
Boundary Graph Neural Networks for 3D Simulations

Andreas Mayr1,†, Sebastian Lehner1, Arno Mayrhofer2, Christoph Kloss2,
Sepp Hochreiter1,3, Johannes Brandstetter1,‡,*

1 ELLIS Unit Linz & LIT AI Lab, Johannes Kepler University Linz, Linz, Austria
2 DCS Computing GmbH, Linz, Austria

3 Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
† mayr@ml.jku.at, ‡ brandstetter@ml.jku.at

Abstract

The abundance of data has given machine learning consider-
able momentum in natural sciences and engineering, though
modeling of physical processes is often difficult. A particu-
larly tough problem is the efficient representation of geomet-
ric boundaries. Triangularized geometric boundaries are well
understood and ubiquitous in engineering applications. How-
ever, it is notoriously difficult to integrate them into machine
learning approaches due to their heterogeneity with respect to
size and orientation. In this work, we introduce an effective
theory to model particle-boundary interactions, which leads
to our new Boundary Graph Neural Networks (BGNNs) that
dynamically modify graph structures to obey boundary con-
ditions. The new BGNNs are tested on complex 3D granular
flow processes of hoppers, rotating drums and mixers, which
are all standard components of modern industrial machinery
but still have complicated geometry. BGNNs are evaluated in
terms of computational efficiency as well as prediction ac-
curacy of particle flows and mixing entropies. BGNNs are
able to accurately reproduce 3D granular flows within simu-
lation uncertainties over hundreds of thousands of simulation
timesteps. Most notably, in our experiments, particles stay
within the geometric objects without using handcrafted con-
ditions or restrictions.

1 Introduction
The deep learning revolution (Krizhevsky, Sutskever, and
Hinton 2012) has dramatically changed scientific fields such
as computer vision, natural language processing, or medical
sciences. More recently, deep learning research has been ex-
panded towards physical simulations such as fluid dynamics,
deformable materials, or aerodynamics (Li et al. 2019; Um-
menhofer et al. 2020; Sanchez-Gonzalez et al. 2020; Pfaff
et al. 2021). Currently, the progress of deep learning for
physical simulations is driven by Graph Neural Networks
(GNNs) (Scarselli et al. 2009; Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017). GNNs are very
effective when modeling interactions between many entities
via forward dynamics (Battaglia et al. 2018), and as such are
a strong building block when it comes to the replacement of
slower numerical simulations in various engineering disci-
plines. We focus on granular flows, which are ubiquitous in

*now at Microsoft Research AI4Science
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nature and consequently in industrial processes. The accu-
rate simulations of such versatile granular flows forms the
backbone of designing and improving industrial machinery.
Complex boundaries are present in every-day’s machinery
such as rotating drums, mixers or hoppers. In engineering,
these complex boundaries are typically modelled by trian-
gularizations, which are mathematical well founded and for
which efficient construction and simulation tools are avail-
able. Therefore, triangular meshes are standard for repre-
senting and modelling industrial machinery.

Effective theory. In this work, we introduce an effective
theory to model particle-boundary interactions, from which
we derive a new approach to accurately and effectively
model granular flow processes within triangularized bound-
ary surfaces. In physics, effective theories allow the descrip-
tion of phenomena within much simpler frameworks without
a significant loss of precision. The basic idea is to approxi-
mate a physical system by factoring out the degrees of free-
dom that are not relevant in the given setting and problem
to solve (e.g. using Newton’s equations instead of the much
more complicated Einstein’s equations, or, using simple al-
gebraic equations instead of numerically solving differential
equations for particle-particle interactions). Other examples
are in the fields of gravitational wave theory (Goldberger
and Rothstein 2006), particle physics (Leutwyler 1994), hy-
drodynamics (Endlich et al. 2013), and, even in deep learn-
ing theory (Roberts, Yaida, and Hanin 2022). Figure 1 illus-
trates the effective theory of gravitational forces for plane-
tary movement modeling, which motivates the introduction
of effective particle-boundary interactions in this work.

We introduce Boundary Graph Neural Networks
(BGNNs) as an effective model for complex 3D granular
flows. We test the effectiveness of BGNNs on flow simula-
tions within different triangularized geometries. The data
for BGNN training is obtained by precise but potentially
time-consuming simulations. BGNNs are able to generalize
granular flow dynamics over thousands of timesteps while
potentially being considerably faster than state-of-the-art
simulation methods. The contributions of this paper are:
• We describe particle-surface interactions as an effective
theory and introduce Boundary Graph Neural Networks
(BGNNs) which enable dynamic modifications of graph
structures.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9099



Boundary Graph Neural Networks for 3D Simulations

Anonymous submission

Abstract

The abundance of data has given machine learning consider-
able momentum in natural sciences and engineering, though
modeling of physical processes is often difficult. A particu-
larly tough problem is the efficient representation of geomet-
ric boundaries. Triangularized geometric boundaries are well
understood and ubiquitous in engineering applications. How-
ever, it is notoriously difficult to integrate them into machine
learning approaches due to their heterogeneity with respect to
size and orientation. In this work, we introduce an effective
theory to model particle-boundary interactions, which leads
to our new Boundary Graph Neural Networks (BGNNs) that
dynamically modify graph structures to obey boundary con-
ditions. The new BGNNs are tested on complex 3D granular
flow processes of hoppers, rotating drums and mixers, which
are all standard components of modern industrial machinery
but still have complicated geometry. BGNNs are evaluated in
terms of computational efficiency as well as prediction ac-
curacy of particle flows and mixing entropies. BGNNs are
able to accurately reproduce 3D granular flows within simu-
lation uncertainties over hundreds of thousands of simulation
timesteps. Most notably, in our experiments, particles stay
within the geometric objects without using handcrafted con-
ditions or restrictions.

1 Introduction
The deep learning revolution (Krizhevsky, Sutskever, and
Hinton 2012) has dramatically changed scientific fields such
as computer vision, natural language processing, or medical
sciences. More recently, deep learning research has been ex-
panded towards physical simulations such as fluid dynamics,
deformable materials, or aerodynamics (Li et al. 2019; Um-
menhofer et al. 2020; Sanchez-Gonzalez et al. 2020; Pfaff
et al. 2021). Currently, the progress of deep learning for
physical simulations is driven by Graph Neural Networks
(GNNs) (Scarselli et al. 2009; Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017). GNNs are very
effective when modeling interactions between many entities
via forward dynamics (Battaglia et al. 2018), and as such are
a strong building block when it comes to the replacement of
slower numerical simulations in various engineering disci-
plines. We focus on granular flows, which are ubiquitous in
nature and consequently in industrial processes. The accu-
rate simulations of such versatile granular flows forms the
backbone of designing and improving industrial machinery.

