
HyperJump: Accelerating HyperBand via Risk Modelling

Pedro Mendes1,2, Maria Casimiro1,2, Paolo Romano1, David Garlan2

1 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa
2 Software and Societal Systems Department, Carnegie Mellon University
{pgmendes, mdaloura, dg4d}@andrew.cmu.edu, romano@inesc-id.pt

Abstract

In the literature on hyper-parameter tuning, a number of re-
cent solutions rely on low-fidelity observations (e.g., train-
ing with sub-sampled datasets) in order to efficiently identify
promising configurations to be then tested via high-fidelity
observations (e.g., using the full dataset). Among these, Hy-
perBand is arguably one of the most popular solutions, due to
its efficiency and theoretically provable robustness.
In this work, we introduce HyperJump, a new approach that
builds on HyperBand’s robust search strategy and comple-
ments it with novel model-based risk analysis techniques
that accelerate the search by skipping the evaluation of low
risk configurations, i.e., configurations that are likely to be
eventually discarded by HyperBand. We evaluate HyperJump
on a suite of hyper-parameter optimization problems and
show that it provides over one-order of magnitude speed-ups,
both in sequential and parallel deployments, on a variety of
deep-learning, kernel-based learning and neural architectural
search problems when compared to HyperBand and to several
state-of-the-art optimizers.

Introduction
Hyper-parameter tuning is a crucial phase to optimize the
performance of machine learning (ML) models, which is
notoriously expensive given that it typically implies repeat-
edly training models over large data sets. State-of-the-art so-
lutions address this issue by exploiting cheap, low-fidelity
models (e.g., trained with a fraction of the available data) to
extrapolate the quality of fully trained models.

HyperBand (Li et al. 2018), henceforth referred to as HB,
is one of the most popular solutions in this area. HB is
based upon a randomized search procedure, called Succes-
sive Halving (SH) (Jamieson and Talwalkar 2016), which
operates in stages of fixed “budget” R (e.g., training time
or training set size): at the end of stage i, the best perform-
ing 1/η configurations are selected to be evaluated in stage
i + 1, where they will be allocated η× larger budget (see
the bottom diagram of Fig. 1). By restarting the SH proce-
dure over multiple, so called, brackets using different ini-
tial training budgets, HB provides theoretical guarantees of
convergence to the optimum, incurring negligible compu-
tational overheads and outperforming state-of-the-art opti-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mizers (e.g., based on Bayesian Optimization (BO) (Brochu,
Cora, and de Freitas 2010)) that do not exploit low-fidelity
observations. However, the random nature of HB also inher-
ently limits its efficiency, as shown by recent model-based
multi-fidelity approaches (Falkner, Klein, and Hutter 2018;
Klein et al. 2017).

We introduce HyperJump (HJ), a novel hyper-parameter
optimization method that builds upon HB’s robust strategy
and accelerates it via an innovative, model-based technique.
The idea at the basis of HJ is to “jump” (i.e., skip either
partially or entirely) some of HB’s stages (see the top dia-
gram of Fig. 1). HJ exploits, in a synergistic way, three new
mechanisms to minimize the risks due to jumps, while max-
imizing the attainable gains by favoring earlier jumps:
• Expected Accuracy Reduction (EAR) — a novel mod-

elling technique to predict the risk of jumping. The EAR
exploits the model’s uncertainty in predicting the qual-
ity of untested configurations as a basis to estimate the
expected reduction in the accuracy between (i) the best
configuration included in the stage reached after a jump
and (ii) the best configuration discarded due to the jump.

• A criterion for selecting the configurations to include in
the HB stage targeted by a jump, which aims to minimize
the jump’s risk. This is a combinatorial problem1, which
we tackle via a lightweight heuristic that has logarithmic
complexity with respect to the number of configurations
in the target stage of the jump.

• A method for prioritizing the testing of configurations
that aims to promote future jumps, by favouring the sam-
pling of configurations that are expected to yield the
highest risk reduction for future jumps.

We conduct an ablation study that sheds light on the
contributions of the various mechanisms of HJ on its per-
formance, and compare HJ with a number of state-of-the-
art optimizers (Li et al. 2018; Klein et al. 2017; Snoek,
Larochelle, and P. Adams 2012; Falkner, Klein, and Hutter
2018; Li et al. 2020) on both hyper-parameter optimization
and neural architecture search (Dong et al. 2021) problems,
for sequential and parallel deployments. We show that HJ
provides up to over one-order of magnitude speed-ups on
deep-learning and kernel-based learning problems.

1The number of candidate configuration sets for a jump to a
stage with k configurations from one with n configurations is

(
n
k

)
.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9143

Figure 1: Search methodologies of HJ (top) and HB (bottom). The figure illustrates the 3 key mechanisms of HJ: i) skipping
HB stages based on a risk model; ii) determining the order in which configurations are test so as to minimize the risk of future
jumps (this is depicted in the figure through the different set of configurations explored by each approach); iii) dynamically
updating the risk threshold based on the quality of the current incumbent.

Related Work
Existing hyper-parameter techniques can be coarsely classi-
fied along two dimensions: i) whether they use model-free
or model-based approaches; ii) whether they exploit solely
high-fidelity evaluations or also multi-fidelity ones.

As already mentioned, HB is arguably one of the most
prominent model-free approaches. Its random nature, com-
bined with its SH-based search algorithm, makes it not only
provably robust, but also efficiently parallelizable (Li et al.
2018; Falkner, Klein, and Hutter 2018; Li et al. 2020) and,
overall, very competitive and lightweight.

