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Abstract

Diffusion models have emerged as a powerful generative
method for synthesizing high-quality and diverse set of im-
ages. In this paper, we propose a video generation method
based on diffusion models, where the effects of motion are
modeled in an implicit condition manner, i.e. one can sam-
ple plausible video motions according to the latent feature of
frames. We improve the quality of the generated videos by
proposing multiple strategies such as sampling space trun-
cation, robustness penalty, and positional group normaliza-
tion. Various experiments are conducted on datasets consist-
ing of videos with different resolutions and different num-
ber of frames. Results show that the proposed method out-
performs the state-of-the-art generative adversarial network-
based methods by a significant margin in terms of FVD scores
as well as perceptible visual quality.

Introduction
Image generation has gained significant traction since the
introduction of Generative Adversarial Networks (GANs)
(Goodfellow et al. 2014). In these methods, the idea is to
generate new images that conform to the training data distri-
bution. Following the success of image synthesis, video gen-
eration has also gained significant attention. Various video
generation methods have been proposed in the literature
including GAN-based methods (Vondrick, Pirsiavash, and
Torralba 2016; Saito, Matsumoto, and Saito 2017; Tulyakov
et al. 2018; Yu et al. 2022), Autoregressive models (Weis-
senborn, Täckström, and Uszkoreit 2020), and Time-series
models (Tian et al. 2021a; Skorokhodov, Tulyakov, and El-
hoseiny 2022). An advantage of some of these generative
models is that they can learn to synthesize high-quality
videos without requiring any labels. These generative mod-
els have been shown to be beneficial in various high-level
recognition tasks (Srivastava, Mansimov, and Salakhudinov
2015; Vondrick, Pirsiavash, and Torralba 2016).

A GAN-based video generation model was proposed by
Vondrick, Pirsiavash, and Torralba (2016), which makes use
of a spatio-temporal convolutional architecture and untan-
gles the scene’s foreground from the background. Another
work proposed by Tulyakov et al. (2018) is a continuous-
time video generator. In this method, a video is decomposed
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into the content and motion vectors at generation and dis-
criminated coherently by the discriminators. While these
GAN-based methods can model plausible moving objects
and scenes, a better video generation model should be able
to model the distribution of internal spatial and temporal
changes with regards to the video content.

Different from GANs, diffusion models (Sohl-Dickstein
et al. 2015; Ho, Jain, and Abbeel 2020) that model the
probability directly have emerged as the new state-of-the-
art generative models, and they have been shown to out-
perform GANs in various generation tasks (Dhariwal and
Nichol 2021). By learning to reverse the diffusion process
that adds noise to data in finite successive steps, diffu-
sion models can gradually map a Gaussian distribution to
the probability distribution corresponding to a real complex
high-dimensional dataset. In its denoising process, condi-
tional features like class labels of data can be applied to
the network for specializing its sampling process. By ap-
propriately using conditional features, diffusion models have
shown impressive performance in various applications, e.g.,
image debluring (Whang et al. 2022) that conditions on the
image residual, high-resolution image generation (Ho et al.
2022a) that conditions on the low-resolution images, and im-
age editing (Choi et al. 2021) that conditions on the style.
With more expressive conditional features like CLIP embed-
dings, diffusion models like DALLE-2 (Ramesh et al. 2022)
are capable of generating highly creative images with im-
pressive photorealism. But the condition mechanism in dif-
fusion models is non-trivial and requires careful design to
improve the quality of the generated images.

We assume that the subspace of a real video can be repre-
sented as a subspace of the video content, and the video mo-
tion is then generated by traversing point on the video con-
tent subspace. Accurately modeling the content subspace in-
creases the realism of frames, while accurately modeling the
subspace of the trajectory regarding the video content can
produce continuous and smooth video. Thus a better video
generation model should own delicate modulation capability
for simulating both the trajectory and realistic content.