Complex boundaries are present in every-day’s machinery
such as rotating drums, mixers or hoppers. In engineering,
these complex boundaries are typically modelled by trian-
gularizations, which are mathematical well founded and for
which efficient construction and simulation tools are avail-
able. Therefore, triangular meshes are standard for repre-
senting and modelling industrial machinery.

Effective theory. In this work, we introduce an effective
theory to model particle-boundary interactions, from which
we derive a new approach to accurately and effectively
model granular flow processes within triangularized bound-
ary surfaces. In physics, effective theories allow the descrip-
tion of phenomena within much simpler frameworks without
a significant loss of precision. The basic idea is to approxi-
mate a physical system by factoring out the degrees of free-
dom that are not relevant in the given setting and problem
to solve (e.g. using Newton’s equations instead of the much
more complicated Einstein’s equations, or, using simple al-
gebraic equations instead of numerically solving differential
equations for particle-particle interactions). Other examples
are in the fields of gravitational wave theory (Goldberger

sun

earth

boundary
surface
area

granular
flow profile

Figure 1: Effective theories of gravitational planetary move-
ment (left), and particle-boundary interactions (right). Plan-
etary movement is fully described by Einstein’s field equa-
tions that relate mass and energy densities to the curvature
of spacetime. A much simpler but in most cases sufficient
description is to apply Newton’s law of gravity to represen-
tative point masses. Black arrows indicate progress in time.
Analogously, the interactions of granular flow particles and
boundary surface areas is modeled by an effective two-point
interaction.

Figure 1: Effective theories of gravitational planetary move-
ment (left), and particle-boundary interactions (right). Plan-
etary movement is fully described by Einstein’s field equa-
tions that relate mass and energy densities to the curvature
of spacetime. A much simpler but in most cases sufficient
description is to apply Newton’s law of gravity to represen-
tative point masses. Black arrows indicate progress in time.
Analogously, the interactions of granular flow particles and
boundary surface areas is modeled by an effective two-point
interaction.

• We implement BGNNs for 3D granular flow simulations
of hoppers, rotating drums, and mixers as found in industrial
machinery.
• We assess the performance of BGNNs via comparison of
relevant physical quantities between model predictions and
simulations.

2 Background
Graph Neural Networks. We consider graphs G = (V, E),
with nodes vi ∈ V and edges eij ∈ E , whereN -dimensional
node features pvi

∈ RN are attached to each of the nodes.
We use nearest neighbor graphs, assuming local interac-
tions allow us to build arbitrary global dynamics. Therefore,
whether an edge between a pair of nodes (vi, vj) is con-
tained in the graph G depends on the distance between the
nodes:

eij ∈ E ⇐⇒ d(vi, vj) ⩽ rcut-off, (1)

where the cut-off radius rcut-off is usually a hyperparame-
ter of the model. Edges have M -dimensional edge features
aij ∈ RM attached to each edge eij . Message passing net-
works (Gilmer et al. 2017) are a specific type of graph neural
networks (Battaglia et al. 2018) and usually consist of three
different types of layers: i) node and edge feature embedding
layers, ii) the core message passing layers, and iii) read-out
layers. Message passing iteratively updates the embeddings
of edges (mij) and nodes (hi), i.e., the embeddings of aij

and pvi
, at edge eij and node vi via:

m′
ij = ϕ(hi,hj ,mij), (2)

h′
i = ψ

(
hi,□eij∈E m′

ij

)
, (3)

where the aggregation □eij∈E at node vi in Eq. (3) is across
all nodes that are connected to node vi via an edge eij . Typ-
ically, □ represents a mean or max operation. The learnable
functions ϕ and ψ are commonly presented by Multilayer

Perceptrons (MLPs). Equation (3) describes the computa-
tion and aggregation of messages, and the subsequent up-
date of node embeddings. The final node embeddings are
used for predictions via read-out layers. It is worth noting,
that the general concept of GNNs often needs to be adapted
to the actual purpose in mind, as e.g. for molecular modeling
(Atz, Grisoni, and Schneider 2021; Yang et al. 2022; Reiser
et al. 2022).

Dataset. Granular flow simulations are obtained by an
Discrete Element Method (DEM) (Cundall and Strack 1979)
which is similar to molecular dynamics. For granular flows,
governing equations like the Navier-Stokes equations for
fluid flows (Faccanoni and Mangeney 2013) do not ex-
ist. DEM represents the granular media by discrete par-
ticles (e.g. spheres or polyhedra), which interact by ex-
changing momentum via contact models. For granular flow
simulation with DEM, we resort to the open-source soft-
ware LIGGGHTS (Kloss et al. 2012, see Sect. TApp. A).
LIGGGHTS can simulate particle flow for a wide range of
materials and complex mesh-based wall geometries, there-
fore is well suited to simulate various industrial processes.
In this work, training, validation, and test data are generated
by LIGGGHTS modeling particle trajectories within differ-
ent machinery designs.

Time transition model. Our method is based on Sanchez-
Gonzalez et al. (2020), where we use the semi-implicit Eu-
ler method to numerically integrate the equations of motion
with model-predicted acceleration. The time-transition from
time t to time t + 1 is given by ẋt+1 = ẋt + ∆t ẍt and
xt+1 = xt + ∆t ẋt+1, where x is the particle location,
and ẋ the particle velocity. The time-transition xt+1 is cal-
culated from the predicted particle acceleration ẍt.

3 Boundary Graph Neural Networks
Modeling approach. Our goal is to model time transition
dynamics of particles in complex geometries with GNNs.
The focus is on developing a proper representation of the
triangularized geometries. An obvious and straightforward
approach is to sample individual points from the boundaries
as in Sanchez-Gonzalez et al. (2020) and Ummenhofer et al.
(2020). In our setting we have to sample points from the
triangles and then include them as non-kinematic particles
with fixed positions in the graph. However, sampling is not
feasible for large and complex geometries with many tri-
angles. Therefore, we resort to an effective theory to make
boundary representations efficient.

