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Abstract
Existing episodic reinforcement algorithms assume that the
length of an episode is fixed across time and known a priori.
In this paper, we consider a general framework of episodic
reinforcement learning when the length of each episode is
drawn from a distribution. We first establish that this prob-
lem is equivalent to online reinforcement learning with gen-
eral discounting where the learner is trying to optimize the
expected discounted sum of rewards over an infinite horizon,
but where the discounting function is not necessarily geomet-
ric. We show that minimizing regret with this new general
discounting is equivalent to minimizing regret with uncer-
tain episode lengths. We then design a reinforcement learn-
ing algorithm that minimizes regret with general discount-
ing but acts for the setting with uncertain episode lengths.
We instantiate our general bound for different types of dis-
counting, including geometric and polynomial discounting.
We also show that we can obtain similar regret bounds even
when the uncertainty over the episode lengths is unknown,
by estimating the unknown distribution over time. Finally, we
compare our learning algorithms with existing value-iteration
based episodic RL algorithms on a grid-world environment.

Introduction
We consider the problem of episodic reinforcement learn-
ing, where a learning agent interacts with the environment
over a number of episodes (Sutton and Barto 2018). The
framework of episodic reinforcement learning usually con-
siders two types of episode lengths: either each episode has
a fixed and invariant length H , or each episode may have
a varying length controlled by the learner. The fixed-length
assumption is relevant for recommender systems (Aggarwal
et al. 2016) where the platform interacts with a user for a
fixed number of rounds. Variable length episodes arise nat-
urally in robotics (Kober, Bagnell, and Peters 2013), where
each episode is associated with a learning agent complet-
ing a task, and so the length of the episode is entirely con-
trolled by the learner. Fixed horizon lengths make the design
of learning algorithms easier, and is the usual assumption
in most papers on theoretical reinforcement learning (Azar,
Osband, and Munos 2017; Jin et al. 2018).

In this paper, we take a different perspective on episodic
reinforcement learning and assume that the length of each
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episode is drawn from a distribution. This situation often
arises in online platforms where the length of an episode
(i.e., the duration of a visit by a user) is not fixed a priori,
but follows a predictable distribution (Onah, Sinclair, and
Boyatt 2014). Additionally, various econometric and psy-
chological evidence suggest that humans learn by maintain-
ing a risk/hazard distribution over the future (Sozou 1998),
which can be interpreted as a distribution over the horizon
length. Despite a large and growing literature on episodic re-
inforcement learning, except for (Fedus et al. 2019), uncer-
tain epsiodic lengths or settings with general survival rates
of agents have not been studied before.

Our Contributions: In this paper, we describe rein-
forcement learning algorithms for general distributions over
episode lengths. Our main contribution is a general learn-
ing algorithm which can be adapted to a given distribution
over episode lengths to obtain sub-linear regret over time. In
particular, our contributions are the following.

• We first establish an equivalence between maximization
of expected total reward with uncertain episode lengths
and maximization of expected (general) discounted sum
of rewards over an infinite horizon. In particular, we show
that minimization of regret is equivalent in these two en-
vironments.
• Next we design a learning algorithm for the setting with

arbitrary distribution over the episode lengths. Our algo-
rithm generalizes the value-iteration based learning algo-
rithm of Azar, Osband, and Munos (2017) by carefully
choosing an effective horizon length and then updating
the backward induction step based on the distribution
over episode lengths. In order to analyze its regret, we
use the equivalence result above, and bound its regret for
a setting with general discounting.
• We instantiate our general regret bound for different

types of discounting (or equivalently episode distribu-
tions), including geometric and polynomial discount-
ing, and obtain sub-linear regret bounds. For geomet-
ric discounting with parameter γ, we bound regret by
Õ(
√
SAT/(1 − γ)1.5) which matches the recently es-

tablished minimax optimal regret for the non-episodic
setting (He, Zhou, and Gu 2021). For the polynomial
discounting of the form h−p we upper bound regret by
Õ(
√
SAT

1
2−1/p ).
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• Finally, we show that we can obtain similar regret bounds
even when the uncertainty over the episode lengths is
unknown, by estimating the unknown distribution over
time. In fact, for geometric discounting, we recover the
same regret bound (i.e. Õ(

√
SAT/(1− γ)1.5) up to log-

arithmic factors, and for the polynomial discounting we
obtain a regret bound of Õ(

√
SAT

p
1+2p ), which asymp-

totically matches the previous regret bound.