Following this idea, we propose to model the video con-
tent and motion with two diffusion models separately. The
first video frame is generated by the content generator. Sub-
sequently, the motion generator generates the next video
frame based on the latent map of the first frame and the
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Frame 8 Frame 16 Frame 24 Frame 32 Frame 40 Frame 48 Frame 56 Frame 64 Trajectory

(a) Generated two videos with the same content on CLEVRER for collision reasoning

(b) Generated extra long SKY Time-lapse video with 128 frames (4 frames skipped)

(c) Generated high-resolution 256x256 TaiChi videos with 16 frames 

Figure 1: Sample results corresponding to our method on multiple video datasets.

latest frame, i.e., an optical-flow like feature between the
first and the latest frame estimated by an additional network.
This enables implicit modeling of dynamics by conditioning
on the latent features. After training, the optimized condi-
tion can best represent the spatial and temporal changes for
generating the next frame. By iteratively running the motion
generator, the final video is generated in an autoregressive
manner. We experimentally find that the estimated condition
significantly enhances the modeling capability of diffusion
models, Such an expressive model is capable of simulating
the trajectory of videos according to the conditional latent.

The major idea of our video implicit diffusion models is:
• Content Generator: We propose to learn video content

separately with an introduced diffusion model on video
frames. It simplifies video generation modeling and pro-
vides easy scalability of complex models. Two heuristic
mechanisms, including constant truncation and robust-
ness penalty, are proposed for further improving its per-
formance.

• Motion Generator: We propose a motion generator for
modeling spatial and temporal changes. It can generate
future frames according to the generated content in an au-
toregressive way. The generator is implicitly conditioned
on the latent code predicted by a module similar to an
optical-flow network. Furthermore, the coherency of spa-
tial and temporal changes is regularized with an intro-
duced positional group normalization, and the learning is
simplified with our proposed adaptive feature residual.

The effectiveness of the proposed model is demonstrated
on various datasets by comparing the performance with

several state-of-the-art works, including very recent works
MoCoGAN-HD (Tian et al. 2021a), DIGAN (Yu et al.
2022), and StyleGAN-V (Skorokhodov, Tulyakov, and El-
hoseiny 2022). It is shown that our method achieves signifi-
cantly better quantitative performance of Fréchet video dis-
tance and is experimentally observed to be capable of gen-
erating more realistic results.

Denoising Diffusion Probabilistic Model
Based on the success of diffusion-based models, we ex-
tend the generation process from 2D images into 3D videos
and keep the modification as minimal as possible. Our ap-
proach is based on Denoising Diffusion Probabilistic Mdoel
(DDPM) proposed by Ho, Jain, and Abbeel (2020) and its
variant Guided-DDPM from Dhariwal and Nichol (2021).
Learning Process. DDPM models the distribution of im-
ages x0 ∼ q(x0) in a denoising process, and it learns noise
ϵ ∼ N (0, I) with respect to timesteps t (out of T ) and de-
fines noisy image xt as a function ϵθ(xt, t), which is im-
plemented as a modified U-Net (Salimans et al. 2017) ϵθ(·)
with parameters θ. A simplified learning objective is

Lθ(ϵ,xt, t) = ∥ϵθ(xt, t)− ϵ∥. (1)

Noise Definition. Various attempts have been made to im-
prove the form of xt. The basic formulation comes by com-
bining the noise ϵ ∼ N (0, I) with a clean image x0 in t
steps according to some pre-defined noise schedules αt and
its variant ᾱt as xt =

√
ᾱtx0 +

√
1− ᾱtϵ.

Inference Process. The generation process starts from noise
xT ∼ N (0, I) with random noise ϵ and predefined variance
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Figure 2: (a) Illustration of our graphical model at the n-th video frame sampling process. (b) The proposed positional group
normalization concept when it is applied to the diffusion network.

σt and is defined as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtϵ. (2)

Truncation Trick. Compared with the GAN-based meth-
ods, though the superiority in the diversity of generation is
achieved, diffusion models often result in the generation of
poor quality of objects. Inspired by the heavily explored ap-
proach used by GANs, that is sampling from a truncated or
a shrunk sampling space (Brock, Donahue, and Simonyan
2018; Karras, Laine, and Aila 2019), we propose to truncate
noise ϵ implicitly.

Inspired by the practice of StyleGAN (Karras, Laine, and
Aila 2019), which starts from a learnable constant and then
gradually upsamples the features until the final output layer,
we propose to concatenate noisy image xt with a learnable
constant c that has the same dimension as xt at each diffu-
sion step. Such a strategy truncates the sampling space of the
noise in an implicit way without modifying the network ar-
chitecture, and the learning objective is slightly changed as
∥ϵθ(xt, c, t) − ϵ∥. During inference, the constant c is fixed
and the inference process equation 2 is subsequently updated
as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, c, t)

)
+ σtϵ. (3)

Robustness Penalty. Dropout layer has been empirically ap-
plied in DDPM for suppressing overfitting artifacts. How-
ever, the practice of applying dropout depends on the dataset
and harms the general performance in most cases. We ob-
served that overfitting not only depends on the dataset but
different classes of the same dataset as well and thus dropout
is conventionally avoided.