Effective theory for particle-surface interactions. In
order to apply an effective theory to particle-boundary inter-
actions, we have to determine the most important interaction
properties that should be conserved. For this purpose, we
will define an effective and dynamic graph, which changes
for every timepoint. The graph has to accurately model:
• Time awareness: particle-boundary interactions should
be modeled for as many timesteps as necessary. Particle-
boundary interactions are represented in the graph as con-
nections between surface areas and the particles in their
proximity. Thus, particle-boundary interactions have to stay
within a predefined cutoff radius as long as possible.

9100



• Capture of strongest interaction: similar to Newton’s law
of gravity, we target a point-like representation for both par-
ticles and surface areas. Knowingly, the physical interaction
strength decreases with increasing distance. Thus, effective
particle-boundary interactions should contain the smallest
distances between particles and surface areas.

Given these considerations, we model particle-boundary
interactions by point-like particle-particle interactions,
where the virtual particles representing the boundary sur-
face area are placed such that the distance to the real parti-
cles is minimized. Consequently, real particles “see” differ-
ent virtual particles from the same surface area. However, for
every granular flow particle, we effectively model only one
particle-surface interaction. We give a roadmap of what fol-
lows: (i) we introduce an efficient way of calculating shortest
distances between real particles and triangularized surface
areas, and (ii) we construct a dynamic graph model which
models the time transition dynamics.

Calculation of shortest distances. In order to obtain
shortest distances between real particles and triangularized
surface areas, the squared distance between the particle cen-
ter and the closest point on the mesh triangles is calculated
(adopted from Eberly (1999)). We outline this in the follow-
ing. A location on a triangle t is parameterized by two scalar
values u0, u1 ∈ R with t(u0, u1) = b + u0 e0 + u1 e1 ,
where u0 ≥ 0, u1 ≥ 0, and u0 + u1 ⩽ 1, b represents
one of the nodes of the triangle, and, e0 and e1 are vectors
from b towards the other two nodes (see Fig. TApp. B.1).
The minimal Euclidean squared distance d of the point p to
the triangle is given by the optimization problem:

d = min
u0,u1

q(u0, u1) = ∥t(u0, u1) − p∥2 (4)

s.t. u0 ≥ 0 , u1 ≥ 0 , u0 + u1 ⩽ 1 .

The minimizing arguments u′0 and u′1 parameterize the clos-
est point t(u′0, u

′
1) of the triangle to the point p. The algo-

rithmic computation of this minimization problem is more
involved and comprises seven cases, that need to be distin-
guished (see Sect. TApp. B). Whether a virtual particle is
inserted is determined by Eq. (6) and the particle-triangle
distance d (multiple inserts for multiple boundaries).

Boundary Graph Neural Networks (BGNNs). We asso-
ciate each graph node vi to a particle with location xvi , ve-
locity ẋvi and acceleration ẍvi , which is similar to Sanchez-
Gonzalez et al. (2020). Additionally, we modify and enhance
the graph structure to include boundaries (see Fig. 2). We dy-
namically add ñ virtual nodes ṽj ∈ Ṽ for boundary regions,
iff the corresponding boundary region is within a cut-off ra-
dius to any other particle.

We augment the set of edges eij ∈ E by boundary edges
ẽij ∈ Ẽ giving an enhanced edge set Ê = E∪Ẽ . Analogously
to Eq. (1), the existence of particle-particle edges eij and
particle-boundary edges ẽij is defined via:

eij ∈ E ⊆ Ê ⇐⇒ d(vi, vj) ⩽ rcut-off , (5)

ẽij ∈ Ẽ ⊆ Ê ⇐⇒ d̃(vi, ṽj) ⩽ r̃cut-off . (6)

The cut-off radii rcut-off and r̃cut-off need not necessarily be
the same, and, d : V × V → R, while d̃ : V × Ṽ → R, i.e.
bidirectional edges are used between real nodes and unidi-
rectional edges are used between real and virtual nodes. To

include information about boundary surfaces into particle-
boundary interactions, Ñ -dimensional node features that en-
code information about the inclination of triangles are con-
catenated with the existing node features pvi ∈ RN . Ad-
ditionally, coordinate information is used both for existing
nodes (X = {xv0

, . . . ,xvn−1
}) as well as for virtual nodes

(X̃ = {x̃ṽ0 , . . . , x̃ṽñ−1}). For virtual nodes, the additional
coordinates x̃ṽj

are chosen such that they minimize the dis-
tance between points from boundaries and real particles. The
resulting set of node features P̂ and node coordinates X̂ are:

P̂ = {pv0 , . . . ,pvn−1 , p̃ṽ0 , . . . , p̃ṽñ−1
}, (7)

X̂ = {xv0 , . . . ,xvn−1 , x̃ṽ0 , . . . , x̃ṽñ−1
} , (8)

where p̂i ∈ RN+Ñ and x̂i ∈ R3 denote the elements of
P̂ and X̂ , respectively. Similarly to above, message passing
updates the embeddings of edges (m̂ij) and the embeddings
of nodes (ĥi) via

m̂′
ij = ϕ̂

(
ĥi, ĥj , m̂ij

)
, (9)

ĥ′
i = ψ̂

(
ĥi,□êij∈ Ê m̂′

ij

)
, (10)

where the aggregation □êij∈ Ê at node vi in Eq. (10) is
across all real or virtual nodes that are connected to vi via
an edge êij . Similar to Gilmer et al. (2017) and Satorras,
Hoogeboom, and Welling (2021), we make use of pairwise
distances (∥x̂i − x̂j∥2 and x̂i − x̂j and deterministic func-
tions thereof). These are for BGNNs between real and be-
tween real and virtual particles and we pass this information
to the graph network as edge attributes âij , for which an
initial edge embedding m̂ij is determined via an edge em-
bedding layer. The final node embeddings are used for the
predictions via the read-out layers. For aggregation □, we
use the mean.

particle-boundary interactions should contain the smallest
distances between particles and surface areas.
Given these considerations, we model particle-boundary

interactions by point-like particle-particle interactions,
where the virtual particles representing the boundary sur-
face area are placed such that the distance to the real parti-
cles is minimized. Consequently, real particles “see” differ-
ent virtual particles from the same surface area. However, for
every granular flow particle, we effectively model only one
particle-surface interaction. We give a roadmap of what fol-
lows: (i) we introduce an efficient way of calculating shortest
distances between real particles and triangularized surface
areas, and (ii) we construct a dynamic graph model which
models the time transition dynamics.
Calculation of shortest distances. In order to obtain
shortest distances between real particles and triangularized
surface areas, the squared distance between the particle cen-
ter and the closest point on the mesh triangles is calculated
(adopted from Eberly (1999)). We outline this in the follow-
ing. A location on a triangle t is parameterized by two scalar
values u0, u1 ∈ R with t(u0, u1) = b + u0 e0 + u1 e1 ,
where u0 ≥ 0, u1 ≥ 0, and u + v ⩽ 1, b represents one
of the nodes of the triangle, and, e0 and e1 are vectors from
b towards the other two nodes (see Fig. TApp. B.1). The
minimal Euclidean squared distance d of the point p to the
triangle is given by the optimization problem:

d = min
u0,u1

q(u0, u1) = ∥t(u0, u1) − p∥2 (4)

s.t. u0 ≥ 0 , u1 ≥ 0 , u0 + u1 ⩽ 1 .

