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Abstract
There is a significant need for principled uncertainty rea-
soning in machine learning systems as they are increasingly
deployed in safety-critical domains. A new approach with
uncertainty-aware regression-based neural networks (NNs),
based on learning evidential distributions for aleatoric and
epistemic uncertainties, shows promise over traditional de-
terministic methods and typical Bayesian NNs, notably with
the capabilities to disentangle aleatoric and epistemic uncer-
tainties. Despite some empirical success of Deep Evidential
Regression (DER), there are important gaps in the mathemat-
ical foundation that raise the question of why the proposed
technique seemingly works. We detail the theoretical short-
comings and analyze the performance on synthetic and real-
world data sets, showing that Deep Evidential Regression is
a heuristic rather than an exact uncertainty quantification. We
go on to discuss corrections and redefinitions of how aleatoric
and epistemic uncertainties should be extracted from NNs.

1 Introduction
Using neural networks (NNs) for regression tasks is one of
the main applications of modern machine learning. Given a
dataset of (x⃗i, y⃗i) pairs, the typical objective is to train a NN
f⃗i ≡ f⃗(x⃗i|ω) w.r.t. ω such that a given loss L(y⃗i, f⃗i) ≡
Li(ω) becomes minimal for each (x⃗i, y⃗i) pair. Traditional
regression-based NNs are designed to output the regression
target, a.k.a., the prediction for y⃗i, directly which allows a
subsequent minimization, for example of the sum of squares:

min
ω

∑
i

Li(ω) = min
ω

∑
i

(
y⃗i − f⃗(x⃗i|ω)

)2

. (1)

Technically, this is nothing but a fit of a model f⃗ , param-
eterized with ω, w.r.t.

∑
i Li to data. As with any fit, the

model has to find a balance between being too specific (over-
fitting) and being too general (under-fitting). In machine
learning this balance is typically evaluated by analyzing the
trained model on a separated part of the given data which
was not seen during training. In practice, no model will be
able to describe this evaluation sample perfectly and devia-
tions can be categorized into two groups: aleatoric and epis-
temic uncertainties (Hora 1996; Kiureghian and Ditlevsen
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2009; Kendall and Gal 2017; Hüllermeier and Waegeman
2021). The former quantifies system stochasticity such as
observation and process noise, and the latter is model-based
or subjective uncertainty due to limited data.

The field has largely focused on Bayesian NN approaches
that use Monte Carlo sampling and other approximate infer-
ence techniques to estimate uncertainty of deep NN mod-
els. A different approach to uncertainty-aware NNs may be
useful to more efficiency quantify, and also to disentangle,
the several types of uncertainties: Deep Evidential Regres-
sion (DER) aims to simultaneously predict both uncertainty
types in a single forward pass without sampling or utiliza-
tion of out-of-distribution data, based on learning eviden-
tial distributions for aleatoric and epistemic uncertainties
(Amini et al. 2020). Yet only with simple empirical demon-
strations on univariate regression tasks, this technique has
already been applied and recommended in medical and other
safety critical applications (Liu et al. 2021; Soleimany et al.
2021; Cai et al. 2021; Chen, Bromuri, and van Eekelen 2021;
Singh et al. 2022; Petek et al. 2022; Li and Liu 2021). With
an alternative derivation and experimentation, we identify
theoretical shortcomings that do not justify the empirical re-
sults let alone the assumed reliability in practice — it can
be vital to understand to what degree the uncertainty estima-
tions are trustworthy.

In the following, we resolve the supposedly unreasonable
effectiveness and relate it to convergence patterns of the pre-
dicted uncertainties. Furthermore, we propose re-definitions
of the original approach and discuss generalizations.