To enable an adaptive strategy for preventing overfitting,
we propose to add a penalty function (Charbonnier et al.
1994) at the learning objective instead of dropout layers as

Lθ(ϵ,xt, t) =
√
(ϵθ(xt, c, t)− ϵ)2 + η2, (4)

where η is a constant that is experimentally set as 1e − 8,
while the other settings, including {1e − 5, 1e − 6, 1e −
7}, haven’t shown significantly better performance. Such a
modification doesn’t hurt the differentiability of the original
learning objective.

Video Implicit Diffusion Model

Our proposed video generation method consists of two
streams for content and motion generation, respectively. The
two streams share a similar network architecture but differ-
ent in learning objectives. In addition, they have different
conditions which helps to keep the design redundancy min-
imal and reduces the optimization cost. We denote the n-th
frame of the N -frame video as x(n)0. The noisy frame at
the tth timestep is denoted as x(n)t.
Content Generator models the distribution of random
video frames x0 ∼ q(x0) with a network ϵθ(·) and is trun-
cated by constant tensor c. The frame x0 is randomly se-
lected from videos without specification. The network ϵθ(·)
is the modified U-Net proposed by Dhariwal and Nichol
(2021) with Multi-Head Attention (Vaswani et al. 2017) and
utilizes GroupNorm (Wu and He 2018).
Motion Generator models the distribution of motion from
the first frame to the random n-th frame, and it is im-
plemented with another network ρϕ(·) with parameters ϕ.
Therefore, the learning process minimizes the difference be-
tween ρϕ(x(0)0, n) and x(n)0 as Figure 2 shows, which is
similar to recent implicit neural function methods (Yu et al.
2022; Skorokhodov, Tulyakov, and Elhoseiny 2022).

By experimentally combining the two streams, one can
model video data. However, due to the complexity of video
data, we observed that the basic implementation does not
converge. In addition, it losses significant generation quality
and generates discontinuous motions. Therefore, we propose
to extend the aforementioned video generation process with
the following improvements.
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Positional Group Normalization
Our first key idea for improving the diffusion network is
to incorporate the spatial and temporal positional encoding
of 4D coordinates (h,w, n, t) between each U-Net blocks,
for modeling continuous changes in both the space h,w and
time n with different diffusion timesteps t. The correlation
between spatial and temporal features crucially affects the
continuity of video data but is conventionally ignored due
to its complexity. Empirically, such complexity can be de-
composed for modeling in an iterative denoising process. We
propose to directly incorporate the correlation into networks
in a feature modulation manner, similar to AdaIN (Karras,
Laine, and Aila 2019) and FiLM (Perez et al. 2018).

The concept is illustrated in the right part of Figure 2.
Specifically, the positional encoding mapped from 4D coor-
dinates is extracted through an MLP (fully-connected neural
network) with sinusoidal activation (Sitzmann et al. 2020)
after its first layer. Recent studies on implicit neural repre-
sentations (INRs) (Sitzmann et al. 2020; Tancik et al. 2020)
have shown that periodic activation is capable of modeling
high dimensional space with coordinates. Inspired by it, our
introduced Positional Group Normalization (PosGN) based
on group-norm (Wu and He 2018) is defined as

α, β = MLP(h,w, n, t) (5)
PosGN(x, α, β) = α · GroupNorm(x) + β, (6)

where x is the obtained feature from the U-Net blocks,
(α, β) is a pair of affine transformation parameters extracted
from the MLP, and it then scales and shifts feature x us-
ing parameters (α, β). PosGN is based on the empirical su-
periority of adaptive group normalization (AdaGN) (Nichol
and Dhariwal 2021), which has been shown to benefit diffu-
sion models, and the difference between them are the intro-
duced periodic activated MLP and the additional spatial and
temporal dimensions. Compared with the recent INR-based
work, PosGN is particularly suited for diffusion models. It is
because the noisy images are essential conditions that can-
not be replaced by coordinates as INRs have done. Besides,
PosGN provides a hierarchical feature modulation when it is
incorporated into the applied diffusion networks.