As for the model-based approaches, the recent lit-
erature has been dominated by Bayesian Optimization
(BO) (Brochu, Cora, and de Freitas 2010) methods. BO re-
lies on modelling techniques (e.g., Gaussian Processes (Ras-
mussen and Williams 2006), Random Forests (Breiman
2001) or Tree Parzen Estimator (Bergstra et al. 2011)) to
build a surrogate model of the function to be optimized. The
surrogate model is used to guide the selection of the con-
figurations to test via an acquisition function that tackles
the exploration-exploitation dilemma. A common choice is
the Expected Improvement (EI) (Mockus, Tiesis, and Zilin-
skas 1978), which exploits information of the model’s un-
certainty on an untested configuration c to estimate by how
much c is expected to improve over the current incumbent.

SMAC (Hutter, Hoos, and Leyton-Brown 2011) and
MTBO (Swersky, Snoek, and Adams 2013) were probably
the first to adapt the BO framework to take advantage of low-
fidelity evaluations, obtained using training sets of smaller
dimensions. This idea was extended in Fabolas (Klein et al.
2017), whose acquisition function factors in the trade-off
between the cost of testing a configuration and the knowl-
edge it may reveal about the optimum. A related body of
work (Swersky, Snoek, and Adams 2014; Domhan, Sprin-

genberg, and Hutter 2015; Dai et al. 2019; Golovin et al.
2017; Takeno et al. 2020; Kandasamy et al. 2016; Sen, Kan-
dasamy, and Shakkottai 2018; Poloczek, Wang, and Frazier
2017; Song, Chen, and Yue 2019) uses models (typically
GPs) to predict the loss of neural networks as a function of
both the hyper-parameters and the training iterations. Mod-
els are then used to extrapolate the full-training loss and can-
cel under-performing training runs.

From a methodological perspective, the fundamental dif-
ference between HJ and this body of model-based works lies
in the type of problems that are addressed by their modelling
techniques. Since HJ exploits HB’s search strategy, the mod-
els employed in HJ are meant to address a different problem
than the above mentioned model-based approaches, namely
quantifying the risk of discarding high quality configura-
tions among the ones currently being tested in the current
HB’s stage. In other words, HJ’s models are used to reason
on a relatively small search space, i.e., the configurations in
the current stage. Conversely, the previously mentioned ap-
proaches, which do not take advantage of HB’s search al-
gorithm, employ models to estimate configuration’s qual-
ity across the whole search space. Further, the modelling
techniques used in some of these works (Klein et al. 2017)
require computationally expensive implementations, which
can impose significant overhead especially when the cost of
evaluating configurations is relatively cheap, e.g., when us-
ing low-fidelity observations.

By taking advantage of the (theoretically provable) ro-
bustness of HB, which HJ accelerates in a risk-aware fashion
via model-driven techniques, we argue that HJ fuses the best
of both worlds: it preserves HB’s robustness while acceler-
ating it by more than one order of magnitude via the use of
lightweight, yet effective, modelling techniques (as we will
show experimentally in a later section).

9144

The works more closely related to HJ are recent ap-
proaches, e.g., (Falkner, Klein, and Hutter 2018; Wang, Xu,
and Wang 2018; Bertrand et al. 2017) that extend HB with
BO, or evolutionary search (Awad, Mallik, and Hutter 2021),
to warm start it, i.e., to select (a fraction of) the configura-
tions to include in a new HB bracket. This mechanism is
complementary to the key novel idea exploited by HJ to ac-
celerate HB, i.e., short-cutting the SH process by skipping
to later SH stages in low risk scenarios. In fact, HJ incorpo-
rates a BO-based warm starting mechanism and it would be
straightforward to incorporate alternative approaches (e.g.,
based on evolutionary search (Awad, Mallik, and Hutter
2021)). Also, when compared with BOHB (Falkner, Klein,
and Hutter 2018), which warm starts HB via BO, HJ pro-
vides more than one order of magnitude speed-ups.

Recently, ASHA (Li et al. 2020) proposed an optimized
parallelization strategy for HB that aims at avoiding strug-
gling effects. Later, we discuss how HJ’s approach could
be applied to ASHA. Further, our experimental study shows
that HJ (despite using HB’s original parallelization scheme)
still significantly outperforms ASHA.

HyperJump
As already mentioned, an HB bracket is composed of up to
Smax stages, where Smax = ⌊logη(R)⌋. R is the maximum
“budget” allocated to the evaluation of a hyper-parameter
configuration and η is an exponential factor (typically 2
or 3) that controls the increase/decrease of the allocated
budget/number of tested configurations in two consecutive
stages of the same bracket.

The pseudo-code in Alg. 1 overviews the various mech-
anisms employed by HJ to accelerate a single HB bracket
composed of S < Smax stages. The bracket’s initial stage
allocates a budget b, where b = Rη−(S−1), as prescribed by
HB. HJ leverages 2 main mechanisms to accelerate the exe-
cution of an HB bracket, which are encapsulated in the func-
tions EVALUATE JUMP RISK and NEXT CONFIG TO TEST.

EVALUATE JUMP RISK is executed within HJ’s inner loop
(Alg. 1, line 6), to decide whether to stop testing configu-
rations in the current stage and jump to a later stage. This
function (detail in the next section) takes as input the cur-
rent stage, s, and the configurations already and still to be
tested, T and U . It returns the pair ⟨target,S⟩ where target
denotes the stage to jump to (in which case target ̸= s) and
S the selected configurations for the target stage.