Our results require novel and non-trivial generalizations
of episodic learning algorithms and straightforward exten-
sions to existing algorithms do not work. Indeed, a naive
approach would be to use the expected episode length as the
fixed horizon lengthH . However, this fails with heavy-tailed
distributions which often appear in practice. Alternately, we
could compute an upper bound on the episode length so that
with high probability the lengths of all the T episodes are
within this bound. Such an upper bound can be computed
with the knowledge of distribution over episode lengths and
using standard concentration inequalities. However, these
upper bounds become loose either with a large number of
episodes or for heavy-tailed distributions.

Related Work
Episodic Reinforcement Learning: Our work is closely re-
lated to the UCB-VI algorithm of Azar, Osband, and Munos
(2017), which achieves O(

√
HSAT ) regret for episodic RL

with fixed horizon length H . The main difference between
our algorithm and UCB-VI is that we use a different equa-
tion for backward-induction where future payoffs are dis-
counted by a factor of γ(h + 1)/γ(h) at step h, where γ
is a general discount function. Beyond (Azar, Osband, and
Munos 2017), several papers have considered different ver-
sions of episodic RL including changing transition func-
tion (Jin et al. 2018; Jin and Luo 2020), and function ap-
proximation (Jin et al. 2020; Wang, Salakhutdinov, and Yang
2020; Yang and Wang 2020).

General Discounting: Our work is also closely related
to reinforcement learning with general discounting. Even
though geometric discounting is the most-studied discount-
ing because of its theoretical properties (Bertsekas 2012),
there is a wealth of evidence suggesting that humans use
general discounting and time-inconsistent decision making
(Ainslie 1975; Mazur 1985; Green and Myerson 2004).
In general, optimizing discounted sum of rewards with re-
spect to a general discounting might be difficult as we are
not guaranteed to have a stationary optimal policy. Fedus
et al. (2019) study RL with hyperbolic discounting and learn
many Q-values each with a different (geometric) discount-
ing. Our model is more general, and our algorithm is based
on a modified value iteration. We also obtain theoretical
bounds on regret in our general setting. Finally, Pitis (2019)
introduced more general state, action based discounting but
that is out of scope of this paper.

Stochastic Shortest Path: Our work is related to the
stochastic shortest path (SSP), introduced by Bertsekas and
Tsitsiklis (1991). In SSP, the goal of the learner is to reach a
designated state in an MDP, and minimize the expected total
cost of the policy before reaching that goal. Recently, there

has been a surge of interest in deriving online learning al-
gorithms for SSP (Rosenberg et al. 2020; Cohen et al. 2021;
Tarbouriech et al. 2021). Our setting differs from SSP in two
ways. First, the horizon length is effectively controlled by
the learner in SSP, once she has a good approximation of
the model. But in our setting, the horizon length is drawn
from a distribution at the start of an episode by the nature,
and is unknown to the learner during that episode. Second,
when the model is known in SSP, different policies induce
different distributions over the horizon length. Therefore, in
contrast to our setting, minimizing regret in SSP is not the
same as minimizing regret under general discounting.

Other Related Work: Note that uncertainty over episode
lengths can also be interpreted as hazardous MDP (Howard
and Matheson 1972), where hazard rate is defined to be the
negative rate of change of log-survival time. Sozou (1998)
showed that different prior belief over hazard rates imply
different types of discounting. We actually show equiva-
lence between general discounting and uncertain episode
lengths, even in terms of regret bounds. Finally, this setting
is captured by the partially observable Markov decision pro-
cesses (Kaelbling, Littman, and Cassandra 1998), where one
can make the uncertain parameters hidden and/or partially
observable.

Model
We consider the problem of episodic reinforcement learning
with uncertain episode length. An agent interacts with an
MDPM = (S,A, r,P, PH), where PH denotes the probabil-
ity distribution over the episode length. We assume that the
rewards are bounded between 0 and 1. The agent interacts
with the environment for T episodes as follows.
• At episode k ∈ [T ], the starting state xk,1 is chosen arbi-

trarily and the length of the episode Hk ∼ PH(·). 1

• For h ∈ [Hk], let the state visited be xk,h and the
action taken be ak,h. Then, the next state xk,h+1 ∼
P(·|xk,h, ak,h).