1.1 Disentangling Aleatoric and Epistemic
Uncertainties

The residual between the genuine and the predicted value
of an imperfect model can be disentangled into an aleatoric
and epistemic contribution. In theory, the former is related to
the noise level in the data and, typically, does not depend on
the sample size. In contrast, the latter scales with the sample
size, and either allows the model to be pulled towards the ob-
served distribution if the sample size is increased in this re-
gion, or allows the fit of a more complex model and thus de-
creasing under-fitting in general. In practice, however, both
types can be non-trivially correlated and disentangling both
without relying on a-priori assumptions is often ambiguous.
Even if both types are uncorrelated, observing a single de-
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viation from the ground truth δ(x) at point x, linear error
propagation, δ2(x) = u2

al(x) + u2
ep(x), shows that a sepa-

ration of the aleatoric ual(x) and the epistemic uncertainty
uep(x) is impossible to do point-wise without assuming a
certain level of smoothness in x and prior knowledge about
at least one of the uncertainties.

For now take the simplest setting: univariate, point-
wise normal distributed data, i.e., (xi, yi + ϵi) where the
noise, ϵi ∼ N (0, σ2

i ), is heteroscedastic, i.e., not neces-
sarily equally distributed for all xi and our goal is to pre-
dict the mean and the noise level depending on the input
xi. In a Bayesian framework, this corresponds to taking
a normal-inverse-gamma distribution, NIG(µ, σ2|m) with
m = (γ, ν, α, β), as the conjugated prior of a normal dis-
tribution with unknown mean µ and variance σ2. Integrat-
ing out the nuisance parameters, Bayesian inference yields
that the likelihood of an observation yi given m follows a
t-distribution with 2αi degrees of freedom (Gelman et al.
2013; Amini et al. 2020),

LNIG
i = St2αi

(
yi

∣∣∣∣γi, βi(1 + νi)

νiαi

)
. (2)

If m is known, it is reasonable to define the prediction of yi
as E[µi] = γi, and the aleatoric and epistemic uncertainties
ual and uep, respectively, as:

u2
al ≡ E[σ2

i ] = βi/(αi − 1) u2
ep ≡ var[µi] = E[σ2

i ]/νi .

(3)

1.2 State of the Art and Its Issues
One may learn Eq. (2) from data by minimizing

Li(ω) = − logLNIG
i (ω) + λ |yi − γi|Φ︸ ︷︷ ︸

LR
i (ω)

, (4)

where m = NN(ω) is given by a NN, λ is a tunable hy-
perparameter, and Φ = 2νi + αi is the total evidence. The
definition of the total evidence is motivated by the fact that
taking a NIG distribution as a conjugated prior corresponds
to assuming prior knowledge about the mean and the vari-
ance extracted from νi virtual measurements of the former
and 2αi virtual measurements for the latter (Gelman et al.
2013). For consistency we have adopted the definition of Φ
as shown above but note that using Φ = νi + 2αi would ac-
tually be better motivated as pointed out first by Meinert and
Lavin (2021) and already used as such in Liu et al. (2021).

The issue with the existing approach, as proposed by
Amini et al. (2020) and shown in Eq. (4), is that minimiz-
ing Li(ω) w.r.t. ω is insufficient to find m. This is obvious
by noting the overparameterization in Eq. (2) that is not re-
solved by adding the regularization LR

i (ω), and can also be
shown with some mathematical rigor by finding

∂

∂νi
logLNIG

i = 0 if βi(νi) ∝
1

1 + ν−1
i

, (5)

to reveal that logLNIG
i does not depend on νi and thus

Li(ω) is minimized, independent of the data, by sending
νi → 0 and, for instance, following a path along βi(νi) =

1/(1 + ν−1
i ). Clearly, a loss function which can be mini-

mized independent of data is non-informative for m and
thus cannot be used for evaluating Eqs. (3). The underly-
ing reason for this overparameterization, which allows for
choosing a path which minimizes the loss independent of
data, is the fact that LNIG

i is by definition a projection of the
NIG distribution and thus unable to unfold all of its degrees
of freedom unambiguously. This ambiguity stays unresolved
due to a missing additional constraint for βi in the regular-
izer LR

i .
Curiously, if applied to synthetic and real-world data,

the aforementioned approach does yield reasonable results
(Amini et al. 2020; Liu et al. 2021; Cai et al. 2021;
Soleimany et al. 2021; Singh et al. 2022; Petek et al. 2022;
Li and Liu 2021). In particular, areas with a low data den-
sity during training that result in a large model uncertainty
during inference are identified with large values in the epis-
temic uncertainty if estimated according to Eq. (3) and low
values elsewhere.