If the risk of jumping is deemed too high, HJ contin-
ues testing configurations in the current stage. Unlike HB,
which uses a random order of exploration, HJ prioritizes the
order of exploration via the NEXT CONF TO TEST function
(Alg. 1, line 11). This function seeks to identify a configu-
ration whose evaluation will lead to a large reduction of the
risk of jumping, so as to favor earlier jumps and enhance the
efficiency of HJ. We discuss how we implement this func-
tion in later sections. After testing configuration c in budget
bηs and measuring its accuracy acc, we update the models
used to predict the accuracy of untested configurations (with
different budgets).

Finally, GET CONFIGS FOR BRACKET (Alg. 1, line 1) en-

Algorithm 1: Pseudo-code for a HJ bracket consisting of S
stages, with budget b for the initial stage.

1: Set⟨Config⟩ C = GET CONFIGS FOR BRACKET()
▷ Model-driven bracket warmstart (Suppl. Mat Sec. 6)

2: Set⟨Config⟩ T = ∅; Set⟨Config⟩U = C;
▷ T and U contain the tested/untested configs, resp.

3: for s ∈ {0, . . . , S-1} do ▷ s denotes the current stage
4: bool jump = false;

5: while U ̸= ∅ do
▷ Test configs. in curr. stage, or jump to a future stage

6: ⟨target, S⟩ = EVALUATE JUMP RISK(s, T, U)
▷ HJ risk-analysis (Sec. Deciding Whether to Jump)

7: if target ̸= s then ▷ Jump to target stage
8: s = target; T = U = ∅; C = S ; jump = true;
9: break;

10: else
11: c = NEXT CONF TO TEST(U, T, s);

▷ Next selected config. minimizes future
risk (Sec. Reducing the Risk of Jumping by Prioritizing
the Evaluation Order)

12: acc = evaluate config(c,bηs)
▷ Measure config. c with budget bηs

▷ and return its accuracy
13: T = T ∪ {c}; U = U \ {c}
14: update model(⟨c, bηs, acc⟩)
15: end if
16: end while

17: if ¬jump then
▷ If HJ did not trigger a jump by the end of the stage,

▷ use HB’s policy
18: U = C = topK(C, |C|η−1)

▷ Test top 1/|η|% configs. in next stage
19: end if
20: end for

capsulates the model-driven warm starting procedure, which
selects the configurations to include in a new bracket. As
mentioned, this idea was already explored in prior works,
e.g., BOHB (Falkner, Klein, and Hutter 2018), so we detail
its implementation in the supplemental material (Mendes
et al. 2021), along with the description of other previously
published optimizations that we incorporated in HJ (e.g., re-
suming training of configurations previously on smaller bud-
gets (Swersky, Snoek, and Adams 2014)). The supplemental
material includes also an analysis of HJ’s algorithmic com-
plexity (Sec. 7).

Deciding Whether to Jump
We address the problem of deciding whether to adopt HB’s
default policy or skip some, or even all, of the future stages
of the current bracket by decomposing it into three simpler
sub-problems: 1) modelling the risk of jumping from the
current stage to the next stage while retaining an arbitrary

9145

subset S of the configurations C in the current stage; 2) iden-
tifying “good” candidates for the subset of configurations to
retain after a jump from stage s to stage s + 1, i.e., config-
urations that, if included in the target stage of the jump, re-
duce the risk of jumping; 3) generalizing the risk modelling
to jumps that skip an arbitrary number of stages. Next, we
discuss how we address each sub-problem.

Firstly, HJ’s risk analysis methodology relies on GP-
based models to estimate the accuracy of a configuration c in
a given budget. As in recent works, e.g., (Klein et al. 2017,
2020; Mendes et al. 2020), we include in the feature space
of the GP models not only the hyper-parameters’ space, but
also the budget (so as to enable inter-budget extrapolation).
Further, analogously to, e.g., (Klein et al. 2017; Mendes
et al. 2020), we employ a custom kernel that encodes the
expectation that the loss function has an exponential decay
with larger budgets along with a generic Matérn 5/2 kernel
that is used to capture relations among the hyper-parameters.

1. Modelling the Risk of 1-Hop Jumps. Let us start by
discussing how we model the risk of jumping from a source
(current) stage s to a target stage t that is the immediate suc-
cessor of s (t=s+1). Consider C the configurations in s;
T and U the tested/untested configurations in s, resp., and
S and D the subset of configurations in C that are select-
ed/discarded, resp., when jumping to stage t. Our modelling
approach is based on the observation that short-cutting HB’s
search process and jumping to the next stage exposes the risk
of discarding the configuration that achieves maximum ac-
curacy in the current stage (and that may turn out to improve
the current incumbent when tested in full-budget). This risk
can be modelled as the difference between two random vari-
ables defined as the maximum accuracy of the configura-
tions in the set of discarded D and selected S configurations
in stage s and budget bηs, resp.:

AD
s = max

c∈D
A(c, bηs), AS

s = max
c∈S

A(c, bηs)

having denoted with A(ci, bη
s) the accuracy of a configura-

tion ci using budget bηs. From a mathematical standpoint,
we only require A to be finite, so that the maximum and
difference operators are defined. So, one may use arbitrary
accuracy metrics as long as they match this assumption, e.g.,
unbounded but finite metrics like negative log likelihood.

One can then quantify the “absolute” risk of a jump from
stage s to stage s+1, which we call Expected Accuracy Re-
duction (EAR) (Eq. (1)), as the expected value of the differ-
ence between these two variables, restricted to the scenarios
in which configurations with higher accuracy are discarded
due to jumping (i.e., AD −AS > 0):

EARs+1
s (D,S)=

∫ +∞

−∞
P
(
AD

s −AS
s =x

)
max{AD

s −AS
s , 0}dx

=

∫ +∞

0

xP
(
AD

s −AS
s =x

)
dx

(1)
The EAR is computed as follows. The configurations in D

and S are either untested or already tested. In the former
case, we model their accuracy via a Gaussian distribution
(given by the GP predictors); in the latter case, we model

their accuracy either as a Dirac function (assuming noise-
free measurements, which is HJ’s default policy) or via a
Gaussian distribution (whose variance can be used to model
noisy measurements). In any case, the PDF and CDF of AD

and AS can be computed in closed form. Yet, computing
the difference between these two random variables requires
solving a convolution that cannot be determined analytically.
Fortunately, both this convolution and the outer integral in
Eq. (1) can be computed in a few msecs using open source
numerical libraries.Additional details on the EAR’s compu-
tation are provided in the supplemental material.

