPO
new ),

Dst
KL(πold, π

PPO
new ) in the following.

In the proof, we need to prove that
Dst

KL(πold, π
Off-Policy PPO
new ) = Dst

KL(πold, π
PPO
new ) for any

timestep t. Specifically, we prove this in two cases, i.e.,
Aπold(st, at) ≤ 0 and Aπold(st, at) > 0 for any timestep t.
We denoteAπold(st, at) asAt for simplicity in the following.
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In the case At ≤ 0, we prove that
Dst

KL(πold, π
Off-Policy PPO
new ) = Dst

KL(πold, π
PPO
new ). If At ≤ 0,

the optimal policy πOff-Policy PPO
new can be derived by solving

the following constraint optimization problem according to
Lemma 1:

min
π

∑
a

πold(a|st)log
πold(a|st)
π(a|st)

s.t. π(at|st) ≤ µ(at|st)lst,at ,∑
a

π(a|st) = 1,

π(a|st) > 0,

(15)

where at denotes the action at timestep t.
By using the Karush-Kuhn-Tucker (KKT) conditions

(Gordon and Tibshirani 2012), we get:

πOff-Policy PPO
new (a|st) =


πold(a|st)(1− µ(at|st)lst,at)

1− πold(at|st)
, a 6= at

µ(at|st)lst,at , a = at.
(16)

The corresponding KL divergence is

Dst
KL(πold, π

Off-Policy PPO
new )

= (1− πold(at|st))log
1− πold(at|st)

1− πold(at|st)(1− ε)
− πold(at|st)log(1− ε),

(17)

which equals Dst
KL(πold, π

PPO
new ) described in Eq. (26) of ap-

pendix in (Wang et al. 2019) due to the lower bound in PPO
is 1− ε.

In the case At > 0, we prove that
Dst

KL(πold, π
Off-Policy PPO
new ) = Dst

KL(πold, π
PPO
new ). If At > 0,

according to Lemma 1, the constraint optimization problem
is:

min
π

∑
a

πold(a|st)log
πold(a|st)
π(a|st)

s.t. π(at|st) ≥ min(µ(at|st)hst,at , 1),∑
a

π(a|st) = 1,

π(a|st) > 0.

(18)

By using the KKT conditions, we get:

πOff-Policy PPO
new (a|st)

=


πold(a|st)(1−min(µ(at|st)hst,at , 1))

1− πold(at|st)
, a 6= at

min(µ(at|st)hst,at , 1), a = at.
(19)

When At > 0 and µ(at|st)hst,at ≤ 1, the KL divergence is

Dst
KL(πold, π

Off-Policy PPO
new )

= (1− πold(at|st))log
1− πold(at|st)

1− πold(at|st)(1 + ε)

− πold(at|st)log(1 + ε),

(20)

Algorithm 1: Off-Policy PPO

Require: Environment E, trace-decay parameter λ, dis-
count factor γ, learning rate α, trajectory lengthK, replay
memory R, epoch number N , minibatch size M .
Initialize policy network πθ and state value network Vw.
repeat

// Collect data
Collect K transitions during inter-
action with environment S0:K =
{s0, a0, r0, µ(·|s0), · · · , sK , aK , rK , µ(·|sK)} ac-
cording to behavior policy µ.
Add the collected data into replay memory R.

// Update networks
Sample off-policy data T0:K from replay memory R.
Obtain {Vw(sj)}Kj=0 by Vw.
Obtain V-trace target vj = Vw(sj)+δjV +γcj(vj+1−
Vw(sj+1)).
Obtain advantage value {A(sj , aj)}K−1j=0 = {rj +

γvj+1 − Vw(sj)}K−1j=0 .
for epoch=1, 2, · · · , N do

Acquire data D0:K by randomly shuffling T0:K .
for i = 1, 2, · · · ,K/M do

Obtain M minibatch from shuffled data
Di∗M−M :i∗M−1.
Update πθ by maximizing objective in Eq. (12):
θ ← θold + α∇θLCLIP