The minimizing arguments u′
0 and u

′
1 parameterize the clos-

est point t(u′
0, u

′
1) of the triangle to the point p. The algo-

rithmic computation of this minimization problem is more
involved and comprises seven cases, that need to be distin-
guished (see Sect. TApp. B). Whether a virtual particle is
inserted is determined by Eq. (6) and the particle-triangle
distance d.

Boundary Graph Neural Networks (BGNNs). We asso-
ciate each graph node vi to a particle with location xvi

, ve-
locity ẋvi

and acceleration ẍvi
, which is similar to Sanchez-

Gonzalez et al. (2020). Additionally, we modify and enhance
the graph structure to include boundaries (see Fig. 2). We dy-
namically add ñ virtual nodes ṽj ∈ Ṽ for boundary regions,
iff the corresponding boundary region is within a cut-off ra-
dius to any other particle.
We augment the set of edges eij ∈ E by boundary edges

ẽij ∈ Ẽ giving an enhanced edge set Ê = E∪Ẽ . Analogously
to Eq. (1), the existence of particle-particle edges eij and
particle-boundary edges ẽij is defined via:

eij ∈ E ⊆ Ê ⇐⇒ d(vi, vj) ⩽ rcut-off , (5)

ẽij ∈ Ẽ ⊆ Ê ⇐⇒ d̃(vi, ṽj) ⩽ r̃cut-off . (6)

The cut-off radii rcut-off and r̃cut-off need not necessarily the
be same, and, d : V × V → R, while d̃ : V × Ṽ → R, i.e.
bidirectional edges are used between real nodes and unidi-
rectional edges are used between real and virtual nodes. To
include information about boundary surfaces into particle-
boundary interactions, Ñ -dimensional node features that en-
code information about the inclination of triangles are con-
catenated with the existing node features pvi

∈ RN . Ad-
ditionally, coordinate information is used both for existing

nodes (X = {xv0 , . . . ,xvn−1}) as well as for virtual nodes
(X̃ = {x̃ṽ0 , . . . , x̃ṽñ−1}). For virtual nodes, the additional
coordinates x̃ṽj

are chosen such that they minimize the dis-
tance between points from boundaries and real particles. The
resulting set of node features P̂ and node coordinates X̂ are:

P̂ = {pv0 , . . . ,pvn−1 , p̃ṽ0 , . . . , p̃ṽñ−1
}, (7)

X̂ = {xv0 , . . . ,xvn−1 , x̃ṽ0 , . . . , x̃ṽñ−1
} , (8)

where p̂i ∈ RN+Ñ and x̂i ∈ R3 denote the elements of
P̂ and X̂ , respectively. Similarly to above, message passing
updates the embeddings of edges (m̂ij) and the embeddings
of nodes (ĥi) via

m̂′
ij = ϕ̂

(
ĥi, ĥj , m̂ij

)
, (9)

ĥ′
i = ψ̂

(
ĥi,□êij∈ Ê m̂′

ij

)
, (10)

where the aggregation □êij∈ Ê at node vi in Eq. (10) is
across all real or virtual nodes that are connected to vi via
an edge êij . Similar to Gilmer et al. (2017) and Satorras,
Hoogeboom, and Welling (2021), we make use of pairwise
distances (∥x̂i − x̂j∥2 and x̂i − x̂j and deterministic func-
tions thereof). These are for BGNNs between real and be-
tween real and virtual particles and we pass this information
to the graph network as edge attributes âij , for which an
initial edge embedding m̂ij is determined via an edge em-
bedding layer. The final node embeddings are used for the
predictions via the read-out layers. For aggregation □, we
use the mean.

v0

v1v2

ṽ0

ṽ1

d̃(v
0,
ṽ0)

d̃(v2
, ṽ1

)

pv0,xv0

pv1,xv1pv2,xv2

p̃ṽ0, x̃ṽ0

p̃ṽ1, x̃ṽ1

Figure 2: Dynamic modification of the graph edges (red
lines) and nodes (red points). Left: Calculation of the dis-
tances d̃(v0, ṽ0), d̃(v2, ṽ1) between real particle at nodes v0,
v2 and the triangles corresponding to virtual particle nodes
ṽ0, ṽ1. Right: Insertion of an additional edge between ṽ0 and
v0 and between ṽ1 and v2 and representation of the nodes in
terms of the corresponding node features pvi , xvi and p̃ṽj ,
x̃ṽj for real and virtual nodes.

Dynamical graph model. At each time point a graph of
the current scene is built up, containing the minimum dis-
tances between particles and walls as well as distances be-
tween particles within certain neighborhoods. The definition

Figure 2: Dynamic modification of the graph edges (red
lines) and nodes (red points). Left: Calculation of the dis-
tances d̃(v0, ṽ0), d̃(v2, ṽ1) between real particle at nodes v0,
v2 and the triangles corresponding to virtual particle nodes
ṽ0, ṽ1. Right: Insertion of an additional edge between ṽ0 and
v0 and between ṽ1 and v2 and representation of the nodes in
terms of the corresponding node features pvi , xvi and p̃ṽj ,
x̃ṽj for real and virtual nodes.

9101



Dynamical graph model. At each time point a graph of
the current scene is built up, containing the minimum dis-
tances between particles and walls as well as distances be-
tween particles within certain neighborhoods. The definition
of the graph and computations on it make up our effective
theory. Especially, every particle “sees” at most one vir-
tual particle representing the boundary surface area, namely
that virtual particle which has the shortest distance. Table 1
shows average numbers of nodes

∣∣V∣∣, as well as average
numbers of boundary edges

∣∣Ẽ∣∣ and the relative increase in
edges (ratio of the number of added wall edges to the total
number of particle edges). The scalability of BGNNs would
suffer if more than one particle per particle-boundary inter-
action surface was considered. Our approach is summarized
in Algorithm 1.