Next, we introduce the rEAR (relative EAR), which is ob-
tained by normalizing the EAR by the loss of the current in-
cumbent, noted l∗: rEARs+1

s (D,S) = EARs+1
s (D,S)/l∗.

The rEAR estimates the “relative” risk of a jump and can be
interpreted as the percentage of the maximum potential for
improvement that is expected to be sacrificed by a jump. In
HJ, we consider a jump “safe” if its corresponding rEAR is
below a threshold λ, whose default value we set to 10%. As
we show in the supplemental material, in practical settings,
HJ has robust performances for a large range of (reasonable)
values of λ. One advantage of using the rEAR, instead of
the EAR as risk metric is that the rEAR allows for adapting
the risk propensity of HJ’s logic, making HJ progressively
less risk prone as the optimization process evolves and new
incumbents are found.

2. Identifying the Safest Set of Configurations for a
Jump. Determining the safest subset of configurations to
include when jumping to the next stage via naive, enumer-
ative methods would have prohibitive costs, as it would re-
quire evaluating the rEAR for all possible subsets S of size
|C|/η of the configurations in the current stage s. For in-
stance, assuming η = 3, |C|= 81 and that less than half of
the configurations in C were tested, the number of distinct
target sets for a jump of a single stage is

(
81
27

)
≈ 2E21.

We tackle this problem by introducing an efficient, model-
driven heuristic that recommends a total of 1+2⌊logη|S|⌋
candidates for S (see Alg. 2). The first candidate set eval-
uated by HJ, denoted K, is obtained by considering the top
|S| configurations ranked based on their actual or predicted
accuracy depending on whether tested or not (line 4).

Next, using K as a template, we generate ⌊logη|S|⌋ alter-
native sets by replacing the worst |S|/ηi (1≤ i ≤ ⌊logη|S|⌋)
configurations in K with the next best configurations in
C \K, ranked based on their (predicted/measured) accuracy
(lines 7-12). Next (lines 15-20), we generate ⌊logη|S|⌋ al-
ternative candidate sets by exploiting model uncertainty as
follows: we identify the worst |S|/ηi configurations in K,
ranked according to their lower confidence bound, and re-
place them with the configurations in C \ K that have the
highest confidence (we use a confidence bound of 90%).
Intuitively, this way we remove from the reference set K
the configurations that are likely to have lower accuracy if
the model overestimated their mean. These are replaced by
the configurations that, although having lower (average) pre-
dicted accuracy, are prone to achieve high accuracy, given
the model’s uncertainty. Refer to the supplemental material
for diagrams illustrating the behavior of this algorithm.

9146

Algorithm 2: Pseudo-code of the logic used to determine the
sets of configurations to consider when jumping from stage
s to stage s+ 1 (function GET CANDIDATES FOR S())

1: Set⟨Set⟨Config⟩⟩ GET CANDIDATES FOR S(Set⟨Config⟩
Tested, Set⟨Config⟩ Untested)

2: Set⟨Set⟨Config⟩⟩O ← ∅
▷ Set of selected safest sets to be returned

3: Set⟨Config⟩ C ← Tested ∪ Untested
▷ C stores all the configs in current stage

4: Set⟨Config⟩ K ← C.sortAccuracy().getTop(|C|/η)
▷ K stores the configs. with best accuracy

5: Set⟨Config⟩ E ← C \ K
▷ E stores the configs. with worse accuracy

6: O.add(K) ▷ O has 1+2⌊logη|K|⌋ recommended sets

7: for i in [1 ≤ i ≤ ⌊logη|K|⌋ do
▷ Generate sets based on accuracy

8: Set X ← clone(K)
▷ Drop the |K|/ηi configs with worse accuracy

9: X.removeBottom(|K|/ηi)
▷ Add the |K|/ηi configs with best accuracy from C\K

10: X.add(E.getTop(|K|/ηi))
11: O.add(X)
12: end for

13: K ← K.sortLCB() ▷ sort configs in K by LCB
14: E ← E.sortUCB() ▷ sort configs in E by UCB
15: for i in [1 ≤ i ≤ ⌊logη|K|⌋ do

▷ Generate sets based on lower/upper conf. bounds
16: Set X ← clone(K)

▷ Drop the |K|/ηi configs. with worse LCB
17: X.removeBottom(|K|/ηi)

▷ Add the |K|/ηi configs with best UCB from C \ K
18: X.add(E.getTop(|K|/ηi))
19: O.add(X)
20: end for
21: return O

3. Generalizing to Multi-Hop Jumps. Alg. 3 shows how
to compute the rEAR of a jump that skips j >1 stages from
the current stage s. This is done in an iterative fashion by
computing the rEAR for jumps from stage s + i to stage
s+ i+1 (i ∈ [1, j−1]) and accumulating the corresponding
rEARs to yield the rEAR of the jump.