Off-Policy PPO(πθ).
Update Vw by minimizing the mean squared error
between V-trace target v and state value Vw(s).

end for
end for

until policy πθ converges

which equals Dst
KL(πold, π

PPO
new ) described in Eq. (28) of ap-

pendix in (Wang et al. 2019) due to the upper bound in
PPO is 1 + ε. When At > 0 and µ(at|st)hst,at > 1,
Dst

KL(πold, π
Off-Policy PPO
new ) = +∞ = Dst

KL(πold, π
PPO
new ) (Wang

et al. 2019).
Combining above results on two cases (At ≤ 0 and

At > 0), we have proven Dst
KL(πold, π

Off-Policy PPO
new ) =

Dst
KL(πold, π

PPO
new ) for any timestep t. Based on such fact,

we can conclude that maxtD
st
KL(πold, π

Off-Policy PPO
new ) =

maxtD
st
KL(πold, π

PPO
new ) for all timestep t.

As far, we prove that
maxtDKL(πold(·|st), πOff-Policy PPO

new (·|st)) =
maxtDKL(πold(·|st), πPPO

new (·|st)) in Theorem 1.

Implementation Details
In this section, we introduce the implementation details of
the proposed Off-Policy PPO, which iteratively optimizes
policies by maximizing the proposed clipped surrogate ob-
jective in Eq. (12). Specifically, the whole procedure of the
proposed Off-Policy PPO is described in Algorithm 1.

In Algorithm 1, we first initialize policy network
πθ and state value network Vw, respectively. Us-
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Figure 1: Training curve comparison between the proposed Off-Policy PPO and other state-of-the-art methods.

ing these networks, we then collect K transitions
(S0:K = {s0, a0, r0, µ(·|s0), · · · , sK , aK , rK , µ(·|sK)})
and add these data into memory. Next, we sample off-policy
data (T0:K) from memory R and use these data to update
policy and state value networks.

During the network update procedure, we first use
data T0:K to estimate state values {Vw(sj)}Kj=0 and V-
trace target (Espeholt et al. 2018) vj = Vw(sj) +
δjV + γcj(vj+1 − Vw(sj+1)) where δjV = ρj(rj +

γVw(sj+1) − Vw(sj)), ρj = min(1,
πθold (aj |sj)
µ(aj |sj) ), and

cj = min(1,
πθold (aj |sj)
µ(aj |sj) ). With these values, we next ob-

tain advantage values {A(sj , aj)}K−1j=0 = {rj + γvj+1 −
Vw(sj)}K−1j=0 . Finally, we optimize policy network πθ and
state value network Vw with N epochs. In every epoch,
we shuffle the off-policy data T0:K and obtain the mini-
batch from the shuffled data D0:K . With such minibatch,
we optimize πθ by maximizing objective in Eq. (12): θ ←
θold+α∇θLCLIP

Off-Policy PPO(πθ) and optimize Vw by minimizing
the mean squared error between V-trace target v and Vw(s).

Experiments
In this section, we perform experiments to evaluate the pro-
posed Off-Policy Proximal Policy Optimization (Off-Policy
PPO) on a variety of representative continuous control
tasks. We first introduce the experimental setup which com-
prises networks, hyperparameters, and experimental tasks.
We next compare our method and the state-of-the-art meth-

ods, i.e., TRGPPO (Wang et al. 2019), Soft Actor-Critic
(SAC) (Haarnoja et al. 2018), DDPG (Lillicrap et al. 2016),
SLAC (Lee et al. 2020), Off-Policy TRPO (Meng et al.
2021), TD3 (Fujimoto, Hoof, and Meger 2018), SOP (Wang
et al. 2020), and Trust-PCL (Nachum et al. 2018), to validate
that our method can achieve better or comparable perfor-
mance than these methods. We then study the effectiveness
of our method on using off-policy data by comparing our
method with PPO. Next, we study on KL divergence curves
between our method, PPO, and SAC to evaluate the stabil-
ity of our method in practice. Finally, we study the effec-
tiveness of our method on sample efficiency by comparing
our method to other methods from the aspect of timesteps to
reach a threshold on the continuous control tasks.