Algorithm 1: BGNN: Dynamic Graph Message Passing

1: frs,t ← random frame from trajectory s at time t
2: Assign node vi to each real particle at xvi

with features
pvi

and calculate pairwise distances dij = d(vi, vj) be-
tween nodes vi and vj . Assign edges eij with edge fea-
tures to those fulfilling Eq. (5).

3: Calculate d̃ij = q
(
u′0;(vi,△j)

, u′1;(vi,△j)

)
for all par-

ticles (vi) and triangles (△j) according to Eq. (4).
In case Eq. (6) is fulfilled, insert (a) a virtual node
ṽj at x̃ṽj = t

(
u′0;(vi,△j)

, u′1;(vi,△j)

)
with associated

triangle-specific features according to Sect. TApp. C,
and (b) an edge between the real and the inserted vir-
tual node together with associated edge features.

4: Fill up empty triangle-specific real-node features pvi

and particle-specific virtual-node features p̃ṽj̃
with null

values and add indicator features for node types (re-
al/virtual) to obtain p̂i and p̂j .

5: Apply BGNN message passing according to Eqs. (9)
and (10).

6: Update positions via semi-implicit Euler method.

Experiment
∣∣V∣∣ ∣∣Ẽ∣∣ % increase

Hopper 1113 ± 738 5475 ± 3547 72.2
Drum 3283 ± 282 1678 ± 188 54.8

Table 1: Growth of the number of edges due to boundaries
in the graph. The table shows statistics across the training
trajectories of non-cohesive particles in a standard setting in
hopper and drum experiments. For each trajectory the frame
with maximum relative increase in the number of edges due
to virtual particles

∣∣Ẽ∣∣/∣∣E∣∣ has been selected as a represen-
tative frame. This is done since we are interested in the max-
imum effect additional virtual particles have on the memory
requirements. Number of particles

∣∣V∣∣, number of additional
virtual edges

∣∣Ẽ∣∣, and % increase are listed.

Boundary normal directions. Typical granular flow sim-
ulations comprise substantially more particle-particle inter-
actions than particle-boundary interactions, which may im-
pede the learning of particle-boundary interactions. In Kipf
et al. (2018) the problem of qualitatively different interac-
tions is addressed by introducing a dedicated message gen-
erating network for each interaction type. We avoid such ex-
tensions of our model by means of the following two ap-
proaches. First, we introduce additional node features, such
that the neural network is able to distinguish the different
types of nodes. Second, we adapt the weight initialization of
the node feature embedding ψ̂, such that the embedding net-
work can be trained with larger values for the additional fea-
tures. Consequently, the network can learn different dynam-
ics for particle-particle and particle-boundary interactions.
The additional node features are: (i) type feature, i.e., a bi-
nary indicator of whether a node represents a particle that is
real or virtual, and, in the latter case, (ii) the components of
the normal vector (see Sect. TApp. C for more information
on an orientation-independent representation of the normal
vectors) of the triangular surface areas (null vectors for real
particles).

4 Related Work
There is a rich body of literature on applications of Deep
Learning in the context of physics simulations. Most no-
tably related to BGNNs are the works of Sanchez-Gonzalez
et al. (2020), Ummenhofer et al. (2020), and, Li et al. (2019),
all of which propose methods of learning particle simula-
tions without enforcing constraints. These approaches can
be contrasted to works like Ladickỳ et al. (2015) or Schenck
and Fox (2018) that utilize strong inductive biases. Ladickỳ
et al. (2015) construct features for Random Forest Regres-
sion that are influenced by Smooth Particle Hydrodynam-
ics (Gingold and Monaghan 1977; Lucy 1977). Schenck and
Fox (2018) construct a differentiable fluid dynamics net-
work that is closely related to the Position Based Fluids
method (Macklin and Müller 2013). Importantly, both meth-
ods are built on the assumption that the governing equations
of the system are known, which is, as mentioned in Sect. 2,
not necessarily the case for granular flow dynamics.

Integrating finite element methods and therefore trian-
gularized boundaries into deep learning architectures has
started to gain interest (Longo et al. 2022). Complex mesh-
based wall geometries have been employed to compute up-
dates for nodes of the mesh itself (Pfaff et al. 2021). In
contrast to Pfaff et al. (2021) in our scenario, the mesh is
static, i.e. the descriptive representation of machine parts.
We share the opinion of Sanchez-Gonzalez et al. (2020) that
the network architecture with continuous convolutions as
suggested by Ummenhofer et al. (2020) can be interpreted
as GNNs. In doing so, a difference to Sanchez-Gonzalez
et al. (2020) and our work is that Ummenhofer et al. (2020)
use static particles as special nodes in the first message
passing step only. Consequently, the framework of Sanchez-
Gonzalez et al. (2020), which is based on Battaglia et al.
(2018), appears to be the most general to us, performing well
even without explicit hierarchical clustering as suggested in

9102



DPI-Net (Li et al. 2019). Experiments of Sanchez-Gonzalez
et al. (2020) further suggest that their simulation of sand
particles are superior to the implementation of Ummenhofer
et al. (2020). However, Sanchez-Gonzalez et al. (2020) only
consider simple cuboid boundaries for their 3D simulations,
leaving more realistic complex geometries as an open and
yet untouched challenge. Furthermore, they use sampled,
static particles to represent boundaries for 2D simulations,
which in general does not scale well for 3D simulations due
to the quadratic increase of boundary particles (square areas
instead of lines).

5 Experiments
We test the effectiveness of BGNNs on complex 3D gran-
ular flow simulations. The development, design, and con-
struction of many mechanical devices is based on granular
flow simulations. These devices can have very different ge-
ometries and must be designed for a wide range of materials
with highly varying properties. For example, cohesion prop-
erties can range from dry, wet, to oily. In the simulations, we
consider very common device geometries and different co-
hesion properties, as well as static and moving geometries,
to cover a wide range of situations with our available compu-
tational resources. The two common geometries are hoppers
and rotating drums (see Figs. 3 and 4 and TApp. A.1). The
two different cohesion properties are non-cohesive describ-
ing liquid-like, oily materials and cohesive describing dry,
sand-like materials. We compare the BGNN predictions to
the simulations in two aspects: speed and accuracy.