At each iteration, the candidate sets for the set S of
configurations to be retained after the jump are obtained
via the GET CANDIDATES FOR S function. Among these
1+2⌊logη|S|⌋ candidate sets, the one with minimum risk
is identified. The process is repeated replacing C with the
candidate set that minimizes the risk of the current jump
(line 12), until λ is exceeded, thus seeking to maximize the
“jump length”, i.e., the number of stages that can be safely
skipped. As such, the computation of the risk of a jump from
a stage with |C| configurations and that skips j>1 stages re-

Algorithm 3: Pseudo-code for the EVALUATE JUMP RISK
function.

1: ⟨int s, Set⟨Config⟩S⟩ EVALUATE JUMP RISK(int s,
Set⟨Config⟩ Tested, Set⟨Config⟩ Untested)

2: rEAR = 0; S = ∅; C = Tested ∪ Untested.

3: while s < S do ▷ S: maximum number of stages
4: Set⟨Set⟨Config⟩⟩ cand = ∅
5: cand = GET CANDITATES FOR S(Tested, Untested)
6: minRisk = minX∈cand rEARs+1

s (X , C \ X)
7: S = argminX∈cand rEARs+1

s (X , C \ X)
▷ S: Set that minimizes the risk

8: if rEAR + minRisk > λ then
▷ If risk threshold is not exceeded,

▷ return the target stage and the set of selected configs.
9: return ⟨ s , S⟩

10: else ▷ Try to extend the jump by one hop
11: rEAR += minRisk; s++
12: C = Untested = S; Tested = ∅
13: end if

14: end while
▷ Jump all stages in current bracket and start a new one

15: return ⟨ s, ∅⟩

quiresO(j(1+logη|C|/ η)) rEAR evaluations. This ensures
the scalability of HJ’s risk analysis methodology even when
considering jumps that can skip a large number of stages.

Reducing the Risk of Jumping by Prioritizing the
Evaluation Order
HJ also uses a model-based approach to determine in which
order to evaluate the configurations of a stage. This mech-
anism aims to enhance HJ’s efficiency by prioritizing the
evaluation of configurations that are expected to yield the
largest reduction of risk for future jumps. The literature
on look-ahead non-myopic BO (Yue and Kontar 2020;
Casimiro et al. 2020; Lam, Willcox, and Wolpert 2016; Lam
and Willcox 2017) has already investigated several tech-
niques aimed at predicting the impact of future exploration
steps on model-driven optimizers. These approaches often
impose large computational overheads, due to the need to
perform expensive “simulations”, e.g., retraining the mod-
els to simulate alternative evaluation outcomes, and to their
ambition to maximize long-term rewards (in contrast to the
greedy nature of typical BO approaches).

Motivated by our design goal of keeping HJ efficient and
scalable, we opted for a greedy heuristic that allows for es-
timating the impact of evaluating an untested configuration
in a light-weight fashion, e.g., avoiding retraining the GP
models. More in detail, we simulate the evaluation of an
untested configuration c by including c in the set of tested
configurations and considering its accuracy to be the one
predicted via the GP model’s posterior mean. Next, we exe-
cute the EVALUATE JUMP RISK function to obtain the up-

9147

dated risk of jumping and the corresponding target stage.
We repeat this procedure for all the untested configurations
in the stage, and select, as the next to test, the one that en-
ables the longest safest jump (determined via the EVALU-
ATE JUMP RISK function). The pseudo-code of this mecha-
nism can be found in the supplemental material.

Preserving HyperBand’s Robustness
An appealing theoretical property of HB is that its explo-
ration policy is guaranteed to be at most a constant factor
slower than random search. In order to preserve this prop-
erty, HJ exploits two mechanisms: i) with probability pNJ

HJ is forced not to jump and abide by the original SH/HB
logic; ii) when selecting the configurations to include in a
bracket, a fraction pU is selected uniformly at random (as
in HB) and not using the model. The former mechanism
ensures that, regardless of how model mispredictions affect
HJ’s policy, there exists a non-null probability that HJ will
not deviate from HB’s policy (by jumping) in any of the
brackets that it executes. The latter mechanism, originally
proposed in BOHB (Falkner, Klein, and Hutter 2018), en-
sures that, independently of the model’s behavior, every con-
figuration has a non-null probability of being included in a
bracket. We adopt as default value for pU the same used by
BOHB, i.e., 0.3, and use the same value also for pNJ .

Parallelizing HyperJump
Existing approaches for parallelizing HB can be classi-
fied as synchronous or asynchronous. In synchronous ap-
proaches (Li et al. 2018; Falkner, Klein, and Hutter 2018),
the size of the stages abides by HB’s rules and parallelization
can be achieved at the level of stage, bracket, and iteration.
Conversely, asynchronous methods (ASHA (Li et al. 2020)
or Ray Tune (Liaw et al. 2018)) consider a single logical
bracket that promotes a configuration c to the next stage iff
c is in the top η−1 configurations tested in the current stage.

HJ can be straightforwardly parallelized using syn-
chronous strategies. If parallelization is pursued at the level
of brackets or iterations, each worker simply runs an inde-
pendent instance of HJ that shares the same model and train-
ing set (so to share the knowledge acquired by the parallel
HJ instances). When parallelizing the testing of the config-
urations in the same stage, as soon as a worker completes
the testing of a configuration, the model can be updated and
the risk of jumping computed. If a jump is performed, the
workers that are still evaluating configurations in the cur-
rent stage can either be immediately interrupted or allowed
to complete their current evaluation. In our implementation,
we opted for the former option, which has the advantage of
maximizing the workers that are immediately available for
testing configurations in the stage targeted by the jump.

In more detail, our implementation adopts the same par-
allelization strategy of BOHB, i.e., parallelizing by stage
and activating a new parallel bracket in the presence of idle
workers, with one exception. We prevent starting a new par-
allel bracket if there are idle workers during the first bracket.
This, in fact, would reduce the available computational re-
sources to complete the first bracket and, consequently, lead

to a likely increase of the latency to recommend the first in-
cumbent (i.e., to test a full budget configuration).