Setup
In the experiments, we adopt a policy network and state
value network to separately approximate the Gaussian pol-
icy distribution and the state value. These networks are
multi-layer neural networks comprising two hidden layers
with 64 neurons. We use the Tanh as the activation func-
tion of these networks. For hyperparameters, the trace-decay
parameter λ is 0.95 and the discount factor γ is 0.99. The
length of transitions (K) is set to be 1024. We use the Adam
optimizer with learning rate α = 3 × 10−4. The epoch
number N is 10. The minibatch size M is set to be 32.
Experimental tasks consist of six representative continuous
control tasks from OpenAI Gym (Brockman et al. 2016)
and MuJoCo (Todorov, Erez, and Tassa 2012), which cover
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Figure 2: Training curve comparison between the proposed Off-Policy PPO and PPO during training.

simple and complex tasks: Swimmer, Hopper, HalfCheetah,
Walker2d, Ant, and Humanoid. We adopt a commonly used
version, i.e., v2, for these tasks. The experiments are per-
formed on a GPU server that has four Nvidia RTX 3090.
The results reported in the experiments are averaged over
the top three seeds of ten random seeds. For the implemen-
tations of these compared methods: we use the original im-
plementation codes given by the authors of most state-of-
the-art methods (TRGPPO, SAC, SLAC, Off-Policy TRPO,
TD3, SOP, and Trust-PCL) and we use the implementation
in https://github.com/chainer/chainerrl for DDPG.

Comparison with State-of-the-art Methods
In this section, we compare our method with state-of-the-
art methods, i.e., TRGPPO, SAC, DDPG, SLAC, Off-Policy
TRPO, TD3, SOP, and Trust-PCL, to validate that our
method can outperform these methods on most tasks.

The training curve comparison between our method and
state-of-the-art methods is shown in Figure 1. We observe
that, when compared to other methods, our method requires
fewer timesteps to achieve the same return on the major-
ity of tasks, i.e., Swimmer, Hopper, Walker2d, and Ant.
On HalfCheetah and Humanoid, the proposed Off-Policy
PPO needs fewer timesteps to achieve the same return than
most methods, i.e., TRGPPO, DDPG, SLAC, Off-Policy
TRPO, and Trust-PCL. It can be observed that the final re-
turn achieved by our method is higher or comparable when
compared to other methods on these tasks. Notice that our
method obtains the highest returns among TRGPPO, DDPG,
SLAC, Off-Policy TRPO, and Trust-PCL on HalfCheetah
and Humanoid. Results in Figure 1 illustrate that our method

can surpass these state-of-the-art methods on most tasks.

Study on Using Off-Policy Data
In this section, we study the effectiveness of our method on
using off-policy data by comparing our method using off-
policy data with PPO only using on-policy data.

The results are shown in Figure 2. Note that our method
needs fewer timesteps to achieve the same return when com-
pared to PPO on most tasks and this phenomenon is partic-
ularly evident on complex tasks (Walker2d, Ant, and Hu-
manoid), which is due to that our method can use off-policy
data to optimize policies. We can also note that our method
using off-policy data achieves higher final returns than PPO
only using on-policy data on most tasks. The experimen-
tal results from Figure 2 validate the effectiveness of our
method on using off-policy data.

Study on KL Divergence
In this section, we study on KL divergence by comparing
our method, PPO, and SAC to evaluate the stability of our
method in practice. SAC is chosen to be compared due to
this method is the state-of-the-art off-policy method.