2 The Unreasonable Effectiveness
In this section we show why Deep Evidential Regression
(DER) can yield reasonable results in practice despite its
issues — i.e., why it is unreasonably effective — and we
identify and redefine the key components of extracting dis-
entangled uncertainties.

2.1 Measuring Aleatoric Uncertainty by
Convergence Speed

In order to analyze the convergence behavior of DER we set
up the same synthetic experiment that was used by Amini
et al. (2020). A shallow, fully connected NN with a single
input and four output neurons, (θi,1, θi,2, θi,3, θi,4), is used
to predict for a given xi the parameters of a NIG distribution
m = (γi, νi, αi, βi),

γi = θi,1, νi = softplus(θi,2),

αi = softplus(θi,3) + 1, βi = softplus(θi,4),
(6)

where softplus(•) = log(1+exp(•)) enforces non-negative
values.

A data sample is generated by generating 1k pairs
(xi, x

3
i + ϵi) with ϵi ∼ N (0, σ2 = 9) and xi uniformly dis-

tributed on [−4,+4]. The NN is trained with λ = 0.01 and
the Adam optimizer with an initial learning rate of 5× 10−4

for 500 epochs. We repeat this experiment 50 times with dif-
ferent seeds for the initialization of the NN. The results of
multiple independently trained NNs are shown in the Ap-
pendix (see Sec. 6) and reproduce the findings of Amini et al.
(2020) despite a certain variance among the samples: On the
larger interval x ∈ [−7,+7], the model predicts a large epis-
temic uncertainty in regions where it has never seen data
during training.

In Fig. 1a we show the convergence of γi(x) in time and
find that the convergence speed differs across the interval in
x. Large residuals induce large gradients for νi in the regu-
larizer,

∂LR
i

∂νi
∝ λ|yi − γi|, (7)
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(a) Evolution of residual. (b) Evolution of ν w.r.t. residual. (c) Evolution of factors of wSt.

Figure 1: Evolution of parameters during training. In total, 50 independently trained samples are averaged in each epoch. Dots
are placed every 10 epochs to indicate the speed and direction of the convergence. (Left) Evolution of the residual γi − x3

for all x ∈ [−4, 4]. (Center) Evolution of νi w.r.t. residual at three different x-positions. (Right) Evolution of
√
βi/αi and√

νi/(1 + νi at different x positions. The ratio of the quantities is the estimation of the width of a t-distribution, wSt. A
constant width wSt = 3 is indicate by a dashed line and referred to in the text as the valley.

and thus push νi towards smaller values faster, as shown
in Fig. 1b. Our studies show that residuals of the very first
epochs predominantly define how small νi will eventually
become since the magnitude of its gradient gradual de-
creases the better the model gets.

In the Appendix we show the corresponding analysis for
αi and find a similar behavior, however, here a second gra-
dient from logLNIG

i is conflicting with the gradient of the
regularizer which slows down convergence and eventually
stop at values αi ≈ 2 for −4 < xi < +4.

In summary: our first key insight to understand DER is
that the point-wise convergence speed of the model is used
as a proxy for the epistemic uncertainty, which arguably
stretches the canonical definition. As a consequence, the nu-
merical values of the epistemic uncertainty cannot be inter-
preted as canonical Bayesian or Frequentist uncertainty es-
timations and only relative changes are conclusive. In that
sense, DER is a heuristic that has proven to yield decent re-
sults in practice.

2.2 How To Not Extend DER
It is tempting to generalize this approach and use it for ar-
bitrary functions f(x⃗|ω), that sufficiently describes the data
distribution, by adding a regularizer to the NLL part of the
loss function,

Li(ω, νi) = − log f(ω) + λ|y⃗i − γ⃗i|νi. (8)

However, empirically we find that optimizers, especially
those that include momentum, will rapidly push νi ≈ 0
within machine precision even for very small coupling con-
stants λ, rendering the proxy ∼ 1/

√
νi useless. Contrarily,

in Fig. 1b we see that a fast drop is stopped in DER after a
few epochs. The reason for this can be seen in Fig. 1c where
we show the evolution of