The agent interacts with the MDPM for T episodes and
the goal is to maximize the expected undiscounted sum of
rewards. Given a sequence of k episode lengths {Hk}k∈[T ]

the expected cumulative reward of an agent’s policy π =
{πk}k∈[T ] is given as

Rew
(
π; {Hk}k∈[T ]

)
=

T∑
k=1

E

[
Hk∑
h=1

r(xk,h, ak,h)

]
Since eachHk is a random variable drawn from the distribu-
tion PH(·), we are interested in expected reward with respect
to distribution PH.

E
[
Rew

(
π; {Hk}k∈[T ]

)]
= E

[
T∑
k=1

∞∑
Hk=1

PH(Hk)

Hk∑
h=1

r(xk,h, ak,h)

]

= Eπ

[
T∑
k=1

∞∑
h=1

PH(H ≥ h)r(xt,h, at,h)

]
(1)

1The parameterHk is unknown to the learner during episode k.
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As is standard in the literature on online learning, we
will consider the problem of minimizing regret instead
of maximizing the reward. Given an episode length Hk

and starting state xk,1 let π?k be the policy that maxi-
mizes the expected sum of rewards over Hk steps i.e.
π?k ∈ argmaxπEπ

[∑Hk
h=1 r(xk,h, ak,h)|xk,1

]
. We will

write V πk(xk,1;Hk) to write the (undiscounted) value func-
tion of a policy πk over Hk steps starting from state xk,1.
Then π?k is also defined as π?k ∈ argmaxπV

π(xk,1;Hk).
We will also write V ?(xk,1;Hk) to denote the correspond-
ing value of the optimal value function. Now we can define
the regret over T steps as follows.

Definition 1. The regret of a learning algorithm π =
{πk}k∈[T ] over T steps with episode lengths {Hk}k∈[T ] is

Reg (π; {Hk}) =
∑
k∈[T ]

V ?(xk,1;Hk)−V πk(xk,1;Hk) (2)

Note that the regret as defined in eq. (2) is actually a
random variable as the episode lengths are also randomly
generated from the distribution PH(·). So we will be in-
terested in bounding the expected regret. Let V ?(xk,1)
be the expected value of V ?(xk,1;Hk) i.e. V ?(xk,1) =∑
` V

?(xk,1; `)PH(`). Then the expected regret of a learning
algorithm is given as

Reg(π; PH(·)) =
∑
k∈[T ]

V ?(xk,1)− EHk [V πk(xk,1;Hk)]

An Equivalent Model of General Discounting
We first establish that the problem of minimizing regret in
our setting is equivalent to minimizing regret in a different
environment, where the goal is to minimize discounted re-
ward over an infinite horizon with a general notion of dis-
counting. By setting γ(h) = PH(H ≥ h), the expected re-
ward in eq. (1) becomes a sum of T expected rewards under
the general discounting function {γ(h)}∞h=1.

E
[
Rew(π; {Hk}k∈[T ])

]
=

T∑
t=1

E

[ ∞∑
h=1

γ(h)r(xt,h, at,h)|xk,1

]
Therefore, we consider the equivalent setting where the
agent is interacting with the MDP M = (S,A, r,P,γ)
where γ = {γ(h)}∞h=1 is a general discounting factor. We
will require the following two properties from the discount-
ing factors:

1. γ(1) = 1,
2.
∑∞
h=1 γ(h) ≤M for some universal constant M > 0.

The first assumption is without loss of generality as we
can normalize all the discount factors without affecting the
maximization problem. The second assumption guarantees
that the optimal policy is well-defined. Note that this as-
sumption rules out hyperbolic discounting γ(h) = 1

1+h , but
does allow discount factors of the form γ(h) = h−p for
any p > 1. Finally, note that our original reformulation of

γ(h) = PH(H ≥ h) trivially satisfies the first assumption.
The second assumption essentially ensures that the horizon
length has a finite mean. We will also write Γ(h) to define
the sum of the tail part of the series starting at h i.e.

Γ(h) =
∑
j≥h

γ(j) (3)

In this new environment, the learner solves the following
episodic reinforcement learning problem over T episodes.