As a result, our proposed VIDM benefits from the ca-
pability of modeling spatial and temporal changes led by
PosGN. Based on the new paradigm, the learning objective
of our motion generation extended from the content model-
ing equation 4 for an arbitrary n-th frame is formulated as

Lϕ(ϵ,x(n)t, t, n) =
√

(ρϕ(x(n)t, t, n)− ϵ)2 + η2. (7)

Coordinates (h,w) are derived from features on-the-fly and
thus are not treated as the network input. For convenience
and efficiency, coordinates (h,w, n, t) are only generated at
the first time and then cached for the next running. There-
fore, PosGN shares a very similar computational cost as the
vanilla AdaGN when the running times are large, which is
natural to diffusion models. In the rest of this paper, we use
PosGN as our default settings and denote ρϕ(·, t, n) as ρϕ(·)
for simplification.

Implicit Motion Condition
Modeling long continuous video data has been a long-
standing problem, even though we have seen the explo-
ration in INRs and our proposed PosGN with positional
encoding, the intermediate information between long video
frames cannot be accurately represented. Furthermore, from
the results in the literature (Yu et al. 2022; Skorokhodov,
Tulyakov, and Elhoseiny 2022), we find that the interme-
diate information plays a crucial role in the video contin-
uation, otherwise, the generated long videos only contain
nearly meaningless motions.

Our second idea is extended from the proposed PosGN,
based on the time condition, instead of explicit coordinates,
we propose to condition on the latent code of the latest frame
and the first frame at the denoising process. The latent code
is an optical flow (Horn and Schunck 1981) like feature
estimated by an additional network v(·), implemented as
SpyNet (Ranjan and Black 2017), which has been demon-
strated in motion extraction for video enhancement and in-
terpolation. To elaborate, a pretrained optical flow estima-
tion network v(·) is applied to estimate the latent z between
frames v(x(0)0,x(n−1)0) for the n-th frame x(n)0 genera-
tion, which is performed in an autoregressive manner. Since
the latent code is capable of ensembling the continuous mo-
tion feature that consistently exist in the denoising process,
it can ensure that the intermediate information is implicitly
incorporated into learning. Therefore, the learning process
with the implicit latent condition is

z = v(x(0)0,x(n− 1)0) (8)

Lϕ(ϵ,x(n)t, z) =
√
(ρϕ(x(n)t, z)− ϵ)2 + η2. (9)

The parameters of v(·) are updated with the diffusion net-
works together without specification. The cost of condition-
ing on the latent at each denoising process is only increased
at the first timesteps and can be then cached. As will be
shown in the ablation study, implicit learning is crucial for
modeling long video data and can significantly improve the
ultimate performance.

Adaptive Feature Residual
To further simplify the motion modeling complexity, we
propose to model the residual of content features at each
denoising timestep adaptively. An additional encoder that
shares the similar architecture of the diffusion network is uti-
lized, and it conditions on the first frame x(0)0 and timesteps
t. We denote the encoding as ρ̂ϕ(·) and the residual feature
as r, and thus network ρϕ(·) is actually learning to synthe-
size the residual, which significantly simplifies the learning
at each timestep and enables better implicit motion learning.
Remark that content generation learning is kept the same as
DDPM except for the truncation trick and robustness penalty
is applied for enhancing the generation capability.

Experiments
Datasets and settings. Most datasets follow the protocols of
their original papers except where specified. To compare the
visual quality of the results, we use the I3D network trained
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on Kinetics-400 (Kay et al. 2017) for reporting the Fréchet
video distance (FVD) (Unterthiner et al. 2018) performance,
which measures the probability distribution difference be-
tween two groups of video results and is recognized by the
other prior arts (Yu et al. 2022; Skorokhodov, Tulyakov, and
Elhoseiny 2022). For reference, we also report the Inception
score (IS) (Salimans et al. 2016) performance and Fréchet
inception distance (FID) (Heusel et al. 2017) following the
evaluation procedure of DIGAN (Yu et al. 2022). All evalua-
tion is conducted on 2048 randomly selected real and gener-
ated videos for reducing variance. The experiments are con-
ducted on UCF-101 (Soomro, Zamir, and Shah 2012), Tai-
Chi-HD (Siarohin et al. 2019), Sky Time-lapse (Xiong et al.
2018), and CLEVRER (Yi et al. 2020).