Simulation Details. For all experiments, gravitation acts
along the z-direction. The upper part of the hopper is de-
limited along the y-axis by two planes, which are parallel to
the x-z plane (see Fig. 3). The x-axis is delimited by two
planes, that are inclined at certain angles α, 180◦ − α to the
x-y plane and at corresponding angles α − 90◦, 90◦ − α to
the y-z plane. The hopper has an initially closed hole at the
bottom, which has an adjustable radius. The rotation axis
of the drum is the y-axis (see Fig. 4). The initial filling of
the hopper and drum is done by randomly inserting parti-
cles into a predefined region, see Sect. TApp. D. We use
around 1000 and around 3000 particles for hopper and rotat-
ing drum simulations, respectively. In order to have trajec-
tories with non-cohesive and cohesive particles, we use the
simplified JKR model (Roessler and Katterfeld 2019) with
a cohesion energy density of 0 J/m3 and 105 J/m3 for non-
cohesive and cohesive particles. The training data consists
of 30 simulation trajectories, where each trajectory consists
of 100.000 (250.000) simulation timesteps for hopper (rotat-
ing drum). For BGNN training every 40 (100)-th timestep is
used. Trajectories have different angles α and different hole
radii (hopper) and different initial particle placement (drum).
Moreover, the number of particles is varied by ±25%.

Implementation Details. We use 3 to 10 message pass-
ing layers, with 128 and 512 nodes for intermediate node
and edge representation. The cut-off radii strongly depend
on the particle size. We use cut-off radii of 0.02 and 0.008
for rotating drum and hopper, respectively. Cut-off radii have

been treated as hyperparameters of our model. More details
can be found in Sect. TApp. D.
Assessment Of Physical Quantities. Granular flow sim-
ulations should correctly describe systems on macroscopic
scales in terms of particle-averaged positions x̄(t) and par-
ticle flows v̄(t) for n particles as a function of time: x̄(t) =
1
n

∑
i xi(t) and v̄(t) = 1

n

∑
i vi(t). Hoppers are devices

that aim at adjusting the flow of particles along the direction
of gravity, which coincides with the z-axis in our experi-
ments. Rotating drums are commonly utilized as mixing de-
vices for various applications in e.g. industry, research, and
agriculture. They are essentially rotating cylinders that are
partially filled with a granular material. The mixing prop-
erty of these devices is a result of numerous particle inter-
actions under time-varying boundary conditions. For rotat-
ing drum experiments, we quantify the extend of particle
mixing via the mixing entropy (Lai and Fan 1975). If the
z-coordinate of a particle’s initial position xi(0) is above
(below) the median z-coordinate of all particles in the ini-
tial state, we assign it to class c = +1 (−1). Based on this
assignment local entropies s(gklm, t) at grid cells gklm are
calculated, where the indices klm identify an individual grid
cell. The local entropies s(gklm, t) are computed from par-
ticle counts nc(gklm, t), of the respective classes c = ±1.
The total number of particles in a grid cell is obtained by
n(gklm, t) = n+1(gklm, t) + n−1(gklm, t). Calculating the
particle-number weighted average of the local mixing en-
tropies yields the mixing entropy S(t) of the entire system:

S(t) =

−
∑

klm

∑
c=±1

n(gklm, t)
(
fc(gklm, t) log fc(gklm, t)

)
∑
klm

n(gklm, t)
,

where fc(gklm, t) denotes the relative fraction of class c
particles in cell gklm at time t.

Results. In Fig. 3 and Fig. 4 results for the hopper and the
rotating drum simulations are presented. The upper parts vi-
sualize granular flow snapshots at different time steps, both
for cohesive and non-cohesive materials. The lower parts
of the figures include average position and particle flow
plots for hopper, as well as particle flow and mixing entropy
plots for rotating drum simulations. The simulation uncer-
tainties arise due to the different distributions of the initial
filling and due to a ±25% variation in the number of par-
ticles across simulations. The difference between cohesive
and non-cohesive particles is evident. BGNNs have learned
to model granular flow simulations over thousands of time
steps. Most notably, hardly any particle leaves the geometric
boundaries. This is achieved without using handcrafted con-
ditions or restrictions on the positions of the particles. Fur-
thermore, BGNNs have learned to model particle-boundary
interactions and in doing so correctly represent the dynam-
ics within the system. The predicted quantities are within
uncertainties of the simulations.

Out-of-distribution generalization. Therefore, we con-
sider the BGNN predictions as sufficiently precise to sub-
stitute the simulations. Figure 5 shows out-of-distribution
(OOD) scenarios, where the devices are changed with re-
spect to the training data. The hole size of the hopper is

decreased in mean by ∼ 50%, while side wall inclina-
tion angles have been increased by ∼ 15°. For the drum the

9103



Figure 3: Hopper dynamics. Top: Distributions for cohe-
sive and non-cohesive particles. Simulation data and BGNN
predictions are compared. Particles are indicated by green
spheres, triangular wall areas are yellow, the edges of these
triangles are indicated by grey lines. In contrast to liquid-like
non-cohesive particles, cohesive particles lead to congestion
of the hopper. Bottom: Position (left) and flow profile (right)
for non-cohesive particles. Corresponding plots for cohesive
particles can be found in Sect. TApp. D. Simulation data
(solid lines) and BGNN predictions (dashed lines) are com-
pared. Simulation uncertainties are due to a change of the
particle numbers (±25%) and to different initial conditions.
We provide simulation predictions for a hopper with more
timesteps in animations at https://ml-jku.github.io/bgnn/.

length of the corresponding cylinder was increased in mean
by∼ 50%. Our experiments show that our model generalizes
well across variations in the geometry. This finding demon-
strates that trained BGNNs could be used for designing and
studying different geometries without retraining the model.

Moving geometries. As an additional challenge we con-
sider moving geometries, as shown in Fig. 6, where addi-
tional difficulty is imposed due to a rotating blade inside a
particle mixer. Consequently, not only the geometry but also
the blade itself are triangularized and particle-surface inter-
actions are extended by particle-blade interactions. Experi-
ments show that our BGNN approach is well suited to model
such scenarios of increased difficulty.