Environment: General Discounting
1. The starting state xk,1 is chosen arbitrarily.
2. The agent maximizes E [

∑∞
h=1 γ(h)r(xk,h, ak,h)|xk,1]

over an infinite horizon.
Notice that even though the new environment is episodic,
the length of each episode is infinite. So this environment is
not realistic, and we are only introducing this hypothetical
environment to design our algorithm and analyze its perfor-
mance.

Suppose that we are given a learning algorithm π =
{πk}k∈[T ]. We allow the possibility that πk is a non-
stationary policy as each πk is used to maximizing a dis-
counted sum of rewards with respect to a general discount-
ing factor and in general the optimal policy need not be sta-
tionary. A non-stationary policy πk is a collection of policies
{πk,h}∞h=1 where πk,h : (S × A)h−1 × S → ∆(A). Given
a non-stationary policy πk at episode k, we define the state-
action Q function and the value function as

Qπk(x, a;γ) = E

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)| x, a

]

V πk(x;γ) = E

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)| x

]
Here ak,h ∼ πk,h(xk,1, ak,1, . . . , xk,h−1, ak,h−1, xk,h) and
the conditioning event is xk,1 = x and ak,1 = a (or just
xk,1 = x). In this environment, we again measure the regret
as the sum of sub-optimality gaps over the T episodes.
Definition 2. Let the optimal value function be defined as
V ?(x;γ) = supπ V

π(x;γ). Then we define regret for a
learning algorithm π = {πk}k∈[T ] as

Reg(π,γ) =
T∑
k=1

V ?(xk,1;γ)− V πk(xk,1;γ) (4)

Our next result shows that it is sufficient to minimize re-
gret with respect to the new environment of episodic rein-
forcement learning. In fact, if any algorithm has regretR(T )
with respect to the new benchmark, then it has regret at most
R(T ) with respect to the original environment with uncer-
tain episode lengths.
Lemma 1. For any learning algorithm π = {πk}k∈[T ] we
have the following guarantee:

Reg(π; PH(·)) ≤ Reg(π;γ).

We also show that a converse of lemma 1 holds with ad-
ditional restrictions on the discount factor γ.
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Lemma 2. Suppose the discount factor γ is non-increasing.
Then there exists a distribution PH(·) over the episode
lengths so that

Reg(π;γ) ≤ Reg(π; PH(·)).
Because of lemma 1, it is sufficient to bound a learning

algorithm’s regret for the environment with infinite horizon
and general discounting. Therefore, we now focus on de-
signing a learning algorithm that acts in an episodic setting
with uncertain episode lengths, but analyze its regret in the
infinite horizon setting with general discounting.

Algorithm: Regret Minimization under
General Discounting

We now introduce our main algorithm. Given a non-
stationary policy πk, we define the state-action function and
value function at step h as follows.

Qπkh (x, a) = E

 ∞∑
j=1

γ(j)r(xk,h+j−1, ak,h+j−1) |

Hh−1, xk,h = x, ak,h = a]

V πkh (x) = E

 ∞∑
j=1

γ(j)r(xk,h+j−1, ak,h+j−1) |

Hh−1, xk,h = x]

where Hh−1 = (xk,1, ak,1, . . . , ak,h−1) and ak,h+j ∼
πk,h+j(Hh+j−1, xk,h+j). Note that, both the state-actionQ-
function and the value function depend on the historyHh−1.
Moreover, conditioned on the history, we are evaluating the
total discounted reward as if the policy {πk,h+j}j≥0 was
used from the beginning. We first establish some relations
regarding the above state-action and value functions. We
drop the episode index k for ease of exposition. Given a non-
stationary policy π = {πh}h≥1 let

Qπh(x, a) = r(x, a) + γ(2) · E

 ∞∑
j=1

γ(j + 1)/γ(2)·

r(xh+j , ah+j)|Hh−1, xh = x, ah = a]

= r(x, a) + γ(2)Exh+1∼P(·|x,a)

E
 ∞∑
j=1

γ(j + 1)/γ(2)·

r(xh+j+1, ah+j+1)|Hh, xh+1]]

= r(x, a) + γ(2)Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ2)

]
where in the last line we write γ2 to denote the discount fac-
tor γ2(j) = γ(j+1)

γ(2) and V πh+1(xh+1;γ2) is the value func-
tion at time-step h with respect to the new discount factor
γ2. By a similar argument one can write the action-value
function with respect to the discount factor γ2 as the follow-
ing expression.