√
βi/αi and

√
νi/(1 + νi) which

together are the width wSt of the t-distribution,

wSt =

√
βi(1 + νi)

αiνi
. (9)

It is straightforward to show that for large deviations, the
gradients for γi and wSt push both towards larger values and
are therefore aligned with decreasing values for νi. This is
the second key insight to understand DER: Optimizers are
confused by the non-trivial correlation1 in wSt with the pa-
rameters βi and αi which effectively defers the minimization
goal induced by the regularizer. Once the gradient of wSt has
flipped sign, it depends on the coupling constant λ how stiff
νi is kept until the correct width, wSt ≈ 3, is reached. Only
then, the optimizer starts to follow the valley in the loss func-
tion (dashed line in Fig. 1c) that simultaneously preserves
wSt but decreases the total evidence. Here, the residual is
already small which limits the gradient induced by the regu-
larizer.

2.3 Redefining Proxies for Aleatoric and
Epistemic Uncertainties

We have shown above that the derivation of Eq. (4) does not
help to obtain the correct aleatoric or epistemic uncertain-
ties in a strict Bayesian sense. The fact that also the aleatoric
prediction is spoiled follows directly by the insights we have
described previously, but can also be seen visually by plot-
ting ual =

√
E[σ2

i ] as a function of x: In Fig. 2a the pre-
diction of the aleatoric uncertainty materializes as a peaking
structure with a peak height of roughly 0.7, whereas the data
were generated with a constant standard deviation of σ = 3
for all x. Unsurprisingly and in accordance with Fig. 1c, this
value is fitted in good approximation by the width of the
t-distribution, wSt, due to the close resemblance between a
t-distribution and a normal distribution. Intuitively, the stan-
dard deviation of a normal distribution, approximated by the
wSt, can be interpreted as the aleatoric uncertainty of the data

1Jacobian based optimizers cannot exactly follow curved gradi-
ents as induced by non-trivial correlations but approximately fol-
low with piece-wise linear segments. As a consequence, optimizers
overshoot and do not accumulate large momentum in these scenar-
ios.
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(a) SOTA (b) Proposed (c) Alternative

Figure 2: We propose a redefinition of the aleatoric and epistemic uncertainty. (Left) The prediction for both uncertainties
is shown using the SOTA definitions after training the NN for 500 epochs. The training is repeated with 50 different seeds.
(Center) Results of the same NN but the uncertainties are estimated by our proposed definition in Eq. (10). Note that most
of the characteristic features of the epistemic uncertainty is shifted into the aleatoric uncertainty by our redefinition. (Right)
Results of using the modified loss in Eq. (12).

and we therefore propose to redefine Eq. (3) accordingly.
Doing so unveils that the plateau between −4 < x < +4
of E[σ2

i ] was mainly a characteristic feature of the aleatoric
and not the epistemic uncertainty! In fact, it is reasonable to
adopt the previous relation between aleatoric and epistemic
uncertainty and redefine the latter as 1/

√
νi as shown in

Fig. 2b, which makes our proposed proxies for the aleatoric
uncertainty u′

al and the epistemic uncertainty u′
ep:

u′
al ≡ wSt =

√
βi(1 + νi)

αiνi
u′

ep ≡
uep

ual
=

1
√
νi

. (10)

Finally, we note that scaling the gradient of νi by the mag-
nitude of the residual, regions with a high noise level also
tend to contribute large gradients. A possibility to disentan-
gle this aleatoric contribution is to normalize the residual
with wSt,

Li(ω) = − logLNIG
i (ω) + λ

∣∣∣∣yi − γi
wSt

∣∣∣∣p Φ. (11)

Most importantly, this inhibits the convergence for large, yet
insignificant residuals in terms of the associated aleatoric
uncertainty, in particular when the fit has reached the val-
ley.

For the synthetic example (xi, x
3
i + ϵi), we test the pro-

posed change with p = {1, 2} and do not find any signifi-
cant deviations w.r.t. the original formulation of the regular-
izer. This is in good agreement with our expectation since
in this example the variance of ϵi is constant over the gen-
erated sample. However, in Sec. 3.1 we test our proposed
loss function on a data set with varying noise level and
find that Eq. (11) more effectively strips this aleatoric com-
ponent from the predicted epistemic uncertainty than DER
with Eq. (4).