The KL divergence comparison is shown in Figure 3. The
KL divergence reported in Figure 3 denotes KL divergence
between πold and πnew in each policy update in practice. Note
that we choose representative tasks, i.e., Hopper, HalfChee-
tah, and Walker2d, due to their popularity (Todorov, Erez,
and Tassa 2012). From Figure 3, we can observe that the
KL divergence of SAC is larger than these of PPO and Off-
Policy PPO. It is noticeable that the KL divergence of SAC
on Hopper and Walker2d has an increasing trend and that of
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Figure 3: KL divergence comparison among the proposed Off-Policy PPO, PPO, and SAC during training.

Timesteps to reach a threshold (×103)
Tasks PPO TRGPPO SAC DDPG SLAC Off-TRPO TD3 SOP Trust-PCL Our Method
Swimmer 520 340 / / / 810 740 / / 340
Hopper / 440 920 / / / 380 355 / 210
HalfCheetah 140 140 70 / 160 / 45 45 / 70
Walker2d 750 590 700 / / / 285 365 / 220
Ant / 860 680 / / / 455 285 / 310
Humanoid 6800 3400 1000 / / / 950 1200 / 2800

Table 1: Comparison of timesteps to reach a threshold within one million timesteps (except Humanoid with ten million) during
training. The thresholds for these tasks (Swimmer, Hopper, HalfCheetah, Walker2d, Ant, and Humanoid) separately are 90,
3000, 3000, 3000, 3000, and 5000. We denote Off-Policy TRPO as Off-TRPO for short. For each task, the minimum result is
indicated in boldface. / indicates that the method did not reach a threshold within fixed timesteps.

SAC on HalfCheetah has a decreasing trend, which is most
likely due to that large policy updates of SAC on Hopper
and Walker2d mainly exist in the early training stage and
these of SAC on HalfCheetah mainly exist in the late train-
ing stage. From Figure 3, it can be observed that the pro-
posed Off-Policy PPO has nearly the same KL divergence
as PPO during the whole training process. The similar KL
divergence curves between our method and PPO in Figure
3 demonstrate that the proposed Off-Policy PPO does not
harm the stability in practice.

Study on Sample Efficiency
In this section, we study the effectiveness of our method on
sample efficiency by comparing our method and other meth-
ods in terms of timesteps to reach a threshold over training.

The comparison is represented in Table 1. We sep-
arately set the threshold values of Swimmer, Hop-
per, HalfCheetah, Walker2d, Ant, and Humanoid as
90, 3000, 3000, 3000, 3000, 5000, which refer to the thresh-
old values in (Wang et al. 2019). As shown in Table 1, when
compared with other methods, our method requires fewer
or comparable timesteps to reach these thresholds on most
tasks. Note that Off-Policy TRPO did not reach thresholds
within the fixed timesteps on most tasks, which is proba-
bly because the update interval value in this method is rela-
tively large. DDPG and Trust-PCL did not reach thresholds
within the fixed timesteps on most tasks, which is probably

due to that these two methods may need more timesteps dur-
ing training to achieve better performance. The results from
Table 1 validate that our method achieves higher sample ef-
ficiency than other methods on most tasks.

Conclusion and Future Work
In this paper, we propose an Off-Policy Proximal Policy Op-
timization (Off-Policy PPO) method, which improves the
sample efficiency of PPO by utilizing off-policy data. We
provide a novel idea for improving the sample efficiency of
PPO. Specifically, we propose a clipped surrogate objective
using off-policy data, which is based on the surrogate objec-
tive in Off-Policy TRPO. Then, we theoretically clarify the
stability of optimizing the proposed clipped surrogate objec-
tive using off-policy data. Next, we describe the algorithm
of the proposed Off-Policy PPO which iteratively optimizes
policies by maximizing the proposed clipped surrogate ob-
jective in detail. Finally, experimental results on a variety of
domains validate that our method outperforms state-of-the-
art methods on most tasks. These experimental results also
evaluate our method in terms of using off-policy data and
sample efficiency.

Although this algorithm is appealing to sequential-
decision-making problems having difficulty in collecting
data, it is interesting to improve the performance of this al-
gorithm in rare scenarios where the quality of off-policy data
is poor, e.g., πold(·|s)� µ(·|s), in the future work.
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