Qπh(x, a;γ2)

= r(x, a) + γ2(2)Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ2)

]
= r(x, a) +

γ(3)

γ(2)
Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ3)

]

ALGORITHM 1: UCB-VI Generalized
Input: Discount factor {γ(h)}∞h=1, parameter ∆
H ← ∅.
for h = 1, . . . , N(∆) do

Set Q1,h(x, a)←
∑∞
j=1 γh(j) =

1
γ(h)

∑∞
j=1 γ(j + h− 1) for all x ∈ S and a ∈ A.

for t = 1, . . . , T do
Update-Q-values(H,γ,∆).
Receive state xt,1.
for h = 1, . . . do

if h ≤ N(∆) then
Take action at,h = argmaxaQt,h(xt,h, a)
UpdateH = H ∪ (xt,h, at,h, xt,h+1)
if xt,h+1 is a terminal state then

Continue to the next episode.
Take an arbitrary action.

where the discount factor γ3 is given as γ3(j) = γ(j+2)
γ(3) . In

general, we have the following relation.

Qπh(x, a;γk) = r(x, a)

+
γ(k + 1)

γ(k)
Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γk+1)

]
(5)

where the discount factor γk is defined as γk(j) = γ(j+k−1)
γ(k)

for j = 1, 2, . . .. Notice that when γ is a geometric discount-
ing, we only need equation.

Qπh(x, a) = r(x, a) + γExh+1∼P(·|x,a)

[
V πh+1(xh+1)

]
(6)

Description of the Learning Algorithm : The sequence
of recurrence relations eq. (5) motivates our main algorithm
(1). Our algorithm is based on the upper confidence value
iteration algorithm (UCBVI (Azar, Osband, and Munos
2017)). In an episodic reinforcement learning setting with
fixed horizon length H , UCBVI uses backward induction to
update the Q-values at the end of each episode, and takes
greedy action according to the Q-table.

However, in our setting, there is no fixed horizon length
and the Q-values are related through an infinite sequence of
recurrence relations. So, algorithm 1 considers a truncated
version of the sequence of recurrence relations eq. (5). In
particular, given an input discount factor {γ(h)}∞h=1

2 and a
parameter ∆, algorithm 1 first determines N(∆) as a mea-
sure of effective length of the horizon. In particular, we set
N(∆) to be an index so that Γ(N(∆)) =

∑
j≥N(∆) γ(j) ≤

∆. Note that, such an index N(∆) always exists as we as-
sumed that the total sum of the discounting factors con-
verges. Then algorithm 1 maintains an estimate of the Q
value for all possible discount factors up to N(∆) i.e. γk
for k = 1, . . . , N(∆).

The details of the update procedure is provided in the ap-
pendix. In the update procedure, we first set the (N(∆)+1)-
th Q-value to be ∆/γ(N(∆) + 1) which is always an upper
bound on theQ-value with discount factor γN(∆)+1 because

2Recall that γ(h) = PH(H ≥ h).
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of the way algorithm 1 sets the value N(∆). Then starting
from levelN(∆), we update theQ-values through backward
induction and eq. (5).

Note that our algorithm needs to maintain N(∆) action-
value tables. We will later show that in order to obtain sub-
linear regret we need to choose ∆ based on the particular
discount factor. In particular, for the geometric discount fac-
tor γ(h) = γh−1 we need to choose N(∆) = log T

log(1/γ) . On
the other hand, discounting factor of the form γ(h) = 1/hp

requires N(∆) = O
(
T 1/(2p−1)

)
.

Analysis
The next theorem provides an upper bound on the regret
Reg(π;γ). In order to state the theorem, we need a new no-
tation. Let the function t : N → R be defined as

t(h) =

{
1 if h = 1

γ(h)
γ(1)

∏h
j=2

(
1 + γ(j)

jβΓ(j)

)
o.w.

Note that the function t is parameterized by the parameter
β and depends on the discount factor γ(·).
Theorem 1 (Informal). With probability at least 1 − δ, Al-
gorithm 1 has the following regret.