2.4 Generalization and Its Limitations
In the Bayesian framework the parameter αi is associated
with the number of virtual measurements encoded in the

prior. In the limit αi → ∞, the t-distribution with 2αi de-
grees of freedom becomes the normal distribution that was
used for generating the synthetic data. Naı̈vely, one would
therefore expect this number to be large at places with high
model accuracy and data density, but, as we have eluded be-
fore, we find values αi ≈ 2 instead. In practice, this dis-
crepancy causes a small offset between wSt and the genuine
standard deviation of the noise level. Also, we find it note-
worthy to mention that even if the data were genuinely dis-
tributed according to the t-distribution, the strong correla-
tion of αi and wSt makes a clean extraction with a fitting
approach challenging.

This observation motivates an extension of the mean-
variance estimation by Nix and Weigend (1994) as a gen-
eralization of DER:2 The likelihood of the t-distribution is
replaced with a normal distribution N (yi|γi, σ2

i = βi/νi)
where βi is used to slow down the convergence of νi.

Using our ansatz in Eq. (11) with p = 2, the alternative
loss functions reads

L′
i = log σ2

i + (1 + λνi)
(yi − γi)

2

σ2
i

. (12)

Similarly, other data distributions, such as a Poisson or a
Log-normal distribution, could be adopted by replacing the
PDF of the normal distribution accordingly. Clearly, this
generalization only affects the aleatoric uncertainty estima-
tion whereas the proxy for the epistemic uncertainty remains
the same. It is therefore pivotal to analyze, if the separation
of the uncertainty types by stripping αi from the equation
preserves the good properties we have witnessed before.

We take our previous example3 and use the modified loss
function here. We use the same NN, ignore θi,3, and train it
50 times with λ = 2 and a learning rate of 5× 10−3 for 500
epochs. The uncertainty predictions shown in Fig. 2c look
similar, yet the sample variance is significantly higher.

2Unlike Nix and Weigend (1994), we learn all parameters si-
multaneously.

3We also have used Eq. (12) for our example in Sec. 3.1.
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This is what we finally coin the unreasonable effective-
ness of DER. Defining the total evidence by two, rather than
a single parameter, keeps the optimizer sufficiently busy dur-
ing optimization and prevents a too fast convergence, thus
reducing the dependency to the random initialization of νi
and αi. Furthermore, coupling αi non-trivially in the NLL
part of the loss function stabilizes the convergence even
more. This comes by the price of a bias due to the approxi-
mation of the standard deviation of the noise level with the
width of a t-distribution. For most applications the smaller
sampling variance should offset this disadvantage, though.

3 Experiments
3.1 Binary Pulse
The original formulation of DER uses the residual |yi − γi|
to scale the gradients of the total evidence Φ. Apparently,
this approach works fine if the variance of the noise level is
constant for all training data. If this is not the case, though,
parts of the aleatoric uncertainty leak asymmetrically into
the estimation of the epistemic uncertainty. We demonstrate
this with a simple synthetic data sample (xi, yi + ϵi) with a
point-wise normal distributed noise ϵi ∼ N (0, σ2

i ) and

yi =

{
1 if |xi − .5| < .0025

0 else
σ2
i =

{
10−4 if xi < .5

10−2 else.
(13)

We sample 1k data points and train the same shallow NN
used previously, trained with λ = 0.01 and a learning rate
of 1 × 10−3 for 600 epochs. The data distribution and the
corresponding predictions of the NN are shown in Fig. 3a.

The predicted uncertainties according to Eqs. (10) when
trained with Eq. (4) and Eq. (12) are shown in Fig. 3b and
Fig. 3c, respectively.

The synthetic data sample was chosen such that the model
significantly under-fits the peak region and we expect to
see a large epistemic uncertainty here. Obviously, also the
aleatoric uncertainty is pulled toward the peak in this region
which is reasonable since large values of σ2

i indeed improve
the total loss if the deviation is large. More importantly, we
see that with our modified version not only the aleatoric un-
certainty prediction is better but also the epistemic uncer-
tainty is symmetric, despite a certain sampling variance we
have already witnessed before.