Figure 4: Rotating drum dynamics. Top: Particle distribu-
tions for cohesive and non-cohesive particles. Simulation
data and BGNN predictions are compared. Particles are in-
dicated by green spheres, triangular wall areas are yellow,
the edges of these triangles are indicated by grey lines. The
circular arrow indicates the rotation direction of the drum.
In contrast to liquid-like non-cohesive particles, cohesive
particles stick together much stronger. Bottom: Flow pro-
file (left) and entropy plot (right) for non-cohesive parti-
cles. The entropy is shown for particle class assignment ac-
cording to the x (blue) and z (red) position. Corresponding
plots for cohesive particles can be found in Sect. TApp. D.
Simulation data (solid lines) and BGNN predictions (dashed
lines) are compared. Simulation uncertainties are due to a
change of the particle numbers (±25%) and to different ini-
tial conditions. We provide simulation predictions for a ro-
tating drum with more timesteps in animations at https://ml-
jku.github.io/bgnn/.

Runtime Table 2 gives a run-time comparison of the
LIGGGHTS simulation versus a forward pass of BGNNs,
which only predict every 100 time step. The highly opti-
mized CPU algorithm (LIGGGHTS) and a non-optimized
GPU compatible algorithm (BGNNs) are compared via their
wall-clock times since the hardware settings are quite differ-
ent. Nevertheless, Table 2 shows that the wall-clock time of
BGNNs is shorter than the wall-clock time of the simulation.
The usage of more particles, would further increase the lead
of BGNNs over the simulation in terms of wall-clock time.
For the time comparison, we use a typical simulation tra-

9104



Figure 5: OOD generalization behavior for the hopper (left)
and the rotating drum (right). In contrast to the training and
validation data the outlet size of the hopper was decreased,
the inclination angles of the hopper side walls are enlarged,
and, the length of the rotating drum is increased.

Figure 6: Mixer dynamics. A mixer can be seen as a mov-
ing geometry where additional difficulty is imposed due to
rotating blades inside. BGNNs are also well suited to model
such scenarios of increased difficulty.

jectory from our datasets with 3,408 particles, which needs
approximately 2 GB GPU memory for one forward pass. An
essential reason for speedup in our (simple) setups are GPU
parallelization capabilities. There is potentially even more
space for improvement of the BGNN predictions over sim-
ulations due to the so called Young’s modulus. For simula-
tions, it is often assumed that energy is purely transmitted
through Rayleigh waves. Thus the time step of DEM sim-
ulations is targeted to be a fraction of the propagation time
through a single, solid particle. As such the propagation time
depends on material parameters, most notably the Young’s

modulus. However, for several materials the Young’s mod-
uli that reflect the true material properties, would lead to ex-
tremely small propagation times, which in turn means much
more simulation steps. Consequently, much smaller Young’s
moduli are considered as an approximation, which is valid
for gravity driven flows (Coetzee 2017). However, for many
cases, e.g. the penetration of a particle bed by an object, this
approximation breaks down (Lommen, Schott, and Lodewi-
jks 2014). BGNNs have the potential to be trained on very
small time steps reflecting the true Young’s moduli and con-
sequently generalize over much more than “just” 40 or 100
time steps.

method time steps real world
time

wall-clock
time [s]

LIGGGHTS 250.000 12.5s 356

BGNNs 2.500 12.5s 158

Table 2: Runtime comparison for one granular flow process
(rotating drum) consisting of 250.000 simulation timesteps,
which are 2500 BGNN predictions. For both, simula-
tion and BGNN trajectories, this corresponds to a real
world time of 12.5s. LIGGGGHTS simulation is run on a
CPU AMD EPYC 7H12, BGNN forward pass is run on a
GPU NVIDIA A100.

6 Conclusion and Future Directions
We have introduced an effective theory to model complex
particle-boundary interactions, resulting in Boundary Graph
Neural Networks (BGNNs). BGNNs dynamically modify
graph structures via modifying edges, augmenting node
features, and dynamically inserting virtual nodes. BGNNs
achieve an accurate neural network modeling of simulated
physical processes within complex geometries. We have
tested BGNNs on complex 3D granular flow processes of
hoppers, rotating drums, and mixers, where BGNNs are able
to accurately reproduce these flows within simulation un-
certainties over hundreds of thousands of timesteps. Most
notably particles stay within the geometric objects without
using handcrafted conditions or restrictions. A possible ex-
tension of our work is towards a wide range of different ma-
terials, e.g. materials with high Young’s moduli as described
in Sect. 5. Another interesting extension is to introduce a ve-
locity dependent cut-off radius, and in doing so considering
also those particle-boundary interactions which are about to
happen within the next timesteps although the spatial dis-
tances are still large. Finally, leveraging the symmetries and
geometries of granular flow problems (Brandstetter et al.
2022a,b) is appealing.

Further Information
Code is available at https://ml-jku.github.io/bgnn/, technical
appendix at https://arxiv.org/abs/2106.11299.

9105



Acknowledgments
This research was supported by FFG grant 871302 (DL for
GranularFlow).

The ELLIS Unit Linz, the LIT AI Lab, the Insti-
tute for Machine Learning, are supported by the Federal
State Upper Austria. IARAI is supported by Here Tech-
nologies. We thank the projects AI-MOTION (LIT-2018-
6-YOU-212), DeepFlood (LIT-2019-8-YOU-213), Medi-
cal Cognitive Computing Center (MC3), INCONTROL-
RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-
872172), EPILEPSIA (FFG-892171), AIRI FG 9-N (FWF-
36284, FWF-36235), ELISE (H2020-ICT-2019-3 ID:
951847), Stars4Waters (HORIZON-CL6-2021-CLIMATE-
01-01). We thank Audi.JKU Deep Learning Center, TGW
LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL),
FILL Gesellschaft mbH, Anyline GmbH, Google, ZF
Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma
SRL, Merck Healthcare KGaA, Verbund AG, GLS (Univ.
Waterloo), Software Competence Center Hagenberg GmbH,
TÜV Austria, Frauscher Sensonic and the NVIDIA Corpo-
ration.

We thank Angela Bitto-Nemling, Markus Holzleitner,
and, Günter Klambauer for helpful discussions and com-
ments on this work.