Reg(π;γ) ≤ ∆T

γ(N(∆) + 1)
t(N(∆) + 1)

+ max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
Õ
(√

SATN(∆)
)

Theorem 1 states a generic bound that holds for
any discount factor. The main terms in the bound are
O
(√

SATN(∆)
)

, ∆T , and several factors dependent on
the discount factor γ. We now instantiate the bound for dif-
ferent discount factors by choosing appropriate value of ∆
and the parameter β.
Corollary 2. Consider the discount factor γ(h) = h−p. For
p ≥ 2 and T ≥ O(S3A) we have

Reg(T ) ≤ Õ
(
S1/2A1/2T

1
2−1/p

)
and for 1 < p < 2 and T ≥ O

(
(S3A)

2p−1
p−1

)
we have

Reg(T ) ≤ Õ
(

(p− 1)−
p
p−1S1/2A1/2T

1
2−1/p

)
We prove corollary 2 by substituting β = p − 1 and

∆ = O
(
T−

p−1
2p−1

)
. Note that this result suggests that as p

increases to infinity, the regret bound converges to O(
√
T ).

This also suggests that for exponentially decaying discount-
ing factor, our algorithm should have exactly O(

√
T ) regret.

We verify this claim next.
Corollary 3. Consider the discount factor γ(h) = γh−1 for
γ ∈ [0, 1) and suppose T ≥ S3A

(1−γ)4 . Then algorithm 1 has
regret at most

Reg(T ) ≤ Õ
(√

SAT/(1− γ)1.5
)

Here we substitute β = 3/2 and ∆ = T−1/(1 − γ).
Our regret bound for the geometric discounting matches the
minimax optimal regret bound of the non-episodic setting of
(He, Zhou, and Gu 2021).

ALGORITHM 2: Estimating Unknown Discount Fac-
tor
Input: Horizon Length H? = N(∆).
Set block length B =

√
T log T log(log(T )/δ).

Set γ̂0 to be an arbitrary discount factor.
for j = 0, 1, . . . , log(T/B)− 1 do

if j > 0 then
γ̂j(h) = 1− F̂H(h− 1) forall h.

∆̂j =
∑
h≥H?+1 γ̂j(h).

Run algorithm 1 for 2jB episodes with inputs γ̂j
and ∆̂j .
/* update empirical distribution

function */

F̂H(h) = 1
2jB

∑2jB
t=0 1 {Ht ≤ h}.

Proof Sketch of Theorem 1 : We now give an overview
of the main steps of the proof. Although the proof is based
upon the proof of the UCB-VI algorithm (Azar, Osband, and
Munos 2017), there are several differences.

• Let V ?h (·) be the optimal value function under discount-
ing factor γh(·) i.e. V ?h (x) = supπ V

π(x; γh). We first
show that the estimates Vk,h maintained by Algorithm 1
upper bound the optimal value functions i.e. Vk,h(x) ≥
V ?h (x) for any k, h ∈ [N(∆)].

• Let ∆̃k,h = Vk,h − V πkh . Then regret can be bounded as

Reg(π;γ) =
∑T
k=1 V

?(xk,1)− V πk1 (xk,1)

≤
∑T
k=1 Vk,1(xk,1)− V πk1 (xk,1) ≤

∑T
k=1 ∆̃k,1(xk,1)

• Let δ̃k,h = ∆̃k,h(xk,h). Then, the main part of the proof
of theorem 1 is establishing the following recurrent rela-
tion.

δ̃k,h ≤ γ(h+1)
γ(h)

(
1 + γ(h+1)

(h+1)βΓ(h+1)

)
δ̃k,h+1

+
√

2Lεk,h + ek,h + bk,h + εk,h + fk,h

Here εk,h and εk,h are Martingale difference sequences
and bk,h, ek,h, fk,h are either the bonus term or behave
similarly as the bonus term.
• We complete the proof by summing the recurrence rela-

tion above over all the episodes and from h = 1 toN(∆).
Although (Azar, Osband, and Munos 2017) established a
similar recurrence relation, there are two major differ-
ences. First the multiplicative factor in front of δ̃k,h+1 is
changing with time-step h and is not a constant. This is
because the backward induction step uses eq. (5) in our
setting. Second, after expanding the recurrence relation
from h = 1 to N(∆) the final term is no longer zero and
an extra O(∆T ) term shows up in the regret bound.