Baselines. The major baseline for comparison is DI-
GAN (Yu et al. 2022), which is the current state-of-the-
art in video generation and is the first work that incorpo-
rates INRs. We also compare the performance of our method
with that of VGAN (Vondrick, Pirsiavash, and Torralba
2016), TAGN (Saito, Matsumoto, and Saito 2017), MoCo-
GAN (Tulyakov et al. 2018), ProgressiveVGAN (Acharya
et al. 2018), DVD-GAN (Clark, Donahue, and Simonyan
2019), LDVD-GAN (Kahembwe and Ramamoorthy 2020),
TGANv2 (Saito et al. 2020), MoCoGAN-HD (Tian et al.
2021a), VideoGPT (Yan et al. 2021), StyleGAN-V (Sko-
rokhodov, Tulyakov, and Elhoseiny 2022), VDM (Ho et al.
2022b), and TATS (Ge et al. 2022). We collect the per-
formance score from the references or re-implemented re-
sults from DIGAN and StyleGAN-V if available. For the
CLEVRER performance, we train DIGAN and StyleGAN-
V with their official code and our implementation with the
same settings.

Diffusion Network. The diffusion network architecture of
our method is an autoencoder network that follows the de-
sign of PixelCNN++ (Salimans et al. 2017). We apply mul-
tiple multi-head attention modules (Vaswani et al. 2017)
at features in a resolution of 16 × 16 for capturing long-
range dependence that benefits the perceptual quality. It has
been verified by DDPM (Ho, Jain, and Abbeel 2020) and its
variants (Dhariwal and Nichol 2021; Nichol and Dhariwal
2021), and we keep minimal changes.

Main Results. We present the main quantitative results
comparison in Table 1 and Table 2, and the main qualitative
results comparison is Figure 3. We remark that our perfor-
mance significantly outperforms the very recent state-of-the-
art DIGAN and StyleGAN-V in all of the video data as can
be seen from the two tables. Among them, 128-TaiChi and
256-UCF101 is the hardest video data since their movement
is minimal and Frames Per Second (FPS) is varying between
videos, but our method can still achieve comparable perfor-
mance and even better without discriminators.

Ablations. Multiple potential design choices are available
in our final method, and most of them affect the results to
some degree. We ablate the core components and show the
details in Table 3 for content generator ablations and motion
generator ablations. As the results are shown in Table 3, the
removed sampling space truncation and robustness penalty
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Figure 3: Sample result comparisons on the 256-UCF10116,
128-TaiChi16, and 256-SkyTimelapse16 datasets. Each pre-
sented frame is selected with 2 frames interval. Each group
consists of three row results, which are DIGAN, StyleGAN-
V, and ours, from top to bottom.

hurt the performance of content modeling. These results also
verify that removing the robustness penalty decreases both
the content modeling ability and motion modeling ability.

For the motion generator, we measure the ablation ef-
fects by comparing generated videos in a varying number of
frames, which is the most representative score for measur-
ing continuous and smoothness differences. In Table 3, we
remove the positional group normalization and implicit mo-
tion conditions to see the difference. It is surprising that the
modeling capability severely depends on the two proposed
components, especially for long video generation. From the
results visualized in Figure 4, we can notice that simply ap-
plying diffusion models (i.e., Ablation1) without modifica-
tion can only generate static images. Applying implicit con-
ditions without PosGN (i.e., Ablation2) faces the same issue
since they cannot model the spatial and temporal changes.
In contrast, even though applying PosGN without implicit
conditions (i.e., Ablation3) can help the network generates
different frames, its results are still noncontinuous.

Related Work
Generative Models. Existing generative models can be
categorized into likelihood-based and implicit models, based
on the way of representing probability distribution. Among
them, Variational Auto-encoders (VAEs) (Kingma and
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MoCoGAN† MoCoGAN-HD VideoGPT DIGAN DIGAN‡ StyleGAN-V TATS VIDM
CVPR18 ICLR21 arXiV21 ICLR22 ICLR22 CVPR22 ECCV22 (ours)

256-UCF10116 1821.4 1729.6 2880.6 1630.2 471.9 1431.0 332 294.7
256-UCF101128 2311.3 2606.5 N/A 2293.7 N/A 1773.4 - 1531.9
256-SkyTimelapse16 85.9 164.1 222.7 83.1 83.1 79.5 132 57.4
256-SkyTimelapse128 272.8 878.1 N/A 196.7 196.7 197.0 - 140.9

DIGAN StyleGAN-V VIDM (ours) DIGAN StyleGAN-V VIDM (ours)

256-CLEVRER16 112.5 106.1 87.4 128-TaiChi16 128.1 143.5 121.9
256-CLEVRER128 531.7 493.3 426.5 128-TaiChi128 748.0 691.1 563.6

Table 1: Fréchet video distance (Unterthiner et al. 2018) comparison. The compared methods are re-trained on the CLEVRER
dataset by us, and by Skorokhodov, Tulyakov, and Elhoseiny (2022) and Yu et al. (2022) on the other datasets with their official
implementation. MoCoGAN† is implemented with StyleGAN2 as its backbone. DIGAN‡ is class conditional.