References
Atz, K.; Grisoni, F.; and Schneider, G. 2021. Geometric deep
learning on molecular representations. Nature Machine In-
telligence, 3(12): 1023–1032.
Battaglia, P.; Hamrick, J.; Bapst, V.; Sanchez-Gonzalez, A.;
Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.;
Santoro, A.; Faulkner, R.; Gulcehre, C.; Song, F.; Ballard,
A.; Gilmer, J.; Dahl, G.; Vaswani, A.; Allen, K.; Nash, C.;
Langston, V.; Dyer, C.; Heess, N.; Wierstra, D.; Kohli, P.;
Botvinick, M.; Vinyals, O.; Li, Y.; and Pascanu, R. 2018.
Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.
Brandstetter, J.; Hesselink, R.; van der Pol, E.; Bekkers, E.;
and Welling, M. 2022a. Geometric and Physical Quantities
improve E(3) Equivariant Message Passing. In 10th Inter-
national Conference on Learning Representations. OpenRe-
view.net.
Brandstetter, J.; van den Berg, R.; Welling, M.; and Gupta,
J. 2022b. Clifford neural layers for pde modeling. arXiv
preprint arXiv:2209.04934.
Coetzee, C. 2017. Calibration of the discrete element
method. Powder Technology, 310: 104–142.
Cundall, P.; and Strack, O. 1979. A discrete numerical
model for granular assemblies. Geotechnique, 29(1): 47–65.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional Neural Networks on Graphs with Fast Local-
ized Spectral Filtering. In Lee, D.; Sugiyama, M.; Luxburg,
U.; Guyon, I.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 29. Curran Asso-
ciates, Inc.
Eberly, D. 1999. Distance Between Point and Triangle in
3D. Technical report, Geometric Tools.

Endlich, S.; Nicolis, A.; Porto, R.; and Wang, J. 2013. Dissi-
pation in the effective field theory for hydrodynamics: First-
order effects. Physical Review D, 88: 105001.
Faccanoni, G.; and Mangeney, A. 2013. Exact solution for
granular flows. International Journal for Numerical and An-
alytical Methods in Geomechanics, 37(10): 1408–1433.
Gilmer, J.; Schoenholz, S.; Riley, P.; Vinyals, O.; and Dahl,
G. 2017. Neural Message Passing for Quantum Chemistry.
In Precup, D.; and Teh, Y., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70,
1263–1272. PMLR.
Gingold, R.; and Monaghan, J. 1977. Smoothed particle hy-
drodynamics: theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society, 181(3):
375–389.
Goldberger, W.; and Rothstein, I. 2006. Effective field the-
ory of gravity for extended objects. Physical Review D, 73:
104029.
Kipf, T.; Fetaya, E.; Wang, K.; Welling, M.; and Zemel, R.
2018. Neural Relational Inference for Interacting Systems.
In Dy, J.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80,
2688–2697. PMLR.
Kipf, T.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. In 5th Inter-
national Conference on Learning Representations. OpenRe-
view.net.
Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; and Pirker,
S. 2012. Models, algorithms and validation for opensource
DEM and CFD–DEM. Progress in Computational Fluid Dy-
namics, an International Journal, 12: 140–152.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. 2012. Ima-
geNet Classification with Deep Convolutional Neural Net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems, volume 25. Curran Associates, Inc.
Ladickỳ, L.; Jeong, S.; Solenthaler, B.; Pollefeys, M.; and
Gross, M. 2015. Data-driven fluid simulations using regres-
sion forests. ACM Transactions on Graphics, 34(6): 1–9.
Lai, F.; and Fan, L. 1975. Application of a Discrete Mixing
Model to the Study of Mixing of Multicomponent Solid Par-
ticles. Industrial & Engineering Chemistry Process Design
and Development, 14(4): 403–411.
Leutwyler, H. 1994. On the Foundations of Chiral Perturba-
tion Theory. Annals of Physics, 235(1): 165–203.
Li, Y.; Wu, J.; Tedrake, R.; Tenenbaum, J.; and Torralba, A.
2019. Learning Particle Dynamics for Manipulating Rigid
Bodies, Deformable Objects, and Fluids. In 7th Interna-
tional Conference on Learning Representations. OpenRe-
view.net.
Lommen, S.; Schott, D.; and Lodewijks, G. 2014. DEM
speedup: Stiffness effects on behavior of bulk material. Par-
ticuology, 12: 107–112.
Longo, M.; Opschoor, J.; Disch, N.; Schwab, C.; and Zech,
J. 2022. De Rham compatible Deep Neural Networks. arXiv
preprint arXiv:2201.05395.

9106



Lucy, L. 1977. A numerical approach to the testing of the
fission hypothesis. Astronomical Journal, 82: 1013–1024.
Macklin, M.; and Müller, M. 2013. Position Based Fluids.
ACM Transactions on Graphics, 32(4): 1–12.
Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; and
Battaglia, P. 2021. Learning Mesh-Based Simulation with
Graph Networks. In 9th International Conference on Learn-
ing Representations. OpenReview.net.
Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.;
Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Som-
mer, T.; and Friederich, P. 2022. Graph neural networks for
materials science and chemistry. Communications Materi-
als, 3(1): 1–18.
Roberts, D.; Yaida, S.; and Hanin, B. 2022. The Principles
of Deep Learning Theory. Cambridge University Press.
Roessler, T.; and Katterfeld, A. 2019. DEM parameter cal-
ibration of cohesive bulk materials using a simple angle of
repose test. Particuology, 45: 105–115.
Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.;
Leskovec, J.; and Battaglia, P. 2020. Learning to Simu-
late Complex Physics with Graph Networks. In III, H.;
and Singh, A., eds., Proceedings of the 37th International
Conference on Machine Learning, volume 119, 8459–8468.
PMLR.
Satorras, V.; Hoogeboom, E.; and Welling, M. 2021. E(n)
Equivariant Graph Neural Networks. In Meila, M.; and
Zhang, T., eds., Proceedings of the 38th International Con-
ference on Machine Learning, volume 139, 9323–9332.
PMLR.
Scarselli, F.; Gori, M.; Tsoi, A.; Hagenbuchner, M.; and
Monfardini, G. 2009. The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 20(1): 61–80.
Schenck, C.; and Fox, D. 2018. SPNets: Differentiable Fluid
Dynamics for Deep Neural Networks. In Billard, A.; Dra-
gan, A.; Peters, J.; and Morimoto, J., eds., Proceedings of
The 2nd Conference on Robot Learning, volume 87, 317–
335. PMLR.
Ummenhofer, B.; Prantl, L.; Thuerey, N.; and Koltun, V.
2020. Lagrangian Fluid Simulation with Continuous Convo-
lutions. In 8th International Conference on Learning Repre-
sentations. OpenReview.net.
Yang, R.; McCandler, C.; Andriuc, O.; Siron, M.; Woods-
Robinson, R.; Horton, M.; and Persson, K. 2022. Big Data
in a Nano World: A Review on Computational, Data-Driven
Design of Nanomaterials Structures, Properties, and Synthe-
sis. ACS Nano, 16(12): 19873–19891.

9107