Estimating the Discount Function
In this section we consider the situation when the discount
function γ(h) = PH(H ≥ h) is not unknown. We start with
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the assumption that the optimal value of N(∆) (say H?) is
known. The next lemma bounds the regret achieved by run-
ning an algorithm with N(∆) = H? with the true discount-
ing γ and an estimate of the discounting γ̂. Our algorithm
partitions the entire sequence of T episodes into blocks of
lengths B, 2B, 22B, . . . , 2sB for s = log(T/B)− 1. At the
end of each block the algorithm recomputes an estimate of
γ. Recall that we defined γ(h) = Pr(H ≥ h). Since every
episode we get one sample from the distribution of H (the
random length of the current episode) we can use the empir-
ical distribution function of horizon length to obtain γ̂. At
the end of block B, the algorithm computes γ̂B , and runs
algorithm 1 with this estimate and ∆̂B = Γ̂B(H? + 1) =∑
h≥H?+1 γ̂B(h) for the block B + 1.

Theorem 4 (Informal). When run with horizon length H?,
algorithm 2 has the following regret bound with probability
at least 1− δ

Reg(π;γ) ≤ min
L∈[T ]

(
TΓ(L+ 1) + 2L log(T )

√
T )
)

+ max
h∈[H?]

t(h)

γ(h)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
Õ
(√

SATH?
)

+ Γ(H?)T

where g(h) = exp
{
O
(∑h

k=2
T−1/4

γ(k)+kβΓ(k)

)}
.

Our proof relies on bounding the estimation error of γ̂
and Γ̂. We can use the classical DKW inequality (Dvoret-
zky, Kiefer, and Wolfowitz 1956) to bound the maximum
deviation between empirical CDF (P̂H(·)) and true CDF (PH).
Through a union bound over the log(T ) blocks, this im-
mediately provides a bound between ‖γ̂j − γj‖∞ for all
j ∈ [log(T/B)]. However, we also need to bound the dis-
tance between Γ̂j(·) and Γ(·) for all j (defined in (3)). A
naive application of DKW inequality results in an addi-
tive bound between Γ̂j(h) and Γ(h) that grows at a rate
of h. This is insufficient for our case to get a sublinear re-
gret bound. However, we show that we can use the multi-
class fundamental theorem (Shalev-Shwartz and Ben-David
2014) to derive an error bound that grows at a rate of

√
log h

and this is sufficient for our proof.
The main challenge in the proof of theorem 4 is control-

ling the growth of the term t(h)/γ(h). Notice that this term
is a product of h terms of the form 1 + γ(k)

kβΓ(k)
, so any error

in estimating γ could blow up the product by a factor of h.
We could show that the regret is multiplied by an additional
function g(h) which is parameterized by β. We next instan-
tiate theorem 4 for different discount factors and show that
we can obtain regret bounds similar to corollary 2, and 3 up
to logarithmic factors.

Corollary 5. Consider the discount factor γ(h) = h−p for
p ≥ 2. Then the regret of algorithm 2 is

Reg(T ) ≤

 Õ
(√

SAT
p+1
2p

)
if T ≥ O

(
(S3/2A1/2)p

)
Õ
(
S2AT

1
2−1/p

)
if T ≤ O

(
(S3/2A1/2)p

)

Corollary 6. Suppose T
log3 T

≥ S3A
(1−γ)4 . Then algorithm 2

has regret at most Õ
(√

SAT/(1− γ)1.5
)

for geometric

discounting γ(h) = γh−1 for γ ∈ [0, 1).

For the polynomial discounting we get a regret of the or-
der of T (p+1)/2p which is worse than the regret bound of the-
orem 1 by a factor of T 1/2p. However, the difference goes to
zero as p increases and approaches the same limit of Õ(

√
T ).

On the other hand, for geometric discounting we recover
the same regret as corollary 3. Interestingly, He, Zhou, and
Gu (2021) obtained a similar bound on regret for the non-
episodic setting where the learner maximizes her long-term
geometrically distributed reward.

UnknownN(∆): Note that algorithm 2 takes as input the
optimal value of N(∆) or H?. However, this problem can
be handled through a direct application of model selection
algorithms in online learning (Cutkosky et al. 2021). Let
Reg(H?) be the regret when algorithm 2 is run with true
H?. We now instantiate algorithm 2 for different choices of
H? and perform model selection over them. In particular,
we can consider H? = 2, 22, . . . , 2O(log T ) as it is sufficient
to consider H? = O(T ). Moreover, given true H? there ex-
ists H̃ ≤ 2H? for which the regret is increased by at most

a constant. This step requires bounding t(H?)
γ(H?)/

t(H̃)

γ(H̃)
and is

constant for the discounting factors considered in the paper.
We now apply algorithm 1 from (Cutkosky et al. 2021) to
the collection of O(log T ) models and obtain a regret bound
of at most O

(√
log TReg(H̃)

)
= Õ(Reg(H?)).