Investigating how to employ HJ in combination with
asynchronous versions of HB is out of the scope of this pa-
per. Yet, we argue that the key ideas at the basis of HJ could
still be applied in this context, opening up an interesting line
of future research. For instance, in ASHA, one could use a
model-based approach, similar to the one employed by HJ,
to: (i) promote “prematurely” configurations that the model
predicts to be promising; or (ii) use the model to delay pro-
motions of less promising configurations.

Evaluation
This section evaluates HJ both in terms of the quality of the
recommended configurations and of its optimization time.
We compare HJ against 6 state-of-the-art optimizers using
9 benchmarks and considering both sequential and parallel
deployments. We also perform an ablation study to dive into
the performance of HJ’s different components.

Benchmarks. Our first benchmark, NATS-Bench (Dong
et al. 2021), optimizes the topology of a NN, fixing the num-
ber of layers and hyper-parameters, using 2 different data
sets (ImageNet-16-120 (Russakovsky et al. 2015) and Ci-
far100). The search space encompasses 6 dimensions (each
one represents a connection between two layers and have 5
possible topologies). This benchmark contains an exhaustive
evaluation of all possible 15625 configurations.

We also use LIBSVM (Chang and Lin 2011) on the
Covertype data set (Dua and Graff 2017), which we sub-
sampled by≈ 5× due to time and hardware constraints. The
considered hyper-parameters are the kernel (linear, polyno-
mial, RBF, and sigmoid), γ, and C. In this case, we could
not exhaustively explore off-line the hyper-parameter space,
so the optimum is unknown.

Additional details on the above benchmarks can be
found in the supplemental material. Further, the supple-
mental material reports additional results using 2 alterna-
tive data-sets (Cifar10 (Krizhevsky and Hinton 2009), 2017
CCF-BDCI (Ronneberger, Fischer, and Brox 2015), and
MNIST (Deng 2012)) and different models (such as Light
UNET (Ronneberger, Fischer, and Brox 2015), CNN).

Baselines and Experimental Setup. We compare HJ
against six optimizers: HB, BOHB, ASHA, Fabolas, stan-
dard BO with EI, and Random Search (RS). The last two
techniques (EI and RS) evaluate configurations only with
the full-budget. The implementation of HJ extends the pub-
licly available code of BOHB, which also provides an imple-
mentation of HB. ASHA was implemented via the Ray-Tune
framework (Liaw et al. 2018). Fabolas was evaluated using
its publicly available implementation.

We use the default parameters of BOHB and Fabolas.
Similarly to HB, we set the parameter η to 3, and for fair-
ness, when comparing HJ, HB, BOHB, and ASHA, we con-
figure them to use the same η value. We use the default value
of 10% for the threshold λ for HJ and include in the supple-
mental material a study on the sensitivity to the tuning of λ.
We use number of epochs as budget for NATS and training

9148

(a) NATS ImageNet (1 worker) (b) NATS Cifar100 (1 worker)

(c) SVM Covertype (1 worker) (d) NATS ImageNet (32 workers)

(e) NATS Cifar100 (32 workers) (f) Ablation Study ImageNet (1 worker)

Figure 2: Comparison of HJ against other state-of-the-art optimizers in sequential and parallel deployments. Figure (f) reports
an ablation study. The dashed horizontal line indicates the optimum (when it is known). Additional results are reported in the
supplementary material.

set size for LIBSVM. The reported results represent the av-
erage of 30 independent runs. We have made available the
implementation of HJ and the benchmarks used 2.

Sequential Deployment. Figure 2 reports the average loss
(i.e., the test error rate) and corresponding standard devia-
tion in the shaded areas as a function of the wall clock time
(i.e., training and recommendation time). We start by ana-
lyzing the plots in the first rows, which refer to a sequential

2https://github.com/pedrogbmendes/HyperJump

deployment scenario, i.e., a single worker is available for
evaluating configurations. We do not include ASHA in this
study, since ASHA is designed for parallel deployments.

In all the benchmarks, HJ provides significant speed-ups
with respect to all the baselines to identify near optimal con-
figurations. The largest speed-ups for recommending near
optimal solutions are achieved with ImageNet and Cifar100,
where the gains of HJ w.r.t. the best baseline are around 20×
to 32×, respectively. Using SVM, the HJ speed-ups to iden-
tify good quality configuration (i.e., loss around 0.08) are

9149

approx. 7× w.r.t. to the most competitive baselines, namely
HB and BOHB. Note that HJ outperforms these two base-
lines also in the final stages of the optimization: HJ’s final
loss is 0.066±8.9E-4, whereas HB and BOHB’s final losses
are 0.072±3.6E-3 and 0.72±3.5E-3, respectively.

In our benchmarks, BOHB provides marginal (ImageNet
and Cifar100) or no (SVM) benefits when compared to HB.
As shown in the supplemental material (Section 13), this is
imputable to the limited accuracy of the modelling approach
used by BOHB (based on TPE and on a model per budget)
which, albeit fast, is not very effective in identifying high
quality configurations to include in a new bracket. Fabolas’
performance, conversely, is hindered by its large recommen-
dation times, which are already on the order of a few min-
utes in the early stages of the optimization and grow more
than linearly: consequently, Fabolas suffers from large over-
heads especially with benchmarks that have shorter train-
ing times, such as SVM. Lastly, the limitations of EI, which
only uses full-budget sampling, are notably clear with SVM.
Here, training times grow more than linearly with the train-
ing set size (which is the budget used by the multi-fidelity
optimizers), thus amplifying the speed-ups achievable by us-
ing low-fidelity observations w.r.t. the other benchmarks.