Train split
VGAN TGAN MoCoGAN ProgressiveVGAN LDVD-GAN VideoGPT TGANv2 DIGAN

NeurIPS16 ICCV17 CVPR18 arXiv18 NN20 arXiv21 IJCV20 ICLR22

128-UCF10116 IS (↑) 8.31±.09 11.85±.07 12.42±.07 14.56±.05 22.91±.19 24.69±.30 28.87±.67 29.71±.53

128-UCF10116 FID (↓) - - - - - - 1209±28 655±22

Train split Train+test split
VIDM VIDM† DVD-GAN MoCoGAN-HD DIGAN StyleGAN-V DIGAN‡ VDM VIDM†

Ours Ours arXiV19 ICLR21 ICLR22 CVPR22 ICLR22 arXiv22 Ours

128-UCF10116 IS (↑) 53.34 35.20 27.38±.53 32.36 32.70±.35 32.70±.35 59.68±.45 57±.62 64.17
128-UCF10116 FID (↓) 306 471 - 838 577±21 - - 295±3 263

Table 2: IS and FVD comparisons. For fair comparisons, we re-train our VIDM without video class condition, named VIDM†.
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Figure 4: Ablation results in different settings.

Welling 2013), Autoregressive models (Van Oord, Kalch-
brenner, and Kavukcuoglu 2016), Normalizing Flow (Dinh,
Sohl-Dickstein, and Bengio 2016), and Diffusion mod-
els (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020)
directly model the probability distribution of data via max-
imum likelihood. In contrast, GANs (Goodfellow et al.
2014) implicitly represent the probability distribution via

their sampled results. Though the idea of GANs is sim-
ple, the boundary has been significantly pushed by GANs
and their representative variants, including StyleGAN (Kar-
ras, Laine, and Aila 2019; Karras et al. 2020b,a) and Big-
GAN (Brock, Donahue, and Simonyan 2018). Moreover,
many general techniques based on GANs have emerged, in-
cluding R1 regularization (Mescheder, Geiger, and Nowozin
2018), path length regularization (Karras et al. 2020b), trun-
cation trick (Karras, Laine, and Aila 2019), spectral normal-
ization (Miyato et al. 2018), image inversion (Mei and Pa-
tel 2021), and adaptive discriminator (Karras et al. 2020a).
However, we find that such techniques are rarely explored in
diffusion models.

Conditional Generative Models. Modeling the probabil-
ity distribution of complex datasets such as ImageNet (Deng
et al. 2009) can face potential training instability and mode
collapse issues. Therefore, the way of leveraging additional
conditions as a guidance is explored and becoming the most
promising way of mitigating the issues. For GANs, class in-
formation can be fed into the generator (Brock, Donahue,
and Simonyan 2018) and the discriminator (Karras, Laine,
and Aila 2019) for fascinating class-conditional sampling.
For diffusion models, the class condition shows a better per-
formance boost as the class embeddings used in DDPM (Ho,
Jain, and Abbeel 2020). Furthermore, resulting from the iter-
ative denoising process of diffusion models, which enables
hierarchical conditional features, utilizing the class feature
of noisy images of different time steps can help diffusion
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Method FID IS FVD16 Method FVD16 FVD64 FVD128

vanilla one 23.0 3.04 115.4 vanilla one 603.7 610.0 648.7
w/o sampling space truncation 21.1 3.07 107.9 w/o PosGN 532.1 581.3 604.5
w/o robustness penalty 19.4 3.07 95.5 w/o Implicit Conditions 584.8 552.1 614.1

default VIDM 18.4 3.07 87.4 default VIDM 87.4 286.6 426.5

Table 3: Ablation study regarding content generator and motion generator.

models achieve the new art (Dhariwal and Nichol 2021).
Different from class conditions, the modality of conditions
could be images (Nair, Mei, and Patel 2022) and even texts
like DALLE (Ramesh et al. 2021) for different aims.