Experiments
We evaluated the performance of our algorithm on the Taxi
environment, a 5× 5 grid-world environment introduced by
(Dietterich 2000). The details of this environment is pro-
vided in the appendix, since the exact details are not too im-
portant for understanding the experimental results. We con-
sidered 100 episodes and each episode length was generated
uniformly at random from the following distributions. 3

1. Geometric discounting γ(h) = γh−1.
2. Polynomial discounting γ(h) = h−p.

3. Quasi-Hyperbolic discounting γ(h) = β1{h>1}γh−1

Figure 1 shows some representative parameters for three dif-
ferent types of discounting. For the geometric discounting,
we show γ = 0.9, 0.95 and 0.975. For the polynomial dis-
counting we generated the horizon lengths from a polyno-
mial with p ∈ {1.4, 1.6, 2.0} and added an offset of 20. Fi-
nally, for the Quasi-hyperbolic discounting, we fixed γ at
0.95 and considered three values of β: 0.7, 0.8, and 0.9.

We compared our algorithm (1) with two variants of
UCB-VI (Azar, Osband, and Munos 2017) – (a) UCB-VI-
Hoeffding computes bonus terms using Chernoff-Hoeffding
inequality, and (b) UCB-VI-Bernstein computes bonus
terms using Bernstein-Freedman inequality. It is known that

3Here γ(h) refers to probability that the episode lengths ex-
ceeds h i.e. γ(h) = Pr(H ≥ h).
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(a) Geometric, γ = 0.9 (b) Geometric, γ = 0.95 (c) Geometric, γ = 0.975

(d) Polynomial, p = 1.4 (e) Polynomial, p = 1.6 (f) Polynomial, p = 2.0

(g) Quasi-Hyperbolic, β = 0.7 (h) Quasi-Hyperbolic, β = 0.8 (i) Quasi-Hyperbolic, β = 0.9

Figure 1: Comparison of our algorithm with different variants of UCB-VI on the Taxi environment (Dietterich 2000). The
regret is measured over 100 episodes, and the length of each episode is drawn independently from a given distribution. Each
plot shows average regret and standard error from 10 trials.

when the horizon length is fixed and known, UCB-VI-
Bernstein achieves minimax optimal regret bounds. We im-
plemented two versions of UCB-VI with three different as-
sumed horizon lengths.

Figure 1 shows that, for several situations, our algorithm
strict improves in regret compared to all the other variants of
UCB-VI. These include Geometric discounting (γ = 0.95
and 0.975) and Quasi-Hyperbolic discounting (all possible
choices of β). For the other scenarios (e.g. polynomial dis-
counting), our algorithm performs as well as the best version
UCB-VI. Figure 1 also highlights the importance of choos-
ing not only the right horizon length but also the correct up-
date equation in backward induction. Consider for example,
figure 1b for the geometric discounting with γ = 0.95. Here
the expected horizon length is 1

1−γ = 20. However, different
UCB-VI variants (horizon lengths 10, 20, 30 and Bernstein
and Hoeffding variants) perform worse. Our algorithm ben-
efits by choosing the right effective horizon length, and also
the correct update equation (6).

Conclusion
In this paper, we have designed reinforcement learning al-
gorithms when the episode lengths are uncertain and drawn
from a fixed distribution. Our general learning algorithm
(1) and result (theorem 1) can be instantiated for different
types of distributions to obtain sub-linear regret bounds. An
interesting direction of future work is to extend our algo-
rithm to function approximation (Jin et al. 2020). For the
standard linear MDP model, the least squares value itera-
tion based algorithm (LSVI-UCB) (Jin et al. 2020) solves
a regularized least squares to learn a parameter vector wh
for each step h. We can follow a similar approach for es-
timation, however we would need to re-weight the outcome
variables by the discount factor in the least-squares problem.
We are also interested in other models of episode lengths.
For example, one can consider a setting where the lengths
are adversarially generated but there is a limit on the total
amount of change. This is similar to the notion of variation
budget (Besbes, Gur, and Zeevi 2014) considered in the lit-
erature on non-stationary multi-armed bandits.
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