This example points towards a useful interpretation of u′
al

and u′
ep from Eqs. (10), in particular if paired with the modi-

fied loss (12): The former is the point-wise prediction of the
standard deviation of an additive, normal distributed noise
source in the data, and the latter indicates when the estima-
tion of the former is vague.

3.2 Monocular Depth Estimation
Finally, we reevaluate the performance of DER on the same,
high-dimensional task of depth estimation that was used in
the prior art. The training set consists of over 27k RGB-to-
depth image pairs of indoor scenes from the NYU Depth v2
dataset (Silberman et al. 2012). We use the scripts4 for train-

4https://github.com/aamini/evidential-deep-learning, git com-
mit hash: d1d8e39

ing and testing provided by Amini et al. (2020), and only
replace the actual estimation of uep by applying the patches
printed in the Appendix.

Following Kendall and Gal (2017); Kuleshov, Fenner, and
Ermon (2018); Amini et al. (2020), we show in Fig. 4a how
DER performs as pixels with uncertainty greater than cer-
tain thresholds are removed when the uncertainty is pre-
dicted by uep, u′

ep or u′
al. In full agreement with our pre-

vious findings, e.g., as shown in Fig. 2, our redefinition of
the epistemic uncertainty, uep, shifts a significant part into
the aleatoric uncertainty, u′

al. The same behavior is seen
in the calibration curves5 shown in Fig. 4b. Our redefined
proxy for the epistemic uncertainty, u′

ep, appears less helpful
whereas uep ≈ u′

al in good approximation.
Since this is a complex data set we can only speculate

about the reason for the apparent effectiveness of estimating
epistemic uncertainty with a proxy for aleatoric uncertainty:
Still, in our previous experiments we already saw and de-
scribed the phenomenon that the width of the t-distribution
(or, similarly, the standard deviation of a normal distribu-
tion) tends to massively overshoot if the genuine model un-
certainty is large. In our experiments this overshooting was
much larger than the genuine noise level of the data, hence,
macroscopically and only if the genuine aleatoric uncer-
tainty is sufficiently small, u′

al indeed is a proxy for the epis-
temic uncertainty.

To verify our assumption we replace the loss function
with Eq. (12) and set λ = 0, and obtain the canoni-
cal NLL of a normal distribution as discussed by Nix and
Weigend (1994). The results of using the standard devia-
tion of the normal distribution after 26k and 45k iterations as
the proxy for the epistemic uncertainty are shown in Figs. 4
and Fig. 4c. We observe a shift of a well-calibrated aleatoric
proxy towards a less well calibrated, yet more powerful sep-
arator of in- and out-of-distribution data and anticipate that a
similar transformation also leverages the good performance
of DER in this task.

4 Conclusion and Outlook
Deep Evidential Regression (DER) is frequently used in the
field as a tool to disentangle aleatoric and epistemic uncer-
tainties. We theoretically showed that the representation of
the uncertainties is over parametrized making the efficiency
of the DER seam almost unreasonable. Using synthetic data,
we demystified this unreasonable effectiveness of DER and
related it to the convergence patterns of the learned uncer-
tainty representations during the training process. We also
demonstrated that the estimation of the aleatoric uncertainty
as used in the prior art yields quantitatively and qualitatively
wrong results which brings us to the conclusion that wSt does
not disentangle aleatoric and epistemic uncertainties, how-
ever, it represents a reasonable proxy of the later in practice.

5For each predicted µi and σi, the inverse CDF of a normal dis-
tribution N (µi, σ

2
i ) is used to get the upper boundary of a confi-

dence interval. The fraction of all predictions below this value is the
observed CL. See the work of Kendall and Gal (2017); Kuleshov,
Fenner, and Ermon (2018) for more details.
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(a) Data and prediction. (b) SOTA (c) Proposed

Figure 3: Results of the binary pulse experiment. (Left) The averaged prediction γi for our synthetic data sample as described
in Eqs. (13). (Center) Estimations of the aleatoric (blue) and epistemic (orange) uncertainty using a regularizer proportional to
the residual as used in the prior art. (Right) Uncertainty estimation using a normalized residual as proposed in Eq. (12).