Ablation Study. Figure 2f shows an ablation study aimed
at quantifying the contributions of the various mechanisms
employed by HJ. We report the performance achieved on Im-
ageNet by four HJ variants obtained by disabling each of the
following mechanisms: (i) the jumping logic (HJ-no-Jump)
(see supplemental material). (ii) prioritizing the evaluation
order of configurations (HJ-no-Ord); (iii) the pause-resume
training(Swersky, Snoek, and Adams 2014) and opportunis-
tic evaluation optimizations (Liaw et al. 2018), see Sec. 6
of the supplemental material (HJ-no-Opt); (iv) the bracket
warm-starting (Wang, Xu, and Wang 2018) logic, see Sec. 6
of the supplemental material (HJ-no-BW).

We include in the plot also HB, which can be regarded as a
variant of HJ from which we disabled all of the above mech-
anisms. This data shows that the last two of these mecha-
nisms, which correspond to previously published optimiza-
tions of HB, have a similar and small impact on the perfor-
mance of HJ. Conversely, the largest performance penalty
is observed when disabling jumping. This confirms that this
mechanism is indeed the one that contributes the most to
HJ’s efficiency. Finally, this plot also shows the relevance of
the heuristics that determines the order of configuration test-
ing in a bracket described in the section called ”Reducing
the Risk of Jumping by Prioritizing the Evaluation Order”.

Parallel Deployment. Figures 2d and 2e report the re-
sults when using a pool of 32 workers with NATS-Bench
with ImageNet and Cifar100. The supplemental material in-
cludes the plots for the other benchmarks, as well as for a
scenario with 8 workers. These data show that HJ achieves
gains similar to the ones previously observed compared to
HB and BOHB. With respect to the other baselines (and to
HJ), ASHA adopts a more efficient parallelization scheme.
Thus, the gains of HJ w.r.t. ASHA are slightly reduced. Still,
HJ achieves speed-ups of up to approximately 6× to recom-
mend near-optimal configurations. This confirms HJ’s com-

petitiveness even when compared with HB variants that use
optimized parallelization schemes.

Recommendation Overhead. We conclude by reporting
experimental data regarding the computational overhead in-
curred by HJ to recommend the next configuration to test.
The average recommendation time for HJ across all bench-
marks is approx. 1.08 secs. This time includes model train-
ing, determining whether to jump and the next configuration
to test in the current stage, and, overall, confirms the com-
putational efficiency of the proposed approach.

Conclusions
This paper introduced HyperJump, a new approach that
complements HyperBand’s robust search strategy and ac-
celerates it by skipping low risk evaluations. HJ’s efficiency
hinges on the synergistic use of several innovative risk mod-
elling techniques and of a number of pragmatic optimiza-
tions. We show that HJ provides over one-order of magni-
tude speed-ups on a variety of kernel-based and deep learn-
ing problems when compared to HB as well as to a number
of state-of-the-art optimizers.

Acknowledgments
Support for this research was provided by Fundação para
a Ciência e a Tecnologı́a (Portuguese Foundation for Sci-
ence and Technology) and ANI through the Carnegie Mel-
lon Portugal Program under Grants SFRH/BD/151470/2021
and SFRH/BD/150643/2020, and via projects with refer-
ences UIDB/50021/2020, POCI-01-0247-FEDER-045915,
C645008882-00000055.PRR, POCI-01-0247-FEDER-0459
07, and CPCA/A00/7387/2020.

References
Awad, N. H.; Mallik, N.; and Hutter, F. 2021. DEHB: Evo-
lutionary Hyberband for Scalable, Robust and Efficient Hy-
perparameter Optimization. In Zhou, Z., ed., Proceedings
of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, 2147–2153. ijcai.org.
Bergstra, J.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011. Al-
gorithms for Hyper-Parameter Optimization. In Advances in
Neural Information Processing Systems, volume 24, 2546–
2554. Curran Associates, Inc.
Bertrand, H.; Ardon, R.; Perrot, M.; and Bloch, I. 2017. Hy-
perparameter optimization of deep neural networks: com-
bining Hperband with Bayesian model selection. In Pro-
ceedings of Conférence sur l’Apprentissage Automatique.
Breiman, L. 2001. Random Forests. Machine Learning,
45(1).
Brochu, E.; Cora, V. M.; and de Freitas, N. 2010. A Tu-
torial on Bayesian Optimization of Expensive Cost Func-
tions, with Application to Active User Modeling and Hi-
erarchical Reinforcement Learning. Technical Report
arXiv:1012.2599.
Casimiro, M.; Didona, D.; Romano, P.; Rodrigues, L.;
Zwanepoel, W.; and Garlan, D. 2020. Lynceus: Cost-
efficient Tuning and Provisioning of Data Analytic Jobs. In