Video Generation. Video generation has been dominated
by 3D CNNs (Tran et al. 2015) for a long time until
the recent emergence of Implicit Neural Representation
(INR) (Sitzmann et al. 2020). The early 3D CNNs based
video generation works take all frames of the video as a sin-
gle point on the video subspace. They then generate a cuboid
as the result of each sampling process (Vondrick, Pirsiavash,
and Torralba 2016; Saito, Matsumoto, and Saito 2017), and
such a manner has been extended into the recent diffusion
fashion (Ho et al. 2022b; Harvey et al. 2022). However, this
line can hardly achieve desired results due to the difficulty
of modeling spatial-temporal changing, and their scalabil-
ity is significantly limited according to the cubic complex-
ity (Saito et al. 2020). Later work decomposes the genera-
tion process into content and motion separately (Tulyakov
et al. 2018; Clark, Donahue, and Simonyan 2019; Tian et al.
2021b; Fox et al. 2021), which simplifies the learning but
still requires the discriminator to apply 3D CNNs on extract-
ing temporal features. The other line of video generation (Yu
et al. 2022; Skorokhodov, Tulyakov, and Elhoseiny 2022)
based on INRs is similar to the image generation applica-
tions work (Skorokhodov, Ignatyev, and Elhoseiny 2021),
which adds additional temporal dimension at the coordinates
and thus can process each frame separately. However, such
an INR protocol can hardly be applied to diffusion models.
Therefore, our method incorporates the coordinate embed-
dings of INRs as the normalization and conditions on the im-
plicit latent. We experimentally find that the new paradigm
benefits the continuous of the generated complex videos.

Limitations and Ethics Statement. The major limitation
of this work comes from the efficiency issue of diffusion
models. Limited by the expressibility of the Gaussian pro-
cess, multiple iterative denoising process is required before
producing plausible results. Therefore, the complexity of
video generation consists of the number of video frames and
the number of diffusion time steps. The potential negative
societal impacts of this work come from the generated un-
ethical videos. These generated videos a.k.a Deepfake have
emerged as an important social issue and attracted great at-
tention. However, we are happy to see that significant funds
and efforts have been devoted to detecting these fake videos,
including DARPA’s Semantic Forensics program which is
highly inspired by the StyleGAN series (Karras, Laine, and
Aila 2019). Our work can be useful in promoting them.

Conclusion
In this work, we proposed a new diffusion probabilistic
model for video data, which provides a unique implicit con-
dition paradigm for modeling continuous spatial-temporal
changing of videos. The model is capable of sampling
frames according to latent that encodes dynamics. Compre-
hensive experiments on the high-resolution, long video data
demonstrated our method not only with visual quality su-
periority but also better diversity. We hope the work would
benefit and inspire both video generation and conditional
diffusion models as a strong baseline in the future.
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Weissenborn, D.; Täckström, O.; and Uszkoreit, J. 2020.
Scaling Autoregressive Video Models. In Proceedings of
the International Conference on Learning Representations.
Whang, J.; Delbracio, M.; Talebi, H.; Saharia, C.; Dimakis,
A. G.; and Milanfar, P. 2022. Deblurring via Stochastic Re-
finement. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition.
Wu, Y.; and He, K. 2018. Group normalization. In Proceed-
ings of the European Conference on Computer Vision.
Xiong, W.; Luo, W.; Ma, L.; Liu, W.; and Luo, J. 2018.
Learning to generate time-lapse videos using multi-stage dy-
namic generative adversarial networks. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition.
Yan, W.; Zhang, Y.; Abbeel, P.; and Srinivas, A. 2021.
Videogpt: Video generation using vq-vae and transformers.
arXiv:2104.10157.
Yi, K.; Gan, C.; Li, Y.; Kohli, P.; Wu, J.; Torralba, A.; and
Tenenbaum, J. B. 2020. Clevrer: Collision events for video
representation and reasoning. In Proceedings of the Interna-
tional Conference on Machine Learning.
Yu, S.; Tack, J.; Mo, S.; Kim, H.; Kim, J.; Ha, J.-W.; and
Shin, J. 2022. Generating Videos with Dynamics-aware Im-
plicit Generative Adversarial Networks. In Proceedings of
the International Conference on Learning Representations.

9125