(a) Prediction CL vs. observed error. (b) Uncertainty calibration. (c) Violin plots of the entropy.

Figure 4: (Left) Relationship between prediction CL and observed error. (Center) Model uncertainty calibration if uep is replaced
with u′

ep or u′
al. A strong inverse trend for the former is desired. An ideal calibration is when the expected and the observed

CL match. In addition, we also show the results of training a NLL of a normal distribution and using its standard deviation, σ,
after 26k and 45k iterations. (Right) Violin plots of the entropy, log(2πσ2)/2, where σ = {uep, u

′
al, σ26k, σ45k} is the respective

prediction of the epistemic uncertainty. We compare the results of in-distribution data (ID) and out-of-distribution data (OOD)
where the latter were not part of the training. The OOD data are taken from Huang et al. (2018).

In our experiments with monocular depth estimation, we
showed that the estimation of the epistemic uncertainty in
the prior art (Amini et al. 2020) is nearly equivalent to fitting
the width of the t-distribution, wSt, a quantity that is, naı̈vely,
tightly coupled with the aleatoric uncertainty, missing the
main disentanglement goal.

As a main result of this work we show that the behavior of
DER can be understood with a fit of a Gaussian NLL, albeit,
DER defers convergence speed such that wSt becomes al-
most unreasonably effective. Practitioners should treat DER
more as a heuristic than an exact uncertainty quantification
and carefully validate its predictions, while using the redef-
initions and investigative studies we described here for dis-
entangling uncertainties in NNs.

However, our results are negative in the following sense:
Although helpful in understanding the genuine meaning of
DER predictions, we cannot fundamentally fix the under-
lying issue and deliver what was promised in the work of
Amini et al. (2020). Instead, we like to motivate to investi-
gate, given a specific application, whether it is worthwhile to

strive for a precise epistemic uncertainty in the first place: As
pointed out by Bengs, Hüllermeier, and Waegeman (2022),
epistemic uncertainty is difficult to quantify objectively, be-
cause, unlike aleatoric uncertainty, epistemic uncertainty is
not a property of the data or the data-generating process, and
there is nothing like a ground truth epistemic uncertainty. If
the consequence of a large epistemic uncertainty is to reject
a model decision entirely and to fall back to, e.g., human
supervision, the nominal value of the predicted uncertainty
becomes less important and heuristics, such as DER, that do
not require OOD data during training to supervise instances
of high uncertainty, are actually still highly valuable.

More drastically, our findings of Sec. 1.2 that a projec-
tion cannot be used to unfold all degrees of freedom un-
ambiguously might hint toward a similar fundamental prob-
lem that was reported recently by Bengs, Hüllermeier, and
Waegeman (2022); Hüllermeier (2022). As a consequence,
trying to exactly disentangle different types of uncertainties
with second-order learners with purely loss-based methods
(e.g., evidential NNs) might be impossible and the Bayesian
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derivation of Eq. (2) is one way to prove it.
Finally, our observation of convergence speed as a proxy

might circumvent the general problem with second-order
learners and purely loss-based approaches that were studied
by Bengs, Hüllermeier, and Waegeman (2022). Indeed, the
convergence history can extract valuable information and,
in a sense, does scale with the amount of information shown
as labeled data during each epoch of a training sequence.
Hypothetically, our observation could be extended in future
works to improve uncertainty prediction for regression but
also for classification tasks and other related fields.

5 Related Work
Our work builds on the prior art (Amini et al. 2020) for un-
certainty estimation with evidential neural networks and the
technical report of Meinert and Lavin (2021), and more gen-
erally on the advancing area of uncertainty reasoning in deep
learning.