9150

Proceedings 20th IEEE International Conference on Dis-
tributed Computing Systems.
Chang, C.-C.; and Lin, C.-J. 2011. LIBSVM: A Library for
Support Vector Machines. ACM Transactions on Intelligent
Systems and Technology, 2.
Dai, Z.; Yu, H.; Low, B. K. H.; and Jaillet, P. 2019. Bayesian
Optimization Meets Bayesian Optimal Stopping. In Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97.
Deng, L. 2012. The MNIST database of handwritten digit
images for machine learning research [Best of the Web]. In
IEEE Signal Processing Magazine, volume 29. IEEE.
Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speed-
ing up Automatic Hyperparameter Optimization of Deep
Neural Networks by Extrapolation of Learning Curves. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence.
Dong, X.; Liu, L.; Musial, K.; and Gabrys, B. 2021. NATS-
Bench: Benchmarking NAS Algorithms for Architecture
Topology and Size. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI). doi:10.1109/TPAMI.
2021.3054824.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. http://archive.ics.uci.edu/ml. University of California,
Irvine, School of Information and Computer Sciences.
Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust
and Efficient Hyperparameter Optimization at Scale. In Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80.
Golovin, D.; Solnik, B.; Moitra, S.; Kochanski, G.; Karro,
J.; and Sculley, D. 2017. Google Vizier: A Service for
Black-Box Optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Proceedings of the 5th International Con-
ference on Learning and Intelligent Optimization, 507–523.
Jamieson, K.; and Talwalkar, A. 2016. Non-stochastic best
arm identification and hyperparameter optimization. In Pro-
ceedings of the 19th International Conference on Artificial
Intelligence and Statistics.
Kandasamy, K.; Dasarathy, G.; Oliva, J. B.; Schneider, J.;
and Poczos, B. 2016. Gaussian Process Bandit Optimisation
with Multi-fidelity Evaluations. In Lee, D.; Sugiyama, M.;
Luxburg, U.; Guyon, I.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 29. Curran
Associates, Inc.
Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; and Hutter,
F. 2017. Fast Bayesian Optimization of Machine Learning
Hyperparameters on Large Datasets. In Proceedings of the
20th International Conference on Artificial Intelligence and
Statistics, volume 54.
Klein, A.; Tiao, L. C.; Lienart, T.; Archambeau, C.; and
Seeger, M. 2020. Model-based asynchronous hyperpa-
rameter and neural architecture search. arXiv preprint
arXiv:2003.10865.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto.
Lam, R.; and Willcox, K. 2017. Lookahead Bayesian Opti-
mization with Inequality Constraints. In Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems.
Lam, R. R.; Willcox, K. E.; and Wolpert, D. H. 2016.
Bayesian Optimization with a Finite Budget: An Approx-
imate Dynamic Programming Approach. In Proceedings
of the 29th Neural Information Processing Systems Confer-
ence.
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and
Talwalkar, A. 2018. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. Journal of Machine
Learning Research, 18: 1–52.
Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Ben-
tzur, J.; Hardt, M.; Recht, B.; and Talwalkar, A. 2020. A
System for Massively Parallel Hyperparameter Tuning. In
Dhillon, I.; Papailiopoulos, D.; and Sze, V., eds., Proceed-
ings of Machine Learning and Systems, volume 2, 230–246.
Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez,
J. E.; and Stoica, I. 2018. Tune: A Research Platform for
Distributed Model Selection and Training. arXiv preprint
arXiv:1807.05118.
Mendes, P.; Casimiro, M.; Romano, P.; and Garlan, D.
2020. TrimTuner: Efficient Optimization of Machine Learn-
ing Jobs in the Cloud via Sub-Sampling. In 2020 28th Inter-
national Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems. IEEE.
Mendes, P.; Casimiro, M.; Romano, P.; and Garlan, D. 2021.
HyperJump: Accelerating HyperBand via Risk Modelling.
CoRR, abs/2108.02479.
Mockus, J.; Tiesis, V.; and Zilinskas, A. 1978. The Appli-
cation of Bayesian Methods for Seeking the Extremum. In
Toward Global Optimization, volume 2, 117–128. Elsevier.
Poloczek, M.; Wang, J.; and Frazier, P. 2017. Multi-
Information Source Optimization. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Rasmussen, C. E.; and Williams, C. K. 2006. Gaussian Pro-
cesses for Machine Learning. Cambridge, MA, USA: MIT
Press.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015. Springer International Pub-
lishing.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV), 115(3): 211–252.
Sen, R.; Kandasamy, K.; and Shakkottai, S. 2018. Multi-
Fidelity Black-Box Optimization with Hierarchical Parti-
tions. In Dy, J.; and Krause, A., eds., Proceedings of the 35th

9151

International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, 4538–4547.
PMLR.
Snoek, J.; Larochelle, H.; and P. Adams, R. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems, volume 2.
Song, J.; Chen, Y.; and Yue, Y. 2019. A General Framework
for Multi-fidelity Bayesian Optimization with Gaussian Pro-
cesses. In Chaudhuri, K.; and Sugiyama, M., eds., Proceed-
ings of the Twenty-Second International Conference on Ar-
tificial Intelligence and Statistics, volume 89 of Proceedings
of Machine Learning Research, 3158–3167. PMLR.
Swersky, K.; Snoek, J.; and Adams, R. P. 2013. Multi-task
Bayesian Optimization. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing Sys-
tems, volume 2.
Swersky, K.; Snoek, J.; and Adams, R. P. 2014. Freeze-thaw
bayesian optimization. arXiv preprint arXiv:1406.3896.
Takeno, S.; Fukuoka, H.; Tsukada, Y.; Koyama, T.; Shiga,
M.; Takeuchi, I.; and Karasuyama, M. 2020. Multi-fidelity
Bayesian Optimization with Max-value Entropy Search and
its Parallelization. In III, H. D.; and Singh, A., eds., Pro-
ceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, 9334–9345. PMLR.
Wang, J.; Xu, J.; and Wang, X. 2018. Combination
of Hyperband and Bayesian Optimization for Hyperpa-
rameter Optimization in Deep Learning. arXiv preprint
arXiv:1406.3896.
Yue, X.; and Kontar, R. A. 2020. Why Non-myopic
Bayesian Optimization is Promising and How Far Should
We Look-ahead? A Study via Rollout. arXiv preprint
arXiv:1911.01004.

9152