In recent years there have been many explorations into
Bayesian approaches to deep learning (Kendall and Gal
2017; Neal 1996; Guo et al. 2017; Wilson et al. 2016; Hafner
et al. 2019; Ovadia et al. 2010; Izmailov et al. 2019; See-
dat and Kanan 2020). The key observation is that neural
networks are typically underspecified by the data, thus dif-
ferent settings of the parameters correspond to a diverse
variety of compelling explanations for the data — i.e., a
deep learning posterior consists of high performing mod-
els which make meaningfully different predictions on test
data, as demonstrated by Izmailov et al. (2019); Garipov
et al. (2018); Zolna, Geras, and Cho (2020). This underspec-
ification by NNs makes Bayesian inference, and by corol-
lary uncertainty estimation, particularly compelling for deep
learning. Bayesian deep learning aims to compute a distri-
bution over the model parameters during training in order
to quantify uncertainties, such that the posterior is avail-
able for uncertainty estimation and model calibration (Guo
et al. 2017). With Bayesian NNs that have thousands and
millions of parameters this posterior is intractable, so im-
plementations largely focus on several approximate meth-
ods for Bayesian inference: First, Markov Chain Monte
Carlo (MCMC) methods and in particular stochastic gradi-
ent MCMC for Bayesian NNs (Welling and Teh 2011; Li
et al. 2016; Park et al. 2018; Maddox et al. 2019) show
promise, with a main drawback being the inability to cap-
ture complex distributions in the parameter space with-
out increasing the computational overhead. Secondly, vari-
ational inference (VI) performs Bayesian inference by us-
ing a computationally tractable variational distribution to
approximate the posterior. One approach by Graves, Mo-
hamed, and Hinton (2013) is to use a Gaussian variational
posterior to approximate the distribution of the weights in
a network, but the capacity of the uncertainty representa-
tion is limited by the variational distribution. In general we
see that MCMC has a higher variance and lower bias in
the estimate, while VI has a higher bias but lower vari-
ance (Mattei 2020). The preeminent Bayesian deep learn-
ing approach by Gal and Ghahramani (2016) showed that
variational inference can be approximated without modify-
ing the network. This is achieved through a method of ap-

proximate variational inference called Monte Carlo Dropout
(MCD), whereby dropout is performed during inference, us-
ing multiple forward passes with randomly sampled dropout
masks. Kendall and Gal (2017) used a combination of mean-
variance estimation (Nix and Weigend 1994) and MCD to
simultaneously predict aleatoric and epistemic uncertainties.
However, this approach is limited by its requirement of mul-
tiple forward passes to gather enough information for a de-
cent approximation by MCD which often makes this method
uneconomical in practical applications.

Alternative to the prior-over-weights approach of
Bayesian NN, one can view deep learning as an evidence
acquisition process — different from the Bayesian modeling
nomenclature, evidence here is a measure of the amount
of support collected from data in favor of a sample to be
classified into a certain class, and uncertainty is inversely
proportional to the total evidence (Sensoy, Kaplan, and
Kandemir 2018). Samples during training each add support
to a learned higher-order, evidential distribution, which
yields epistemic and aleatoric uncertainties without the need
for sampling. Several recent works develop this approach
to deep learning and uncertainty estimation which put this
in practice with prior networks that place priors directly
over the likelihood function (Amini et al. 2020; Malinin
and Gales 2018). These approaches largely struggle with
regularization (Sensoy, Kaplan, and Kandemir 2018), gen-
eralization (particularly without using out-of-distribution
training data) (Malinin and Gales 2018; Hafner et al. 2019),
capturing aleatoric uncertainty (Gurevich and Stuke 2019),
and the issues we have addressed above with the prior art
Deep Evidential Regression (Amini et al. 2020).

There are also the frequentist approaches of bootstrap-
ping and ensembling, which can be used to estimate NN
uncertainty without the Bayesian computational overhead
as well as being easily parallelizable — for instance Deep
Ensembles, where multiple randomly initialized NNs are
trained and at test time the output variance from the ensem-
ble of models is used as an estimate of uncertainty (Laksh-
minarayanan, Pritzel, and Blundell 2017).

6 Reproducibility
An open-source GitHub repository (MIT License)
with the Appendix and source code for reproduc-
ing our experiments (implementations of the NNs
and algorithms to generate the data) is available on
https://github.com/pasteurlabs/unreasonable effective der.
We encourage other researchers to reproduce, test, extend,
and apply our work. The model and experiments are
lightweight, running locally on a 4-core MacBook Pro in
under an hour.
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